請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5255
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林雨德 | |
dc.contributor.author | Bei-Shan Li | en |
dc.contributor.author | 李貝珊 | zh_TW |
dc.date.accessioned | 2021-05-15T17:54:28Z | - |
dc.date.available | 2016-07-29 | |
dc.date.available | 2021-05-15T17:54:28Z | - |
dc.date.copyright | 2014-07-29 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-07-24 | |
dc.identifier.citation | Altig, R. and G. F. Johnston. 1989. Guilds of anuran larvae: relationships among developmental modes, morphologies, and habitats. Herpetological Monographs 3: 81-109.
Alvarez, D. and A. G. Nicieza. 2002. Effects of temperature and food quality on anuran larval growth and metamorphosis. Functional Ecology 16(5): 640-648. Benard, M. F. 2006. Survival trade-offs between two predator-induced phenotypes in pacific treefrogs (Pseudacris regilla). Ecology 87: 340-346. Berven, K. A. 1987. The heritable basis of variation in larval developmental patterns within populations of the wood frog (Rana sylvatica). Evolution 41: 1088-1097. Burggren, W. and A. Mwalukoma. 1983. Respiration during chronic hypoxia and hyperoxia in larval and adult bullfrogs (Rana catesbeiana). I. Morphological responses of lungs, skin and gills. The Journal of Experimental Biology 105: 191-203. Buskirk, J. V. and S. A. McCollum. 2000. Influence of tail shape on tadpole swimming performance. The Journal of Experimental Biology 203: 2149-2158. Buskirk, J. V. 2002. A comparative test of the adaptive plasticity hypothesis: relationships between habitat and phenotype in anuran larvae. The American Naturalist 160: 87-102. Buskirk, J. V., P. Anderwald, S. Lupold, L. Reinhardt and H. Schuler. 2003. The lure effect, tadpole tail shape, and the target of dragonfly strikes. Journal of Herpetology 37(2): 420-424. Buskirk, J. V. 2011. Amphibian phenotypic variation along a gradient in canopy cover: species differences and plasticity. Oikos 120: 906-914. Dayton, G. H., D. Saenz, K. A. Baum, R. B. Langerhans and T. J. DeWitt. 2005. Body shape, burst speed and escape behavior of larval anurans. Oikos 111(3): 582-591. Denver, R. J., N. Mirhadi and M. Phillips. 1998. Adaptive plasticity in amphibian metamorphosis: response of Scaphiopus hammondii tadpoles to habitat dessication. Ecology 79: 1859–1872. Dobzhansky, T. 1956. What is an adaptive trait? The American Naturalist 90: 337-347. Falconer, D. S. and T. F. C. Mackay. 1996. Introduction to quantitative genetics, 4th edition. Longman group, Harlow, London. Fish, F. E. 1998. Imaginative solutions by marine organisms for drag reduction. In Proceedings of International Symposium on Seawater Drag Reduction. Meng, Ed. Newport, Rhode Island. Goater, C. P., R. D. Semlitsch and M. V. Bernasconi. 1993. Effects of body size and parasite infection on the locomotory performance of juvenile toads, Bufo bufo. Oikos 66:129-136. Gosner, K. L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183-190. Harkey, G. A. and R. D. Semlitsch, 1988. Effects of temperature on growth, development, and color polymorphism in the ornate chorus frog Pseudacris ornata. Copeia 1988(4): 1001-1007. Hertel, H. 1966. Structure, form, movement. Reinhold Publishing Corp., New York. Hoerner, S. F. 1965. Fluid-dynamic drag: practical information on aerodynamic drag and hydrodynamic resistance. Hoerner press, Brick Town, New Jersey. Inger, R. F. 1992. Variation of apomorphic characters in stream-dwelling tadpoles of the bufonid genus Ansonia (Amphibia: Anura). Zoological journal of the Linnean Society 105: 225-237. Johansson, F., B. Lederer and M. I. Lind. 2010. Trait performance correlations across life stages under environmental stress conditions in the common frog, Rana temporaria. PLoS One 5(7): e 11680. Kilpatrick, A. M., C. J. Briggs and P. Daszak. 2010. The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends in Ecology and Evolution 25(2): 109-118. Kingsolver, J. G. and R. B. Huey. 2008. Size, temperature, and fitness. Evolutionary Ecology Research 10: 251-268. Kuo, C. F., Y. K. Liao, Y. S. Hsieh and F. H. Hsu. 2010. Variation in morphological characters of Bufo bankorensis tadpoles among different elevations and habitats. Taiwan Journal of Biodiversity 12(4): 351-365. Kupferberg, S. J. 1997. The role of larval diet in anuran metamorphosis. American Zoologist 37(2): 146-159. Kupferberg, S. J., A. Catenazzi, K. Lunde, A. J. Lind and W. J. Palen. 