Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52353
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊維(Chun-Wei Chen)
dc.contributor.authorPo-Hsun Hoen
dc.contributor.author何柏勳zh_TW
dc.date.accessioned2021-06-15T16:12:36Z-
dc.date.available2020-08-31
dc.date.copyright2015-08-31
dc.date.issued2015
dc.date.submitted2015-08-18
dc.identifier.citation1. Peierls, R. E. Quelques proprietes typiques des corpses solides. Ann. I. H. Poincare 1935, 5, 177–222.
2. Landau, L. D. Zur Th eorie der phasenumwandlungen II. Phys. Z. Sowjetunion, 1937, 11, 26–35.
3. Venables, J. A., Spiller, G. D. T. Hanbucken, M. Nucleation and growth of thin fi lms. Rep. Prog. Phys. 1984, 47, 399–459.
4. Evans, J. W., Th iel, P. A. Bartelt, M. C. Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Sur. Sci. Rep. 2006, 61, 1–128.
5. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666-669.
6. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K., Two-dimensional atomic crystals. P. Natl. Acad. Sci. USA. 2005, 102 (30), 10451-10453.
7. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A., Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438 (7065), 197-200.
8. Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438 (7065), 201-204.
9. Schwierz, F., Graphene transistors. Natural Nanotechnology 2010, 5 (7), 487-496.
10. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S., Detection of individual gas molecules adsorbed on graphene. Natature Materials 2007, 6 (9), 652-655.
11. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I.; Kim, Y.-J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J.-H.; Hong, B. H.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Natural Nanotechnology 2010, 5 (8), 574-578.
12. Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z., Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Lettets 2010, 10 (12), 4863-4868
13. Sutter, P., Epitaxial graphene: How silicon leaves the scene. Nature Materials 2009, 8 (3), 171-172.
14. de Heer, W. A.; Berger, C.; Wu, X.; First, P. N.; Conrad, E. H.; Li, X.; Li, T.; Sprinkle, M.; Hass, J.; Sadowski, M. L.; Potemski, M.; Martinez, G., Epitaxial graphene. Solid State Commun. 2007, 143 (1–2), 92-100.
15. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457 (7230), 706-710.
16. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324 (5932), 1312-1314.
17. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Rev. Mod. Phys. 2009, 81 (1), 109-162.
18. Katsnelson, M. I.; Novoselov, K. S.; Geim, A. K., Chiral tunnelling and the Klein paradox in graphene. Natural Physics 2006, 2 (9), 620-625.
19. Chen, F.; Xia, J.; Ferry, D. K.; Tao, N., Dielectric Screening Enhanced Performance in Graphene FET. Nano Letters 2009, 9 (7), 2571-2574.
20. Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M., Charged-impurity scattering in graphene. Natural Physics 2008, 4 (5), 377-381.
21. Farmer, D. B.; Golizadeh-Mojarad, R.; Perebeinos, V.; Lin, Y.-M.; Tulevski, G. S.; Tsang, J. C.; Avouris, P., Chemical Doping and Electron−Hole Conduction Asymmetry in Graphene Devices. Nano Letters 2008, 9 (1), 388-392.
22. Chen, W.; Chen, S.; Qi, D. C.; Gao, X. Y.; Wee, A. T. S., Surface Transfer p-Type Doping of Epitaxial Graphene. J. Am. Chem. Soc. 2007, 129, 10418-10422.
23. Guo, B.; Liu, Q.; Chen, E.; Zhu, H.; Fang, L.; Gong, J. R., Controllable N-Doping of Graphene. Nano Lett. 2010, 10, 4975-4980.
24. Usachov, D.; Vilkov, O.; Grüneis, A.; Haberer, D.; Fedorov, A.; Adamchuk, V. K.; Preobrajenski, A. B.; Dudin, P.; Barinov, A.; Oehzelt, M.; et al. Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties. Nano Lett. 2011, 11, 5401-5407.
25. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S., Detection of individual gas molecules adsorbed on graphene. Natural Materials 2007, 6 (9), 652-655.
