請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52427
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 江文章(Wenchang Chiang) | |
dc.contributor.author | Ching-Wen Chang | en |
dc.contributor.author | 張瀞文 | zh_TW |
dc.date.accessioned | 2021-06-15T16:14:30Z | - |
dc.date.available | 2025-07-28 | |
dc.date.copyright | 2015-08-19 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-08-18 | |
dc.identifier.citation | 蘇珮琪 (1996) 薏苡對高脂症和糖尿症病患血漿脂質和血糖的影響。輔仁大學食品營養研究所碩士論文。
何菁菁 (2000) 糙薏苡對STZ 所誘發之糖尿病大白鼠脂質與醣類代謝的影響。國立臺灣海洋大學食品科學研究所碩士論文。 張文思 (2008) 薏苡籽實與荷葉之抗糖基化效應。國立臺灣大學食品科技研究所碩士論文。 呂峰、黃一帆、池淑芳、姜成金 (2008) 薏苡仁多糖對小鼠抗氧化作用的研究。營養學報30,602-605。 徐梓輝、周世文、陳衛、應懿、徐靜、馮曉麗、鄭宏庭、方芳 (2007) 薏苡仁多糖對 糖尿病血管并發癥大鼠NO 及主動脈iNOS 基因表達的影響。第三軍醫大學學報29,1673-1676。 徐梓輝、周世文、黃林清 (2000a) 薏苡仁多糖的分離提取及其降血糖作用的研究第三軍醫大學學報22,578-581。 徐梓輝、周世文、黃林清 (2000b) 薏苡仁多糖對四氧嘧啶致大鼠胰島β 細胞損傷的保護作用。中國藥理學通報16,639-642。 徐梓輝、周世文、黃林清、黃文權、袁林貴 (2002) 薏苡仁多糖對實驗性2 型糖尿病大鼠胰島素抵抗的影響。中國糖尿病雜誌10,45-48。 徐梓輝、周世文、陳衛、徐靜、錢桂生、湯建林、黃永平、陳維中、徐穎、應懿、王璐。(2006) 薏苡仁多糖對2 型糖尿病大鼠主動脈內皮素1 基因表達的影響。中國動脈硬化雜誌14,194-196。 高德錚、梁純玲 (1986). 省產薏仁品質之檢定。台灣省臺中區農業改良場研究彙報13,11-18。 胡軍、金國梁 (2007). 薏苡仁的營養與藥用價值。中國食物與營養6,57-58。 黃士禮、江文章 (1999). 薏苡籽實各部位之組成分及其丙酮萃取液之抗突變作用。食品科學26, 121-130。 黃士禮、江文章 (1997). 貯存期間薏苡籽實中薏仁油的薏仁酯含量、酸價、過氧化價和脂肪酸組成之變化。食品科學24,365-375。 吳宛穎 (2006) 糙薏仁對第2 型糖尿病人血糖及血脂肪的影響。國立台灣海洋大學食品科學系碩士論文。 黃博偉 (2003) 不同糙薏仁成分對糖尿病大白鼠醣代謝及脂質代謝的影響。國立臺灣大學食品科技研究所博士論文。 陳雨音 (2008) 薏仁對改善中老年人血糖、血脂及老人斑之影響。國立台灣海洋大學食品科學系碩士論文。 李明怡 (2008) 薏仁麩皮中防癌及抗發炎活性成份脂分離與鑑定。國立台灣大學食品科技研究所博士論文。 劉家余 (2010) 薏仁麩皮萃取物乙酸乙酯區分層之抗發炎效果。國立臺灣大學食品科技研究所碩士論文。 Akinkuolie, A.O., Ngwa, J.S., Meigs, J.B., and Djousse, L. (2011). Omega-3 polyunsaturated fatty acid and insulin sensitivity: a meta-analysis of randomized controlled trials. Clin Nutr 30, 702-707. Benariba, N., Bellakdhar, W., Djaziri, R., Hupkens, E., Louchami, K., and Malaisse, W.J. (2013). Protective action of seed extracts against the deleterious effect of streptozotocin on both glucose-stimulated insulin release from rat pancreatic islets and glucose homeostasis. Biomed Rep 1, 119-121. Bhattacharya, S., Dey, D., and Roy, S.S. (2007). Molecular mechanism of insulin resistance. J Biosci 32, 405-413. Bilan, P.J., and Schertzer, J.D. (2009). Brought in by force: AMPK, TBC1D1, and contraction-stimulated glucose transport in skeletal muscle. Am J Physiol Endocrinol Metab 296, E965-966. Bos, G., Poortvliet, M.C., Scheffer, P.G., Dekker, J.M., Ocke, M.C., Nijpels, G., Stehouwer, C.D., Bouter, L.M., Teerlink, T., and Heine, R.J. (2007). Dietary polyunsaturated fat intake is associated with low-density lipoprotein size, but not with susceptibility to oxidation in subjects with impaired glucose metabolism and type II diabetes: the Hoorn study. Eur J Clin Nutr 61, 205-211. Bouche, C., Serdy, S., Kahn, C.R., and Goldfine, A.B. (2004). The cellular fate of glucose and its relevance in type 2 diabetes. Endocr Rev 25, 807-830. Brooks-Worrell, B.M., Reichow, J.L., Goel, A., Ismail, H., and Palmer, J.P. (2011). Identification of autoantibody-negative autoimmune type 2 diabetic patients. Diabetes Care 34, 