請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52552完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉?睿(Je-Ruei Liu),鄭光成(Kuan-Chen Cheng) | |
| dc.contributor.author | Yu-Tung Chiu | en |
| dc.contributor.author | 邱宇彤 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:18:20Z | - |
| dc.date.available | 2025-08-17 | |
| dc.date.copyright | 2015-08-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-17 | |
| dc.identifier.citation | 朱芳瑢。2008,數株益生菌及其發酵乳抑制大腸癌細胞增生及4NQO誘導Int-407基因毒性之研究。國立臺灣大學食品科技研究所碩士論文。台北。
洪瑞琳。2005,乳酸發酵蔬菜萃取物對4-Nitroquinoline N-oxide及Benzo(a)pyrene 之抗致癌突變性研究。國立臺灣大學食品科技研究所碩士論文。台北。 許雅鈞。2004,雙叉桿菌胞內物對活性氧化之抗致突變性與抗氧化性。國立臺灣大學食品科技研究所碩士論文。台北。 羅培仁。2003,雙叉桿菌對Benzo[a]pyrene之抗致突變性及機制。國立臺灣大學食品科技研究所博士論文。台北。 臺灣乳酸菌協會http://www.talab.org.tw/ Abou-Arab, A. A. K., Abou-Bakr, S., Maher, R. A., El-Hendawy, H.H., Awad, A.A. Degradation of polycyclic aromatic hydrocarbons as affected by some Lactic Acid Bacteria. Am. J. Sci. 2010, 6, 1237-1246. Arunachalam, K. D. Role of bifidobacteria in nutrition, medicine and technology. Nutr. Res. 1999, 19, 1559-1597. Awad, W., Ghareeb, K., Böhm, J. Intestinal Structure and Function of Broiler Chickens on Diets Supplemented with a Synbiotic Containing Enterococcus faecium and Oligosaccharides. Int. J. Mol. Sci. 2008, 9(11), 2205-2216. Axelsson, L. (2004) Lactic acid bacteria: classification and physiology. Lactic Acid Bacteria: Microbiological and Functional. NY. Marcel Dekker. Aygun, S.F., Kabadayi, F. Determination of benzo[a] pyrene in charcoal grilled meat samples by HPLC with fluorescence detection. Int. J. Food Sci. Nutr. 2005, 56, 581–585. Berrada, N., Lemeland, J., Laroche, G., Thouvenot, P., Piaia, M. Bifidobacterium from Fermented Milks: Survival During Gastric Transit. J. Dairy Sci. 1991, 74, 409-413. Bianchi, M. A., Del Rio, D., Pellegrini, N., Sansebastiano, G., Neviani, E., & Brighenti, F. A fluorescence-based method for the detection of adhesive properties of lactic acid bacteria to Caco-2 cells. Lett. Appl. Microbio. 2004, 39(3), 301-305. Bolognani, F., Rumney, C.J., Rowland, I.R. Influence of carcinogen binding by lactic acid-producing bacteria on tissue distribution and in vivo mutagenicity of dietary carcinogens. Food Chem. Toxicol. 1997, 35, 535 -545. Boström, C. E., Gerde, P., Hanberg, A., Jernström, B., Johansson, C., Kyrklund, T., Rannug, A., Törnqvist, M., Victorin, K., Westerholm, R. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ. Health Persp. 2002, 110, 451-488. Cerniglia, C. E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 1992, 3, 351-368. Chen, Y. H., Xia, E. Q., Xu, X. R., Li, S., Ling, W. H., Wu, S., Deng, G. F., Zou, Z. F., Zhou, J., Li, H. B. Evaluation of benzo[a]pyrene in food from China by high-performance liquid chromatography-fluorescence detection. Inter. J. Environ. Res. Public health. 2012, 9, 4159-69. Chong, E. S., A potential role of probiotics in colorectal cancer prevention: review of possible mechanisms of action. World J. Microb. Biot. 2013, 30, 351-74. Chung, K. T., Wong, T. Y., Wei, C. I., Huang, Y. W., Lin, Y. Tannins and human health: A review. Crit. Rev. Food Sci. 1998, 38, 421-464. Crittenden, R. G., Martinez, N. R., Playne, M. J. Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria. Int. J. Food Microbiol. 2003, 80, 217-222. de Roos, N. M., & Katan, M. B. Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. Am. J. Clin. Nutr. 2000, 71(2), 405-411. de Vrese, M., Kristen, H., Rautenberg, P., Laue, C., Schrezenmeir, J. Probiotic lactobacilli and bifidobacteria in a fermented milk product with added fruit preparation reduce antibiotic associated diarrhea and Helicobacter pylori activity. J. Dairy Res. 2011, 78, 396-403. Devriesea, L. A., Ceyssensa, K., Hommezb, J., Kilpper-Bälzc, R., Schleifer, K. H. Characteristics of different Sterptococcus suis ecovars and description of a simplified identification method. Vet. Microbiol. 1991, 26, 141-150. El-Nezami, H., Mykkänen, H., Kankaanpää, P., Salminen, S., Ahokas, J. Ability of Lactobacillus and Propionibacterium strains to remove aflatoxin B1 from the chicken duodenum. J. Food Protect. 2000, 63, 549-552. Ezendam, J., van Loveren, H. Probiotics: immunomodulation and evaluation of safety and efficacy. Nutr.Rev. 2006, 64, 1-14. FAO/WHO. Guidelines for the evaluation of probiotics in food. Report of a joint FAO/WHO Working Group. 2002. Fuller, R. A Review probiotics in man and animals. J. Appl. Bacterio. 1989, 66, 365-378. Galbraith, D. W., Harkins, K., Maddox, J. M., Ayres, N., Sharma, D. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science. 1983, 220 (4601), 1049-1051. Gasser, F. Safety of lactic acid bacteria and their occurrence in human clinical infections. Bull. Inst. Pasteur. 1994, 92, 45–67. Gaudana, S. B., Dhanani, A. S., & Bagchi, T. Probiotic attributes of Lactobacillus strains isolated from food and of human origin. Brit. J. Nutr. 2010, 103(11), 1620-1628. Gibson, G. R., Wang, X. Regulatory effects of bifidobacteria on the growth of other colonic bacteria. J. Appl. Bacteriol. 1994, 77, 412-420. Goldin, B.R., Gorbach, S.L. Effect of Lactobacillus acidophilus dietary supplementation on 1, 2-dimethylhydrazine dihydrochloride -induced intestinal cancer in rats. J. Natl. Cancer I. 1980, 64, 263-265. Grootaert, C., Boon, N., Zeka, F., Vanhoecke, B., Bracke, M., Verstraete, W., Wiele, T. V. Adherence and viability of intestinal bacteria to differentiated Caco-2 cells quantified by flow cytometry. J. Microbiol. Meth. 2011, 86(1), 33-41. Gunsalus, I. C., Horecker, B. L., Wood, W. A. Pathways of carbohydrate metabolism in microorganisms. Bacteriological Reviews 1955, 19(2), 79-128. Haritash, A. K., Kaushik, C. P. A review of biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs). J. Hazard Mater. 2009, 169(1-3), 1–15. Havenaar, R., Brink, B. T., Huis In ’t Veld, J. H. J. (1992) Selection of strains for probiotic use. Probiotics:The scientific basis. Springer Netherlands. Holzapfel, W. H., Haberer, P., Geisen, R., Bjorkroth, J., Schillinger, U. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am. J. Clin. Nutr. 2001, 73, 365-373. Hunter, R. D., Ekunwe, S. I. N., Dodor, D. E., Hwang, H. M., Ekunwe, L. Bacillus subtilis is a potential degrader of pyrene and benzo[a]pyrene. Int. J. Environ. Res. Public Health. 2005, 2, 267-271. Hunter, R. D., Ekunwe, S. I. N., Dodor, D. E., Hwang H. M., Ekunwe, L. Bacillus subtilis is a potential degrader of pyrene and benzo[a]pyrene. Int. J. Environ. Res. Public Heal. 2005, 2, 267-271. Hutt, P., Shchepetova, J., Loivukene, K., Kullisaar, T., Mikelsaar, M. Antagonistic activity of probiotic lactobacilli and bifidobacteria against entero- and uropathogens. J. Appl. Microbiol. 2006, 100, 1324-32. Hyronimus, B., Marrec C. L., Sassi, A. H., Deschamps A. Acid and bile tolerance of spore-forming lactic acid bacteria. Int. J. of Food Microbiol. 2000, 61(2-3), 193-197. International Agency for Research on Cancer (IARC). Agents Classified by the IARC Monographs, Volumes 1 – 100. 2011. 15 June. Ishizaki, A., Saito, K., Hanioka, N., Narimatsu, S., Kataoka, H. Determination of polycyclic aromatic hydrocarbons in food samples by automated on-line in-tube solid-phase microextraction coupled with high-performance liquid chromatography-fluorescence detection. J. Chromatogr. A. 2010, 1217, 5555–5563. Jagerstad, M., Skog, K. Genotoxicity of heat-processed foods. Mutat. Res. 2005, 574, 156-172. Juhasz, A.L., Britz, M.L., Stanley, G.A. Degradation of fluoranthene, pyrene, benz[a]anthracene and dibenz[a,h]anthracene by Burkholderia cepacia. J. Appl. Bacterio. 1997, 83(2), 189-198. Kaila, M. Immune defense to dietary cow milk in healthy infants. Pediatr. Allergy Immu. 2007, 4, 41-44. Kazerouni, N., Sinha, R., Hsu, C. H., Greenberg, A., Rothman, N. Analysis of 200 food items for benzo[a]pyrene and estimation of its intake in an epidemiologic study. Food Chem. Toxicol. 2001, 39(5), 423–436. Khan, S., Cao, Q. Human health risk due to consumption of vegetables contaminated with carcinogenic polycyclic aromatic hydrocarbons. J. Soils Sed. 2012, 12, 178–184. Kim, J. E., Kim, J. Y., Lee, K. W., Lee, H. J. Cancer chemopreventive effects of lactic acid bacteria. J. Microbiol. Biotechn. 2007, 17, 1227-1235. Kimoto, H., Kurisaki, J., Tsuji, N. M., Ohmomo, S., Okamoto, T. Lactococci as probiotic strains: adhesion to human enterocyte-like Caco-2 cells and tolerance to low pH and bile. Lett. Appl. Microbiol. 1999, 29, 313-316. Klaver, F. A., van der Meer, R. The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl. Environ. Microb. 1993, 59, 1120-1124. Klein, G., Pack, A., Bonaparte, C., Reuter, G. Taxonomy and physiology of probiotic lactic acid bateria. Int. J. Food Microbiol. 1998, 41, 103-125. Klein, G., Pack, A., Bonaparte, C., Reuter, G. Taxonomy and physiology of probiotic lactic acid bacteria. Int. J. Food Microbiol. 1998, 41, 103-125. Kullisaar, T., Zilmera, M., Mikelsaarb, M., Vihalemma, T., Annukb, H., Kairanea, C., Kilkc, A. Two antioxidative lactobacilli strains as promising probiotics. Int. J. Food Microbiol. 