26. Panchakarla, L. S.; Subrahmanyam, K. S.; Saha, S. K.; Govindaraj, A.; Krishnamurthy, H. R.; Waghmare, U. V.; Rao, C. N. R., Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene. Advance Materials 2009, 21 (46), 4726-4730.
27. Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G., Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters 2009, 9, 1752-1758.
28. Lin, Y.-C.; Lin, C.-Y.; Chiu, P.-W., Controllable graphene N-doping with ammonia plasma. Appl. Phys. Lett. 2010, 96, 133110-133110-3.
29. Guo, B.; Liu, Q.; Chen, E.; Zhu, H.; Fang, L.; Gong, J. R., Controllable N-Doping of Graphene. Nano Lett. 2010, 10, 4975-4980.
30. Thomsen, C.; Reich, S., Double Resonant Raman Scattering in Graphite. Phys.Rev. Lett. 2000, 85 (24), 5214-5217.
31. Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R., Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nano Lett. 2010, 10 (3), 751-758.
32. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K., Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97 (18), 187401.
33. Nemanich, R. J.; Solin, S. A., First- and second-order Raman scattering from finite-size crystals of graphite. Phy. Rev. B 1979, 20 (2), 392-401.
34. DasA; PisanaS; ChakrabortyB; PiscanecS; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Natural Nanotechnology 2008, 3 (4), 210-215.
35. Geim, A. K., Graphene: Status and Prospects. Science 2009, 324 (5934), 1530-1534.
36. Geim, A. K.; Novoselov, K. S., The rise of graphene. Natural Materials 2007, 6 (3), 183-191.
37. Peierls, R. E. Quelques proprietes typiques des corpses solides. Ann. I. H. Poincare 1935, 5, 177–222.
38. Landau, L. D. Zur Th eorie der phasenumwandlungen II. Phys. Z. Sowjetunion, 1937, 11, 26–35.
39. Stolyarova, E.; Rim, K. T.; Ryu, S.; Maultzsch, J.; Kim, P.; Brus, L. E.; Heinz, T. F.; Hybertsen, M. S.; Flynn, G. W., High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. P. Natl. Acad. Sci. USA 2007, 104 (22), 9209-9212.
40. Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams, E. D., Atomic Structure of Graphene on SiO2. Nano Lett. 2007, 7 (6), 1643-1648.
41. Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; von Klitzing, K.; Yacoby, A., Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Natural Physics 2008, 4 (2), 144-148.
42. Katsnelson, M. I.; Geim, A. K., Electron scattering on microscopic corrugations in graphene. Philos. T. R. Soc. A. 2008, 366 (1863), 195-204.
43. Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M., Charged-impurity scattering in graphene. Natural Physics 2008, 4 (5), 377-381.
44. Farmer, D. B.; Golizadeh-Mojarad, R.; Perebeinos, V.; Lin, Y.-M.; Tulevski, G. S.; Tsang, J. C.; Avouris, P., Chemical Doping and Electron−Hole Conduction Asymmetry in Graphene Devices. Nano Lett. 2008, 9 (1), 388-392.
45. Nomura, K.; MacDonald, A. H., Quantum Transport of Massless Dirac Fermions. Phys. Rev. Lett. 2007, 98 (7), 076602.
46. Hwang, E. H.; Adam, S.; Das Sarma, S., Carrier Transport in Two-Dimensional Graphene Layers. Phys. Rev. Lett. 2007, 98 (18), 186806.
47. Bolotin, K. I.; Sikes, K. J.; Hone, J.; Stormer, H. L.; Kim, P., Temperature-Dependent Transport in Suspended Graphene. Phys. Rev. Lett. 2008, 101 (9), 096802.
48. Blake, P.; Hill, E. W.; Neto, A. H. C.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K., Making graphene visible. Appl. Phys. Lett. 2007, 91 (6), 063124-3.
49. Jung, I.; Pelton, M.; Piner, R.; Dikin, D. A.; Stankovich, S.; Watcharotone, S.; Hausner, M.; Ruoff, R. S., Simple Approach for High-Contrast Optical Imaging and Characterization of Graphene-Based Sheets. Nano Lett. 2007, 7 (12), 3569-3575.