168-173. Chelliah, A., and Burge, M.R. (2004). Hypoglycaemia in elderly patients with diabetes mellitus: causes and strategies for prevention. Drugs Aging 21, 511-530. Chen, H.J., Chung, C.P., Chiang, W., and Lin, Y.L. (2011). Anti-inflammatory effects and chemical study of a flavonoid-enriched fraction from adlay bran. Food Chem 126, 1741-1748. Choudhury, Y., Salt, I.P., and Leung, H.Y. (2015). AMPK-friend or foe for targeted therapy? Cell Cycle 14, 1761-1762. Clarke, S.D. (2000). Polyunsaturated fatty acid regulation of gene transcription: a mechanism to improve energy balance and insulin resistance. Br J Nutr 83 Suppl 1, S59-66. Collier, G.R., and Sinclair, A.J. (1993). Role of N-6 and N-3 fatty acids in the dietary treatment of metabolic disorders. Ann N Y Acad Sci 683, 322-330. Di Nardo, F., Cogo, C.E., Faelli, E., Morettini, M., Burattini, L., and Ruggeri, P. (2015). C-Peptide-based assessment of insulin secretion in the Zucker Fatty rat: a modelistic study. PLoS One 10, e0125252. Engin, F. (2015). ER Stress and Development of Type 1 Diabetes. J Investig Med. Fedor, D., and Kelley, D.S. (2009). Prevention of insulin resistance by n-3 polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care 12, 138-146. Frangioudakis, G., Diakanastasis, B., Liao, B.Q., Saville, J.T., Hoffman, N.J., Mitchell, T.W., and Schmitz-Peiffer, C. (2013). Ceramide accumulation in L6 skeletal muscle cells due to increased activity of ceramide synthase isoforms has opposing effects on insulin action to those caused by palmitate treatment. Diabetologia 56, 2697-2701. Gasparrini, M., Giampieri, F., Alvarez Suarez, J.M., Mazzoni, L., Forbes Hernandez, T.Y., Quiles, J.L., Bullon, P., and Battino, M. (2015). AMPK as a New Attractive Therapeutic Target for Disease Prevention: the Role of Dietary Compounds. Curr Drug Targets. Ghafoorunissa, Ibrahim, A., and Natarajan, S. (2005). Substituting dietary linoleic acid with alpha-linolenic acid improves insulin sensitivity in sucrose fed rats. Biochim Biophys Acta 1733, 67-75. Greenhill, C. (2015). Metabolism: Mechanisms of hepatic glucose production revealed. Nat Rev Endocrinol 11, 384. Gu, X., Zhao, H.L., Sui, Y., Guan, J., Chan, J.C., and Tong, P.C. (2012). White rice vinegar improves pancreatic beta-cell function and fatty liver in streptozotocin-induced diabetic rats. Acta Diabetol 49, 185-191. Guo, Q.Y., Gao, Y., and Cong, L. (2002). [Effects of free fatty acids on insulin signaling proteins in rat islet cells]. Zhongguo Ying Yong Sheng Li Xue Za Zhi 18, 283-286. Gutierrez, J.C., Bahamonde, J., Prater, M.R., Yefi, C.P., and Holladay, S.D. (2010). Production of a type 2 maternal diabetes rodent model using the combination of high-fat diet and moderate dose of streptozocin. Endocr Res 35, 59-70. Gylling, H., and Miettinen, T.A. (2005). The effect of plant stanol- and sterol-enriched foods on lipid metabolism, serum lipids and coronary heart disease. Ann Clin Biochem 42, 254-263. Ha do, T., Nam Trung, T., Bich Thu, N., Van On, T., Hai Nam, N., Van