2002, 72, 215–224. Lankaputhra, W. E. V., Shah, N. P. Antimutagenic properties of probiotic bacteria and of organic acids. Mutat. Res-Fund. Mol. M. 1998, 397, 169-182. Lee, Y. K., Lim, C. Y., Teng, W. L., Ouwehand, A. C., Tuomola, E. M., Salminen, S. Quantitative approach in the study of adhesion of lactic acid bacteria to intestinal cells and their competition with enterobacteria. Appl. Environ. Microbiol. 2000, 66(9), 3692–3697. Lijinsky, W. The formation and occurrence of polynuclear aromatic hydrocarbons associated with food. Mutat. Res. Genet. Tox. 1991, 259, 251-261. Lilly, D.M., Stillwell, R.H. Probiotics:Growth-promoting factors produced by microorganisms. Science 1965, 147, 747-748. Lin, S., Wen, L., Yang, B., Jiang, G., Shi, J., Chen, F., Jiang, Y. Improved growth of Lactobacillus bulgaricus and Streptococcus thermophilus as well as increased antioxidant activity by biotransforming litchi pericarp polysaccharide with Aspergillus awamori. 2013, 2013, 1-7. Maron, D. M., Ames, B. N. Revised methods for the Salmonella mutagenicity test. Mutat. Res-Envir. 1983, 113(3), 173-215. Mitsuoka, T. Intestinal flora and human health. Asia Pac. J. Clin. Nutr. 1996, 5, 2-9. Montes, R. G., Bayless, T. M., Saavedra, J. M., Perman, J. A. Effect of milks inoculated with Lactobacillus acidophilus or a yogurt starter culture in lactose-maldigesting children. J. Dairy Sci. 1995, 78, 1657-1664. Murray, B. E., Weinstock, G. M. Enterococci: New Aspects of an Old Organism. P. Assoc. Am. Physician. 1999, 111, 328-334. Narayan, S., Jaiswal, A. S., Kang, D., Srivastava, P., Das, G. M., Gairola, C. G. Cigarette smoke condensate-induced transformation of normal human breast epithelial cells in vitro. Oncogene. 2004, 23, 5880-5889. Nettles, C. G., Barefoot, S. F. Biochemical and genetic characteristics of bacteriocins of food-associated lactic acid bacteria. J. Food Protect. 1993, 19, 286-356. Oelschlaeger, T. A. Mechanisms of probiotic actions – A review. Int. J. Med. Microbiol. 2010, 300(1), 57–62. Ofek, I., Courtney, H. S., Schifferli, D. M., Beachey, E. H. Enzyme-linked immunosorbent assay for adherence of bacteria to animal cells. J. Clin. Microbiol. 1986, 24(4), 512-516. Orrhage, K., Annas, A., Nord, C., Brittebo, E., Rafter, J. Effecys of lactic acid bacteria on the uptake and distribution of the food mutagen Trp-P-2 in mice. Scand. J. Gastroenterol 2002, 37, 215-221. Orrhage, K., Sillerstrom, E., Gustafsson, J., Nord, C., Rafter, J. Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutat. Res. 1994, 311, 239-248. Parvez, S., Malik, K. A., Ah Kang, S., Kim, H. Y, Probiotics and their fermented food products are beneficial for health. J, Appl. Microb. 2006, 100, 1171-1185. Patterson, J. A., Burkholder, K. Application of prebiotic and probiotic in poultry production. Poul. Sci. 2003, 82, 627-630. Phillips, D. H. Polycyclic aromatic hydrocarbons in the diet. Mutatres-Gen Tox. En. 1999, 443(1), 139-147. Pool-Zobel, B.L., Neudecker, C., Domizlaff, I., Ji, S., Schillinger, U., Rumney, C.J., Moretti, M., Vilarini, I., Scasselati-Sforzolini, R., Rowland, I.R. Lactobacillus and Bifidobacterium mediated antigenotoxicity in the colon of rats. Nutr. Cancer. 