50. Park, H.; Brown, P. R.; Bulović, V.; Kong, J., Graphene As Transparent Conducting Electrodes in Organic Photovoltaics: Studies in Graphene Morphology, Hole Transporting Layers, and Counter Electrodes. Nano Lett. 2011, 12 (1), 133-140.
51. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I.; Kim, Y.-J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J.-H.; Hong, B. H.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Natural Nanotechnology 2010, 5 (8), 574-578.
52. Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S., Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett. 2009, 9 (12), 4359-4363.
53. Traversi, F.; Russo, V.; Sordan, R., Integrated complementary graphene inverter. Applied Physics Letters 2009, 94 (22), 223312.
54. Lee, Y.-Y.; Tu, K.-H.; Yu, C.-C.; Li, S.-S.; Hwang, J.-Y.; Lin, C.-C.; Chen, K.-H.; Chen, L.-C.; Chen, H.-L.; Chen, C.-W., Top Laminated Graphene Electrode in a Semitransparent Polymer Solar Cell by Simultaneous Thermal Annealing/Releasing Method. ACS Nano 2011, 5 (8), 6564-6570.
55. Han, T.-H.; Lee, Y.; Choi, M.-R.; Woo, S.-H.; Bae, S.-H.; Hong, B. H.; Ahn, J.-H.; Lee, T.-W., Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Natural Photonics 2012, 6 (2), 105-110.
56. Dragoman, D.; Dragoman, M., Giant thermoelectric effect in graphene. Appl. Phys. Lett. 2007, 91 (20), 203116.
57. Wei, P.; Liu, N.; Lee, H. R.; Adijanto, E.; Ci, L.; Naab, B. D.; Zhong, J. Q.; Park, J.; Chen, W.; Cui, Y.; Bao, Z., Tuning the Dirac Point in CVD-Grown Graphene through Solution Processed n-Type Doping with 2-(2-Methoxyphenyl)-1,3-dimethyl-2,3-dihydro-1H-benzoimidazole. Nano Lett. 2013, 13 (5), 1890-1897.
58. Chen, Z.; Santoso, I.; Wang, R.; Xie, L. F.; Mao, H. Y.; Huang, H.; Wang, Y. Z.; Gao, X. Y.; Chen, Z. K.; Ma, D.; Wee, A. T. S.; Chen, W., Surface transfer hole doping of epitaxial graphene using MoO3 thin film. Appl. Phys. Lett. 2010, 96 (21), 213104.
59. Zhang, D.; Gan, L.; Cao, Y.; Wang, Q.; Qi, L.; Guo, X., Understanding Charge Transfer at PbS-Decorated Graphene Surfaces toward a Tunable Photosensor. Advanced Materials 2012, 24 (20), 2715-272
60. Guo, W.; Xu, S.; Wu, Z.; Wang, N.; Loy, M. M. T.; Du, S., Oxygen-Assisted Charge Transfer Between ZnO Quantum Dots and Graphene. Small 2013, 9 (18), 3031-3036.
61. Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L., Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Natural Nanotechnology 2012, 7 (6), 363-368.
62. Fang, Z.; Wang, Y.; Liu, Z.; Schlather, A.; Ajayan, P. M.; Koppens, F. H. L.; Nordlander, P.; Halas, N. J., Plasmon-Induced Doping of Graphene. ACS Nano 2012, 6 (11), 10222-10228.
63. Peimyoo, N.; Li, J.; Shang, J.; Shen, X.; Qiu, C.; Xie, L.; Huang, W.; Yu, T., Photocontrolled Molecular Structural Transition and Doping in Graphene. ACS Nano 2012, 6 (10), 8878-8886.
64. Chen, S.-Y.; Lu, Y.-Y.; Shih, F.-Y.; Ho, P.-H.; Chen, Y.-F.; Chen, C.-W.; Chen, Y.-T.; Wang, W.-H., Biologically inspired graphene-chlorophyll phototransistors with high gain. Carbon 2013, 63 (0), 23-29.