2009. Parasitic copepod (Lernaea cyprinacea) outbreaks in foothill yellow-legged frogs (Rana boylii) linked to unusually warm summers and amphibian malformations in northern California. Copeia 2009(3): 529-537. Kupferberg, S. J., A. J. Lind, V. Thill and S. M. Yarnell. 2011. Water velocity tolerance in tadpoles of the foothill yellow-legged frog (Rana boylii): swimming performance, growth, and survival. Copeia 2011(1): 141-152. Langerhans, R. B. 2008. Predictability of phenotypic differentiation across flow regimes in fishes. Integrative and Comparative Biology 48(6): 750-768. Loman, J. 2003. Growth and development of larval Rana temporaria: local variation and countergradient selection. Journal of Herpetology 37: 595-602. McCollum, S. A. and J. D. Leimberger. 1997. Predator-induced morphological changes in an amphibian: predation by dragonflies affects tadpole shape and color. Oecologia 109(4): 615-621. McRae, B. H., P. Beier, L. E. Dewald, L. Y. Huynh and P. Keim. 2005. Habitat barriers limit gene flow and illuminate historical events in a wide-ranging carnivore, the American puma. Molecular Ecology 14(7): 1965-1977. Meyer-Rochow, V. B. and J. R. Ingram. 1993. Red-white muscle distribution and fibre growth dynamics: A comparison between lacustrine and riverine populations of the southern smelt Retropinna retropinna Richardson. Proceedings of the Royal Society 252(1334): 85-92. Michimae, H. and M. Wakahara. 2002. A tadpole-induced polyphenism in the salamander Hynobius retardatus. Evolution 56: 2029-2038. Miner, B. G., S. E. Sultan, S. G. Morgan, D. K. Padilla and R. A. Relyea. 2005. Ecological consequences of phenotypic plasticity. Trends in Ecology and Evolution 20(12): 685-692. Moran, N. A. 1992. The evolutionary maintenance of alternative phenotypes. The American Naturalist 139: 971-989. Nachlas, M. M., K. C. Tsou, E. D. Souza, C. S. Cheng and A. M. Seligman. 1957. Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazolium. Journal of Histochemistry and Cytochemistry 5: 420-436. Newman, R. A. 1992. Adaptive plasticity in amphibian metamorphosis. Bioscience 42(9): 671-678. Orton, G. L. 1953. The systematic of vertebrate larvae. Systematic Zoology 2: 63-75. Pakkasmaa, S. and J. Piironen. 2000. Water velocity shapes juvenile salmonids. Evolutionary Ecology 14(8): 721-730. Richards, S. J. 2002. Influence of flow regime on habitat selection by tadpoles in an Australian rainforest stream. Journal of Zoology 257(2): 273-279. Sanger, A. M. 1992. Effects of training on axial muscle of two cyprinid species: Chondrostoma nasus (L.) and Leuciscus cephalus (L.). Journal of Fish Biology 40: 637-646. Sasaki, F. 1974. Histochemical and ultrastructural studies of the tail muscles in the anuran tadpole. Japan Society of Histochemistry and Cytochemistry 7(3): 239-256. Schlichting, C. D. and M. Pigliucci. 1998. Phenotypic evolution: a reaction norm perspective. Sinauer associates incorporated, Sunderland, Massachusetts. Schmuck, R., W. Geise, and K. E. Linsenmair. 1994. Life cycle strategies and physiological adjustments of reedfrog tadpoles (Amphibia, Anura, Hyperoliidae) in relation to environmental conditions. Copeia 1994(4): 996-1007. Slatkin, M. 1987. Gene flow and the geographic structure of natural. Science 236: 787-792. Smith, G. R., M. A. Waters and J. E. Rettig. 2000. Consequences of embryonic UV-B exposure for embryos and tadpoles of the plains leopard frog. Conservation Biology 14(6): 1903-1907. Touchon, J. C. and K. M. Warkentin. 2008. Fish and dragonfly nymph predators induce opposite shifts in color and morphology of tadpoles. Oikos 117: 634-640. Venesky, M. D. and M. J. Parris. 2009. Intraspecific variation in life history traits among two forms of Ambystoma barbouri larvae. The American Midland Naturalist 162(1): 195-199. Via, S. and R. Lande. 1985. Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution 39: 505-522. Viertel, B. 1999. Salt tolerance of Rana temporaria: spawning site selection and survival during embryonic development (Amphibia, Anura). Amphibia Reptilia 20(2): 161-171. Wassersug, R. J. and D. G. Sperry. 1977. The relationships of locomotion to differential predation on Pseudacris Triseriata (Anura: Hylidae). Ecology 58(4): 830-839. Watanabe, K., F. Sasaki, H. Takahama and H. Iseki. 1980. Histogenesis and distribution of red and white muscle fibres of urodelan larvae. Journal of anatomy 130(1): 83-96. West-Eberhard, M. J. 1989. Phenotypic plasticity and the origins of diversity. Annual review of Ecology and Systematics 20: 249-278. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5255 | - |