1996, 26, 365 -380. Rafter, J. Lactic acid bacteria and cancer: mechanistic perspective. Brit. J. Nutr. 2002, 88(1), 89 -94. Rubio, R., Jofré, A., Martín, B., Aymerich, T., Garriga, M. Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages. Food Microbial. 2014, 38, 303-311. Saito, J., Sakai, Y., Nagase, H. In vitro anti-mutagenic effect of magnolol against direct and indirect mutagens. Mutat. Res. 2006, 609, 68-73. Saito, J., Sakai, Y., Nagase, H. In vitro anti-mutagenic effect of magnolol against direct and indirect mutagens. Mutat. Res. 2006, 609, 68-73. Schleifer, K. H., Kilpper-Bälz, R. Transfer of Streptococcus faecalis and Streptococcus faecium to the Genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int. J. Syst. Evol. Micr. 1984, 34, 31-34. Schrezenmeir, J., Vrese, M. de. Probiotics, prebiotics, and synbiotics— approaching a definition. Am. J. Clin. Nutr. 2001, 73, 361S–4S. Smith, J. G. Molecular and genetic effects of dietary derived butyric acid. Food Technol, 1995, 11, 87–90. Sobhani, I., Amiot, A., Le Baleur, Y., Levy, M., Auriault, M-L., Van Nhieu, JT., Delchier, JC. Microbial dysbiosis and colon carcinogenesis:could colon cancer be considered a bacteria-related disease? Therap. Adv. Gastroenterol 2013, 6, 215–229. Sreekumar, O., Hosono, A. The heterocyclic amine binding receptors of Lactobacillus gasseri cells. Mutat. Res. 1998, 421, 65-72. Sreekumar, O., Hosono, The antimutagenic properties of a polysaccharide produced by Bifidobacterium longum and its cultured milk against some heterocyclic amines. Can. J. Microbiol. 1998, 44, 1029-1036. Tanaka, H., Doesburg, K., Iwasaki, T., Mierau, I. Screening of lactic acid bacteria for bile salt hydrolase activity. J. Dairy Sci. 1999, 82, 2530-2535. Tanaka, H., Doesburg, K., Iwasaki, T., Mierau, I. Screening of lactic acid bacteria for bile salt hydrolase activity. J. Dairy SCI. 1999, 82(12), 2530–2535. Tannock, G. W. Probiotic properties of lactic-acid bacteria: plenty of scope for fundamental R & D. Trends Biotechnol. 1997, 15, 270-274. Topcu, A., Bulat, T., Wishah, R., Boyacı, I. H. Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains. Int. J. Food Microbiol. 2010, 139, 202-205. Tuomola, E. M. (née Lehto), Salminen, S. J. Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. Inter. J. Food Microbiol. 1998, 41(1), 45-51. Uccello, M.; Malaguarnera, G.; Basile, F.; D'Agata, V.; Malaguarnera, M.; Bertino, G.; Vacante, M.; Drago, F.; Biondi, A., Potential role of probiotics on colorectal cancer prevention. BMC surgery 2012, 12, 35. Urbanska, A. M., Bhathena, J., Martoni, C., Prakash, A. Estimation of the potential antitumor activity of microencapsulated lactobacillus acidophilus yogurt formulation in the attenuation of tumorigenesis in Apc(Min/+) Mice. Dig. Dis. Sci. 2009, 54, 264-273. Vinderola, G., Capellini, B., Villarreal, F., Suárez, V., Quiberoni, A., Reinheimer, J. Usefulness of a set of simple in vitro tests for the screening and identification of probiotic candidate strains for dairy use. LWT - Food Sci. Technol. 