65. Kim, Y.; Ryu, J.; Park, M.; Kim, E. S.; Yoo, J. M.; Park, J.; Kang, J. H.; Hong, B. H., Vapor-Phase Molecular Doping of Graphene for High-Performance Transparent Electrodes. ACS Nano 2014, 8 (1), 868-874.
66. JuL; Velasco Jr, J.; HuangE; KahnS; NosigliaC; Tsai, H.-Z.; YangW; TaniguchiT; WatanabeK; ZhangY; ZhangG; CrommieM; ZettlA; WangF, Photoinduced doping in heterostructures of graphene and boron nitride. Natural Nanotechnology 2014, 9 (5), 348-352.
67. Zhang, Y.; Tang, T.-T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F., Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459 (7248), 820-823.
68. Yeh, Y.-C.; Li, S.-S.; Wu, C.-C.; Shao, T.-W.; Kuo, P.-C.; Chen, C.-W., Stoichiometric dependence of TiOx as a cathode modifier on band alignment of polymer solar cells. Solar Energy Materials and Solar Cells 2014, 125 (0), 233-238.
69. Al-Ibrahim, M.; Roth, H. K.; Zhokhavets, U.; Gobsch, G.; Sensfuss, S., Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene. Sol. Energy Mater. Sol. Cells 2005, 85 (1), 13-20.
70. Chen, S.-Y.; Ho, P.-H.; Shiue, R.-J.; Chen, C.-W.; Wang, W.-H., Transport/Magnetotransport of High-Performance Graphene Transistors on Organic Molecule-Functionalized Substrates. Nano Lett. 2012, 12 (2), 964-969.
71. Dean, C. R.; Young, A. F.; MericI; LeeC; WangL; SorgenfreiS; WatanabeK; TaniguchiT; KimP; Shepard, K. L.; HoneJ, Boron nitride substrates for high-quality graphene electronics. Natural Nanotechnology 2010, 5 (10), 722-726.
72. Wang, R.; Wang, S.; Zhang, D.; Li, Z.; Fang, Y.; Qiu, X., Control of Carrier Type and Density in Exfoliated Graphene by Interface Engineering. ACS Nano 2010, 5 (1), 408-412.
73. Park, J.; Lee, W. H.; Huh, S.; Sim, S. H.; Kim, S. B.; Cho, K.; Hong, B. H.; Kim, K. S., Work-Function Engineering of Graphene Electrodes by Self-Assembled Monolayers for High-Performance Organic Field-Effect Transistors. The Journal of Physical Chemistry Letters 2011, 2 (8), 841-845.
74. Deshpande, A.; Bao, W.; Miao, F.; Lau, C. N.; LeRoy, B. J., Spatially resolved spectroscopy of monolayer graphene SiO2. Physical Review B 2009, 79 (20), 205411.
75. Xue, J.; Sanchez-Yamagishi, J.; Bulmash, D.; Jacquod, P.; Deshpande, A.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; LeRoy, B. J., Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Natural Materials 2011, 10 (4), 282-285.
76. Ridene, M.; Wassmann, T.; Pallecchi, E.; Rodary, G.; Girard, J. C.; Ouerghi, A., Epitaxial graphene on step bunching of a 6H-SiC(0001) substrate: Aromatic ring pattern and Van Hove singularities. Applied Physics Letters 2013, 102 (11), 111610
77. Rutter, G. M.; Guisinger, N. P.; Crain, J. N.; First, P. N.; Stroscio, J. A., Edge structure of epitaxial graphene islands. Physical Review B 2010, 81 (24), 245408.
78. Goncher, S. J.; Zhao, L.; Pasupathy, A. N.; Flynn, G. W., Substrate Level Control of the Local Doping in Graphene. Nano Lett. 2013, 13 (4), 1386-1392.
79. Yu, Y.-J.; Zhao, Y.; Ryu, S.; Brus, L. E.; Kim, K. S.; Kim, P., Tuning the Graphene Work Function by Electric Field Effect. Nano Lett. 2009, 9 (10), 3430-3434.