Men, C., Thi Phuong, T., and Bae, K. (2010). Adlay seed extract (Coix lachryma-jobi L.) decreased adipocyte differentiation and increased glucose uptake in 3T3-L1 cells. J Med Food 13, 1331-1339. Huang, B.W., Chiang, M.T., Yao, H.T., and Chiang, W. (2005). The effect of adlay oil on plasma lipids, insulin and leptin in rat. Phytomedicine 12, 433-439. Hwang, J.T., Kwon, D.Y., and Yoon, S.H. (2009). AMP-activated protein kinase: a potential target for the diseases prevention by natural occurring polyphenols. N Biotechnol 26, 17-22. Idris, I., Gray, S., and Donnelly, R. (2001). Protein kinase C activation: isozyme-specific effects on metabolism and cardiovascular complications in diabetes. Diabetologia 44, 659-673. Jaiswal, N., Gunaganti, N., Maurya, C.K., Narender, T., and Tamrakar, A.K. (2015). Free fatty acid induced impairment of insulin signaling is prevented by the diastereomeric mixture of calophyllic acid and isocalophyllic acid in skeletal muscle cells. Eur J Pharmacol 746, 70-77. Kim, E.M., Grace, M.K., Welch, C.C., Billington, C.J., and Levine, A.S. (1999). STZ-induced diabetes decreases and insulin normalizes POMC mRNA in arcuate nucleus and pituitary in rats. Am J Physiol 276, R1320-1326. Lee, J.Y., Sohn, K.H., Rhee, S.H., and Hwang, D. (2001). Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem 276, 16683-16689. Li, L., Liao, G., Yang, G., Lu, Y., Du, X., Liu, J., Li, L., Wang, C., Li, L., Ren, Y., et al. (2015). High-fat diet combined with low-dose streptozotocin injections induces metabolic syndrome in Macaca mulatta. Endocrine 49, 659-668. Lin, M.H., Wu, M.C., Lu, S., and Lin, J. (2010). Glycemic index, glycemic load and insulinemic index of Chinese starchy foods. World J Gastroenterol 16, 4973-4979. Liu, H.Q., Qiu, Y., Mu, Y., Zhang, X.J., Liu, L., Hou, X.H., Zhang, L., Xu, X.N., Ji, A.L., Cao, R., et al. (2013). A high ratio of dietary n-3/n-6 polyunsaturated fatty acids improves obesity-linked inflammation and insulin resistance through suppressing activation of TLR4 in SD rats. Nutr Res 33, 849-858. Long, Y.C., and Zierath, J.R. (2006). AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 116, 1776-1783. Luu, Y.K., Ozcivici, E., Capilla, E., Adler, B., Chan, E., Shroyer, K., Rubin, J., Judex, S., Pessin, J.E., and Rubin, C.T. (2010). Development of diet-induced fatty liver disease in the aging mouse is suppressed by brief daily exposure to low-magnitude mechanical signals. Int J Obes (Lond) 34, 401-405. Machado, V.A., Fonseca, F.A., Fonseca, H.A., Malina, D.T., Fonzar, W.T., Barbosa, S.A., Santana, J.M., and Izar, M.C. (2015). Plant sterol supplementation on top of lipid-lowering therapies in familial hypercholesterolemia. Int J Cardiol 184, 570-572. Manaer, T., Yu, L., Zhang, Y., Xiao, X.J., and Nabi, X.H. (2015). Anti-diabetic effects of shubat in type 2 diabetic rats induced by combination of high-glucose-fat diet and low-dose streptozotocin. J Ethnopharmacol 169, 269-274. McCarthy, A.M., and Elmendorf, J.S. (2007). GLUT4's itinerary in health & disease. Indian J Med Res 125, 373-388. McCurley, J.L., Mills, P.J., Roesch, S.C., Carnethon, M., Giacinto, R.E., Isasi, C.R., Teng, Y., Sotres-Alvarez, D., Llabre, M.M., Penedo, F.J., et al. (2015). Chronic stress, inflammation, and glucose regulation in U.S. Hispanics from the HCHS/SOL Sociocultural Ancillary Study. Psychophysiology 52, 1071-1079. Magon, N., and Chauhan, M. (2012). Pregnancy in Type 1 Diabetes Mellitus: How Special are Special Issues. N Am J Med Sci 6, 250-256. Narasimhan, A., Chinnaiyan, M., and Karundevi, B. (2015). Ferulic acid regulates hepatic GLUT2 gene expression in high fat and fructose-induced type-2 diabetic adult male rat. Eur J Pharmacol 761, 391-397. Narayan, S., Lakshmipriya, N., Vaidya, R., Bai, M.R., Sudha, V., Krishnaswamy, K., Unnikrishnan, R., Anjana, R.M., and Mohan, V. (2014). Association of dietary fiber intake with serum total cholesterol and low density lipoprotein cholesterol levels in Urban Asian-Indian adults with type 2 diabetes. Indian J Endocrinol Metab 18, 624-630. Nordlie, R.C., Foster, J.D., and Lange, A.J. (1999). Regulation of glucose production by the liver. Annu Rev Nutr 19, 379-406. Normen, L., Holmes, D., and Frohlich, J. (2005). Plant sterols and their role in combined use with statins for lipid lowering. Curr Opin Investig Drugs 6, 307-316. Oliver, E., McGillicuddy, F., Phillips, C., Toomey, S., and Roche, H.M. (2010). The role of inflammation and macrophage accumulation in the development of obesity-induced type 2 diabetes mellitus and the possible therapeutic effects of long-chain n-3 PUFA. Proc Nutr Soc 69, 232-243. Ou, S., Kwok, K., Li, Y., and Fu, L. (2001). In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. J Agric Food Chem 49, 1026-1029. Pal, S., Khossousi, A., Binns, C., Dhaliwal, S., and Ellis, V. (2011). The effect of a fibre supplement compared to a healthy diet on body composition, lipids, glucose, insulin and other metabolic syndrome risk factors in overweight and obese individuals. Br J Nutr 105, 90-100. Parraga-Martinez, I., Lopez-Torres-Hidalgo, J.D., Del Campo-Del Campo, J.M., Galdon-Blesa, M.P., Precioso-Yanez, J.C., Rabanales-Sotos, J., Garcia-Reyes-Ramos, M., Andres-Pretel, F., Navarro-Bravo, B., and Lloret-Callejo, A. (2015). Long-term Effects of Plant Stanols on the Lipid Profile of Patients With Hypercholesterolemia. A Randomized Clinical Trial. Rev Esp Cardiol (Engl Ed) 68, 665-671. Parveen, K., Khan, M.R., Mujeeb, M., and Siddiqui, W.A. (2010). Protective effects of Pycnogenol on hyperglycemia-induced oxidative damage in the liver of type 2 diabetic rats. Chem Biol Interact 186, 219-227. Pirola, L., Johnston, A.M., and Van Obberghen, E. (2004). Modulation of insulin action. Diabetologia 47, 170-184. Post, R.E., Mainous, A.G., 3rd, King, D.E., and Simpson, K.N. (2012). Dietary fiber for the treatment of type 2 diabetes mellitus: a meta-analysis. J Am Board Fam Med 25, 16-23. Rains, J.L., and Jain, S.K. (2011). Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 50, 567-575. Reed, M.J., Meszaros, K., Entes, L.J., Claypool, M.D., Pinkett, J.G., Gadbois, T.M., and Reaven, G.M. (2000). A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism 49, 1390-1394. Roman Ramos, R., Alarcon-Aguilar, F., Lara-Lemus, A., and Flores-Saenz, J.L. (1992). Hypoglycemic effect of plants used in Mexico as antidiabetics. Arch Med Res 23, 59-64. Saltiel, A.R., and Kahn, C.R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799-806. Schinner, S., Scherbaum, W.A., Bornstein, S.R., and Barthel, A. (2005). Molecular mechanisms of insulin resistance. Diabet Med 22, 674-682. Sesti, G. (2006). Pathophysiology of insulin resistance. Best Pract Res Clin Endocrinol Metab 20, 665-679. Shen, K.P., Su, C.H., Lu, T.M., Lai, M.N., and Ng, L.T. (2015). Effects of Grifola frondosa non-polar bioactive components on high-fat diet fed and streptozotocin-induced hyperglycemic mice. Pharm Biol 53, 705-709. Storlien, L.H., Higgins, J.A., Thomas, T.C., Brown, M.A., Wang, H.Q., Huang, X.F., and Else, P.L. (2000). Diet composition and insulin action in animal models. Br J Nutr 83 Suppl 1, S85-90. Storlien, L.H., Kraegen, E.W., Chisholm, D.J., Ford, G.L., Bruce, D.G., and Pascoe, W.S. (1987). Fish oil prevents insulin resistance induced by high-fat feeding in rats. Science 237, 885-888. Sudhop, T., Lutjohann, D., and von Bergmann, K. (2005). Sterol transporters: targets of natural sterols and new lipid lowering drugs. Pharmacol Ther 105, 333-341. Takahashi, M., Konno, C., and Hikino, H. (1986). Isolation and hypoglycemic activity of coixans A, B and C, glycans of Coix lachryma-jobi var. ma-yuen seeds. Planta Med, 64-65. Thorens, B. (2015). GLUT2, glucose sensing and glucose homeostasis. Diabetologia 58, 221-232. Towler. M.C., and Grahame Hardie, D. (2007). AMP-Activated Protein Kinase in Metabolic Control and Insulin Signaling. Circ Res 100, 328-341. Volpe, C.M., and Nogueira-Machado, J.A. (2013). The dual role of free fatty acid signaling in inflammation and therapeutics. Recent Pat Endocr Metab Immune Drug Discov 7, 189-197. Wang, X., Yu, W., Nawaz, A., Guan, F., Sun, S., and Wang, C. (2010). Palmitate induced insulin resistance by PKCtheta-dependent activation of mTOR/S6K pathway in C2C12 myotubes. Exp Clin Endocrinol Diabetes 118, 657-661. Wang, Y., Li, J.Y., Han, M., Wang, W.L., and Li, Y.Z. (2015). Prevention and treatment effect of total flavonoids in Stellera chamaejasme L. on nonalcoholic fatty liver in rats. Lipids Health Dis 14, 85. Wellen, K.E., and Hotamisligil, G.S. (2005). Inflammation, stress, and diabetes. J Clin Invest 115, 1111-1119. Wu, J., and Yan, L.J. (2015). Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic beta cell glucotoxicity. Diabetes Metab Syndr Obes 8, 181-188. William T., and Cefalu, MD. (2015). Standards of medical care indiabetes-2015. Diabetes Care 38, 8-10. Yano, S., Morino-Koga, S., Kondo, T., Suico, M.A., Koga, T., Shimauchi, Y., Matsuyama, S., Shuto, T., Sato, T., Araki, E., et al. (2011). Glucose uptake in rat skeletal muscle L6 cells is increased by low-intensity electrical current through the activation of the phosphatidylinositol-3-OH kinase (PI-3K) / Akt pathway. J Pharmacol Sci 115, 94-98. Yao, B., Fang, H., Xu, W., Yan, Y., Xu, H., Liu, Y., Mo, M., Zhang, H., and Zhao, Y. (2014). Dietary fiber intake and risk of type 2 diabetes: a dose-response analysis of prospective studies. Eur J Epidemiol 29, 79-88. Yeh, P.H., Chiang, W., and Chiang, M.T. (2006). Effects of dehulled adlay on plasma glucose and lipid concentrations in streptozotocin-induced diabetic rats fed a diet enriched in cholesterol. Int J Vitam Nutr Res 76, 299-305. Zafon, C. (2015). New therapeutic approaches in type 2 diabetes mellitus. Med Clin (Barc). Zaid, H., Antonescu, C.N., Randhawa, V.K., and Klip, A. (2008). Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem J 413, 201-215. Zierath, J.R., and Kawano, Y. (2003). The effect of hyperglycaemia on glucose disposal and insulin signal transduction in skeletal muscle. Best Pract Res Clin Endocrinol Metab 17, 385-398. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52427 | - |
dc.description.abstract | 糖尿病是一種因體內胰島素缺乏或功能不全而導致體內長期處於高血糖的慢性代謝疾病。臨床上雖已有許多口服降血糖藥物,但有其使用限制且伴隨副作用的疑慮,因此從傳統食材尋找更多延緩糖尿病之標的是目前的研究趨勢。薏仁(Coix lacryma-jobi L.var. ma-yuen Stapf.),自古即被認為是藥食兼用的材料,具有抗發炎、降血脂、降血糖等生理功能,是藥性溫和的保健食材。薏仁麩皮(adlay bran, AB)占糙薏仁的7%,是加工過程重要的副產物,AB富含蛋白質、脂質、膳食纖維及生物活性物質,如酚類化合物和植物固醇,本研究目的是以體內與體外研究方法探討薏仁油(Oil)及脫脂薏仁麩皮水萃物(DABW)抗糖尿病的效用及其調節血糖的機制。本研究第一部分體內試驗-預防模式,探討不同薏仁麩皮萃取物是否能預防糖尿病之病徵。實驗結果顯示,高劑量薏仁油(Oil-H)能透過影響肝臟葡萄糖代謝,有效降低高血糖的情況。第二部分則以體內試驗-治療模式,探討高劑量薏仁油 (Oil-H)及脫脂薏仁麩皮水萃物(DABW-H)抗糖尿病之效用。結果顯示,DABW能有效降低發炎相關因子,進而達到調節血糖之功效。我們同時利用肌肉細胞(L6)胰島素阻抗模式進一步探討薏仁麩皮水萃物是否能刺激肌肉細胞之葡萄糖攝取,結果發現在胰島素阻抗模式下,脫脂薏仁麩皮水萃物與胰島素共同處理,有促進肌肉細胞葡萄糖攝取之趨勢,推測其可能提高胰島素敏感性而達此效果。綜上所述,在不同時間點介入薏仁麩皮萃取物,對於調降血糖之潛力與機制有不同程度之正面影響。本篇研究期望能透過提升薏仁麩皮的機能性及應用性,達到廢棄物再利用之目的。 | zh_TW |
dc.description.abstract | Diabetes is a chronic metabolic disease caused by long-term hyperglycemia as a result of insulin insufficiency or dysfunction. Many oral hypoglycemic drugs are available currently, but not without limitations and side effects. Thus, finding potential therapeutics for diabetes from traditional foods has become the main trend. Adlay (Coix lachryma-jobi L.var. ma-yuen Stapf.) has been used as both food and medicine, and has proven to exhibit anti-inflammatory, hypolipidemic, and hypoglycemic effects. A significant by-product during adlay processing, adlay bran (AB) constitutes 7% of dehulled adlay and is rich in proteins, lipids, dietary fiber, and bioactive compounds such as phenolics and phytosterols. The present study involves in vivo and in vitro investigations of ameliorating effects on diabetes of adlay bran oil (Oil) and defatted adlay bran water extract (DABW) and the underlying mechanisms. The first part of this thesis investigates the in vivo preventive effects of adlay bran extracts on diabetes. The results show that high-dose Oil can lower high blood glucose by affecting hepatic glucose metabolism. The second part investigates the in vivo attenuating effects of the defatted