2008, 41, 1678-1688. Washington, D. C.. Carcinogens and anticarcinogens in the human diet: A comparison of naturally occurring and synthetic substances. 1996. Wu, J., Yang, J., Nakagoshi, N., Lu, X., Xu, H. Sources, toxicity, potential cancer risk assessment and analytical methods for monitoring of polycyclic aromatic hydrocarbons. Adv. Mater. Res. 2012, 524-527, 1739–1750. Zhang, X. B., Ohta, Y. Binding of mutagens by fractions of the cell wall skeleton of lactic acid bacteria on mutagens. J. Dairy Sci. 1991, 5, 1477-1481. Zhao, H., Zhou, F., Qi, Y., Dziugan, P., Bai, F., Walczak, P., Zhang B. Screening of Lactobacillus strains for their ability to bind benzo(a)pyrene and the mechanism of the process. Food Chem. Toxicol. 2013, 59, 67–71. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52552 | - |
| dc.description.abstract | 燒烤食物含苯并[a]芘(benzo[a]pyrene),經過人體代謝後容易形成致癌物。近年來的相關研究指出,可以利用乳酸菌和致癌劑之結合,進而降解或代謝成毒性較低之物質,減低對人體腸胃道的潛在危險。本研究為了篩選出具有清除苯并[a]芘之能力的乳酸菌,從嬰兒糞便中,先進行菌株之初篩選,再根據清除苯并[a]芘的能力及抗突變之分析情形,篩選出具有較高清除率之菌株,進行基本特性分析。結果顯示,初篩選出28株類乳酸菌,進一步在苯并[a]芘清除試驗中,利用添加1 ppm苯并[a]芘至不同篩選出的菌株之培養基中,進而篩選出YT 2、YT 5及YT 17乳酸菌株對苯并[a]芘具有較強之清除率,分別為97.66 %、 97.66 %及97.79 %。將活菌體經過熱處理與超音波破碎法來製備熱致死菌體、細胞壁及細胞內萃取物,結果顯示活菌體結合率大於熱致死菌體,而細胞壁結合率大於細胞內萃取物,可以推測乳酸菌株清除苯并[a]芘以吸附作用為主,細胞壁為重要的結合因子。進一步使用安氏試驗法之測試菌株Salmonella typhimurium TA100來分析乳酸菌對苯并[a]芘誘導突變之預防效果,結果顯示,三株乳酸菌對S. typhimurium TA100並不具有毒性與致突變性,並對苯并[a]芘誘突變性具有超過50%的抑制效果。連續的預反應研究顯示抗突變性的主要機制是去致突變作用。經革蘭氏染色法、API 50 CHL及16S rRNA鑑定結果顯示YT 2及YT 5屬於Enterococcus feacium,而YT 17屬於Enterococcus feaclis。以模擬宿主腸胃道環境的耐酸及膽鹽耐受性試驗顯示,此三株菌可在pH 2的環境中存活,並可於含有0.3% oxgall的MRS培養液中生長;細胞吸附試驗顯示此三株菌對人類大腸癌細胞Caco-2具有吸附能力。綜合以上結果,E. feacium YT 2、E. feacium YT 5及E. feaclis YT 17不僅具有清除苯并[a]芘之能力及抗致突變作用,且具有多項益生菌的特性,故後續將可應用於健康食品之開發。 | zh_TW |
| dc.description.abstract | Colorectal cancer (CRC) ranks the third most common malignant disease worldwide. The risk factors of CRC include the diet and lifestyle of people. Meat-related compounds, especially benzo(a)pyrene (BaP) is one of the best-characterised PAHs compound in the diet. Recently, studies have confirmed a correlation between probiotics and CRC that removing of carcinogens and mutagens has been considered as a possible mechanism in CRC prevention. The object of this study was to screen probiotic strains that have the BaP-removing ability. Then, the isolated strains exhibited high efficiency in removing BaP will be further evaluated for their functional properties and for its potential application as probiotic. As the results, the 28 bacterial strains were isolated from infant feces and then treated with 1 ppm BaP to analyze their BaP-removing ability. Three strains (YT 2, YT 5 and YT 17) had the best removing rate (97.66 %, 97.66 % and 97.79 %). The viability of the bacteria has significant effect on the removing of BaP. Cell walls of strains