dc.description.abstract | 許多物種能因應棲地的環境條件來調整表型特徵,此能力稱為表型可塑性(phenotypic plasticity),可以提升個體在該棲地中的適存度。有些兩棲類的蝌蚪能夠生活在不同的水流環境之中,但針對水流這項環境因子的表型可塑性研究卻極度缺乏。本研究結合形態、生理、行為與生活史等面向,以實驗檢測盤古蟾蜍蝌蚪在靜止與流動水域環境下的表型可塑性。我們將野外帶回的Gosner Stage 27 期(G27)蝌蚪隨機分成兩群,分別飼養於人工模擬的靜止與流動水域之中,待蝌蚪發育至G35時測量各項形態形值;隨後進行游泳耐力實驗和尾部肌肉的紅肌層數分析;最後測量變態(G42)時的體重。結果顯示:飼養在流動水域下的蝌蚪會擁有相對較小的體寬和體高,但具較長尾長和較寬尾肌,且尾肌的紅肌層數也較多,游泳耐力表現也比較好,但蝌蚪期較長且會以較輕的體重變態。此外,耐力游泳表現和相對體長(+)、體寬(-)、體高(-)、尾長(+)和尾肌寬(+)組成之PCA軸(PC1)呈顯著正相關,顯示擁有相對流線型的身體、較長的尾長及較寬尾肌的個體,在耐力游泳上會有較好的表現。因此,生活在流動水域下的盤古蟾蜍蝌蚪可藉由表型可塑性來降低水中阻力,並提升尾部肌耐力以回應水流環境中持續游泳的需求。此一可塑性或許有提高覓食效率與避敵能力等優點,卻也必須因此付出代價:亦即較慢變態且變態時的體重較輕。另外,本研究也發現來自池塘與溪流的蝌蚪在尾長和肌肉層數上,對於水流的反應不同,這暗示著不同棲地類型之間可能有族群分化,但這需要從卵開始實驗研究才能給予有力的支持。 | zh_TW |
dc.description.abstract | Phenotypic plasticity allows individuals respond to environmental challenges timely, thus generally promotes fitness. Tadpoles of some anuran species inhabit aquatic habitats with different flow regimes. However, the effects of flow regime on tadpoles are unclear due to the dearth of studies. In this study, I investigated the phenotypic plasticity of morphological, physiological, behavioral and life history traits of Bufo bankorensis tadpoles under different flow regimes. In the laboratory, I randomly assigned tadpoles at G27 stage to two treatments: static vs. flowing water. The results showed that tadpoles reared in flowing water had relative smaller body width and body height, but the values of relative tail length, tail muscle width and red muscle layers were larger than those reared in static water. Tadpoles living in flowing water also had better sustained swimming performance than those from static water groups. Furthermore, the regression analysis demonstrated a significant positive relationship between sustained swimming performance and PC1 composed by relative body length(+), body width (-), body height (-), tail length (+) and tail muscle width (+). It showed that individuals with a relatively narrow and shallow body, and had a long tail with thick tail muscle performed better in sustained swimming. Although tadpoles with such characteristics may gain benefits in foraging efficiency and predator avoidance during larvae stage, they pay the costs of entering metamorphosis late and at a small size. Moreover, I also found that the responses of tail length and muscle layers to treatments were distinct between pond and stream populations, which suggested population divergence between habitats. Further research is needed to provide sound evidence of population differentiation. | en |
dc.description.provenance | Made available in DSpace on 2021-05-15T17:54:28Z (GMT). No. of bitstreams: 1 ntu-103-R00b44001-1.pdf: 1400877 bytes, checksum: 7b5c61b690ba23ef378aaf7c418f7c76 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 謝誌 i
中文摘要 ii Abstract iii Introduction 1 Materials & Methods 6 Tadpole collection and care 6 Morphological traits 7 Sustained swimming trials 7 Muscle analyses 9 Life history traits 10 Statistical analyses 10 Morphology, behavior and life history traits 11 Muscle layers 12 The relationship between body shape and swimming performance 12 Results 13 Morphology and swimming performance 13 Muscle layers 14 The relationship between body shape and swimming performance 14 Life history traits 16 Discussion 17 References 23 Tables 27 Figures 34 Appendix 45 | |
dc.language.iso | en | |
dc.title | 盤古蟾蜍蝌蚪在不同水流狀態下的表型可塑性之探討 | zh_TW |
dc.title | Phenotypic Plasticity of Bufo bankorensis Tadpoles Under Different Flow Regimes | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 關永才,楊懿如,許富雄 | |
dc.subject.keyword | 盤古蟾蜍,水流,尾長,紅肌,耐力游泳,棲地, | zh_TW |
dc.subject.keyword | Bankoro toad,flow,tail length,red muscles,sustained swimming,habitat, | en |
dc.relation.page | 48 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2014-07-25 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
顯示於系所單位: | 生態學與演化生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf | 1.37 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。