adlay bran extracts on diabetes. The results indicate DABW can regulate blood glucose by reducing inflammatory factors. Furthermore, in an insulin-resistant L6 myoblast cell model, DABW is found to potently increase muscle glucose uptake, possibly increasing insulin sensitivity. In summary, different time-course dietary interventions of adlay bran extracts result in differing effects on diabetic symptoms through varying mechanisms. This study hopes to explore more functions and applications of adlay bran to achieve by-product recycling. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T16:14:30Z (GMT). No. of bitstreams: 1 ntu-104-R02641011-1.pdf: 1738874 bytes, checksum: e3bd98672f12edc87f26c6d535197f8f (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 摘要 I
謝誌 III 圖目錄 IX 表目錄 XI 縮寫對照表 XII 第一章 前言 1 第二章 文獻回顧 2 一、糖尿病簡介 2 1. 糖尿病定義、診斷標準及其分類 2 2. 第二型糖尿病病理機轉 4 二、胰島素與血糖恆定 6 1. 胰島素與醣類代謝 6 2. 肝臟中葡萄糖代謝途徑 7 3. 糖解作用與糖質新生 7 4. 周邊組織與血糖調控 8 5. 胰島素訊息傳遞 9 6. 葡萄糖轉運蛋白 10 7. AMP-activated protein kinase (AMPK) 11 三、第二型糖尿病動物誘導模式 12 1. 單純藥物誘導模式 12 2. 合併藥物及高脂飲食誘導模式 13 四、細胞模式探討胰島素阻抗 13 1. 肌肉組織胰島素抗性 13 五、膳食中膳食纖維、油脂對於糖尿病的影響 14 1. 膳食纖維 14 2. 油脂 14 六、薏苡 15 1. 薏苡簡介 15 2. 薏苡改善血糖之研究 17 第三章 研究動機與實驗架構 20 一、研究動機 20 二、實驗架構 21 1. 體內試驗-預防模式 21 2. 體內試驗-治療模式 22 3. 體外試驗-肌肉細胞模式 23 第四章 材料與方法 24 一、薏仁麩皮萃取物製備 24 1. 萃取方法和步驟 24 (1) 薏仁油(Oil)的製備 24 (2) 脫脂薏仁麩皮水萃物(DABW)的製備 24 二、實驗動物 25 1. 體內試驗-預防模式: 25 2. 體內試驗-治療模式: 27 3. 樣品分析 28 (1) 血液分析 28 (2) 即時定量聚合酶連鎖反應 29 三、體外試驗-肌肉細胞胰島素阻抗模式 30 1. 細胞株 30 2. 細胞培養與分化 30 3. 胰島素阻抗誘發與葡萄糖攝取試驗 31 四、統計分析 32 第五章 結果 33 一、薏仁油製備 33 二、體內試驗-預防模式 33 1. 實驗期間大白鼠體重、攝食量及組織臟器重量變化 33 2. 大白鼠血液相關生化值之影響 33 3. 不同實驗飼料對糖尿病大鼠肝臟組織mRNA基因表現量 34 三、體內試驗-治療模式 43 1. 實驗期間大白鼠體重、攝食量及組織臟器重量變化 43 2. 大白鼠血液相關生化值之影響 43 (3) 脂質濃度變化 44 (4) 腫瘤壞死因子α濃度含量 44 3. 不同實驗飼料對糖尿病大鼠肝臟mRNA基因表現量 44 四、體外試驗-肌肉細胞模式 57 1. 細胞胰島素阻抗模式建立 57 2. 胰島素阻抗模式下脫脂薏仁麩皮水萃物(DABW)對已分化L6細胞葡萄糖攝取之影響 57 第六章 綜合討論 60 一、薏仁油製備 60 二、體內試驗-預防模式 60 1. 薏仁油對動物生長、攝食量以及組織臟器之影響 60 2. 薏仁油對動物醣類代謝之影響 60 3. 薏仁油對動物脂質代謝之影響 61 4. 薏仁油對肝臟mRNA基因表現量 62 二、體內試驗-治療模式 63 1. 薏仁麩皮萃取物對動物生長、攝食量以及組織臟器之影響 63 2. 薏仁麩皮萃取物對動物醣類代謝之影響 63 3. 薏仁麩皮萃取物對動物脂質代謝之影響 64 4. 薏仁麩皮萃取物對TNF-α濃度之變化 64 5. 薏仁麩皮萃取物對肝臟mRNA基因表現量 65 三、體外試驗-薏仁麩皮水萃物對肌肉細胞葡萄糖攝取之影響 65 1. 細胞胰島素阻抗模式 65 2. 胰島素阻抗模式下脫脂薏仁麩皮水萃物對已分化L6細胞葡萄糖攝取之影響 65 第七章 結論 66 一、體內試驗-預防模式 66 二、體內試驗-延緩模式 66 三、體外試驗-細胞胰島素阻抗模式 66 第八章 參考資料 67 | |
dc.language.iso | zh-TW | |
dc.title | 以體外及體內模式探討薏仁麩皮萃取物減緩第二型糖尿病的效用及其作用機制 | zh_TW |
dc.title | In vitro and in vivo evaluation of the possible echanisms of adlay bran extract in preventing and attenuating type 2 diabetes | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 謝淑貞 | |
dc.contributor.oralexamcommittee | 龔瑞林,江孟燦,李信昌,陳宏彰 | |
dc.subject.keyword | 糖尿病,薏仁麩皮,薏仁油,血糖,肌肉細胞, | zh_TW |
dc.subject.keyword | diabetes,adlay bran,oil,blood glucose,myoblast cell, | en |
dc.relation.page | 77 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-08-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 食品科技研究所 | zh_TW |
顯示於系所單位: | 食品科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 1.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。