showed higher binding ability than heat-treated bacteria and intracellular extract. Therefore, we proposed that peptidoglycans played an important role in binding BaP. Antimutagenic activities of three strains were examined by Ames test. The results shows that the test strains didn’t have the cytotoxicity and mutagenicity against Salmonella typhimurium TA100 and the cultures incubated with potent mutagen BaP displayed high antimutagenic activities. After identification, YT 2 and YT 5 were classified as Enterococcus feacium, and YT 17 were Enterococcus feaclis. In the probiotic activity assay, all the test strains could survive in pH 2 solutions and grow in MRS broth containing 0.3% oxgall. In the Caco-2 cell adhesion assay, the test strains were able to adhere to Caco-2 cell. In conclusion, E. feacium YT 2, E. feacium YT 5 and E. feaclis YT 17 not only have the capable of removing BaP, but also possess antimutagenic activities, acid resistance, and bile salt tolerance ability. Therefore, E. feacium YT 2, E. feacium YT 5 and E. feaclis YT 17 have a potential to be applied in the human diet and animal feed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:18:20Z (GMT). No. of bitstreams: 1 ntu-104-R02641015-1.pdf: 3728545 bytes, checksum: eaa44bf306477f586aa2903fd4d6edd7 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 謝誌 I
中文摘要 II 英文摘要 III 目錄 IV 圖目錄 VIII 表目錄 X 壹、前言 1 貳、文獻探討 3 一、益生菌簡介 3 (一) 益生菌之定義 3 (二) 乳酸菌的介紹 3 (三) 益生菌應具備之特性 7 (四) 益生菌之生理功效 10 (五) 益生菌之安全性評估 15 (六) 乳酸菌在食品應用之現況 15 二、膳食與致癌劑(carcinogen)簡介 16 (一) 癌症之形成及危害 16 (二) 致癌劑分類 18 (三) 食品中之致癌物及致突變物 19 (四) 益生菌與大腸癌 22 三、抗致突變劑之作用機制檢測方法 25 (一) 抗致突變劑之作用機制 25 (二) 安氏試驗(Ames test) 28 四、多環芳香烴(polycyclic aromatic hydrocarbons, PAH)簡介 31 (一) 多環芳香烴定義及特性 32 (二) 多環芳香烴種類 34 (三) 微生物對多環芳香烴的分解利用 37 五、模擬人體腸道細胞 38 六、腸道吸附之測量方法 38 参、材料與方法 40 一、實驗架構 40 二、實驗材料 42 (一) 分離源 42 (二) 培養基 42 (三) 藥品 43 (四) 實驗菌株 45 (五) 實驗細胞株 45 (六) 儀器設備 45 三、實驗方法 47 (一) 菌種的活化與保存 47 (二) 嬰兒糞便中乳酸菌之分離及鑑定 48 (三) 乳酸菌降解苯并[a]芘之能力 50 (四) Salmonella typhimurium TA 100菌株基因形態確認 54 (五) 乳酸菌抗致突變性試驗 58 (六) 乳酸菌抗突變之可能機制之探討 60 (七) 益生菌乳酸菌特性分析 62 (八) Caco-2細胞株的活化、繼代培養及保存 66 (九) 統計分析 66 肆、結果與討論 67 一、乳酸菌株篩選之初步確認 67 二、乳酸菌株去除苯并[a]芘之能力 67 三、乳酸菌株對苯并[a]芘誘突變的抑制效果 76 四、菌株之基本生理生化特性 86 五、評估菌株作為益生菌之潛力 95 伍、結論 109 陸、參考文獻 111 柒、作者小傳 125 附錄 126 | |
| dc.language.iso | zh-TW | |
| dc.subject | 益生菌 | zh_TW |
| dc.subject | 乳酸菌 | zh_TW |
| dc.subject | 致癌劑 | zh_TW |
| dc.subject | 苯并[a]芘 | zh_TW |
| dc.subject | probiotic | en |
| dc.subject | lactic acid bacteria | en |
| dc.subject | carcinogen | en |
| dc.subject | benzo[a]pyrene | en |
| dc.title | 具苯并[a]芘清除能力之乳酸菌株篩選及其特性研究 | zh_TW |
| dc.title | Screening and characterization of lactic acid bacterial strains possessing benzo[a]pyrene-removing ability | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 彭及忠,游若?,劉啟德 | |
| dc.subject.keyword | 益生菌,乳酸菌,致癌劑,苯并[a]芘, | zh_TW |
| dc.subject.keyword | probiotic,lactic acid bacteria,carcinogen,benzo[a]pyrene, | en |
| dc.relation.page | 128 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