80. Dingle, R.; Störmer, H. L.; Gossard, A. C.; Wiegmann, W., Electron mobilities in modulation‐doped semiconductor heterojunction superlattices. Applied Physics Letters 1978, 33 (7), 665-667.
81. Kim, K. K.; Reina, A.; Shi, Y.; Park, H.; Li, L.-J.; Lee, Y. H.; Kong, J., Enhancing the conductivity of transparent graphene films via doping. Nanotechnology 2010, 21 (28), 285205.
82. Park, J.; Jo, S. B.; Yu, Y.-J.; Kim, Y.; Yang, J. W.; Lee, W. H.; Kim, H. H.; Hong, B. H.; Kim, P.; Cho, K.; Kim, K. S., Single-Gate Bandgap Opening of Bilayer Graphene by Dual Molecular Doping. Advanced Materials 2012, 24 (3), 407-411.
83. Zhang, W.; Lin, C.-T.; Liu, K.-K.; Tite, T.; Su, C.-Y.; Chang, C.-H.; Lee, Y.-H.; Chu, C.-W.; Wei, K.-H.; Kuo, J.-L.; Li, L.-J., Opening an Electrical Band Gap of Bilayer Graphene with Molecular Doping. ACS Nano 2011, 5 (9), 7517-7524.
84. Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C., Graphene photonics and optoelectronics. Natural Photonics. 2010, 4 (9), 611-622.
85. Bao, Q.; Loh, K. P., Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices. ACS Nano 2012, 6 (5), 3677-3694.
86. Novoselov, K. S.; Falko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K., A roadmap for graphene. Nature 2012, 490 (7419), 192-200.
87. Ryu, S.; Liu, L.; Berciaud, S.; Yu, Y.-J.; Liu, H.; Kim, P.; Flynn, G. W.; Brus, L. E., Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO2 Substrate. Nano Letters 2010, 10 (12), 4944-4951.
88. Yang, Y.; Murali, R., Binding mechanisms of molecular oxygen and moisture to graphene. Applied Physics Letters 2011, 98 (9), 093116.
89. Niyogi, S.; Bekyarova, E.; Itkis, M. E.; Zhang, H.; Shepperd, K.; Hicks, J.; Sprinkle, M.; Berger, C.; Lau, C. N.; deHeer, W. A.; Conrad, E. H.; Haddon, R. C., Spectroscopy of Covalently Functionalized Graphene. Nano Letters 2010, 10 (10), 4061-4066.
90. Kittel, C. Introduction To Solid State Physics, 2008.
91. Coakley, K. M.; McGehee, M. D., Conjugated Polymer Photovoltaic Cells. Chemistry of Materials 2004, 16 (23), 4533-4542.
92. Ho, P.-H.; Yeh, Y.-C.; Wang, D.-Y.; Li, S.-S.; Chen, H.-A.; Chung, Y.-H.; Lin, C.-C.; Wang, W.-H.; Chen, C.-W., Self-Encapsulated Doping of n-Type Graphene Transistors with Extended Air Stability. ACS Nano 2012, 6 (7), 6215-6221.
93. Cho, S.; Lee, K.; Heeger, A. J., Extended Lifetime of Organic Field-Effect Transistors Encapsulated with Titanium Sub-Oxide as an ‘Active’ Passivation/Barrier Layer. Advanced Materials 2009, 21 (19), 1941-1944.
94. Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J., Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Advanced Functional Materials 2005, 15 (10), 1617-1622
95. Li, X.; Zhu, H.; Wang, K.; Cao, A.; Wei, J.; Li, C.; Jia, Y.; Li, Z.; Li, X.; Wu, D., Graphene-On-Silicon Schottky Junction Solar Cells. Advanced Materials 2010, 22 (25), 2743-2748.
96. Chen, C.-C.; Aykol, M.; Chang, C.-C.; Levi, A. F. J.; Cronin, S. B., Graphene-Silicon Schottky Diodes. Nano Lett. 2011, 11 (5), 1863-1867.
97. Wang, Y.; Tong, S. W.; Xu, X. F.; Özyilmaz, B.; Loh, K. P., Interface Engineering of Layer-by-Layer Stacked Graphene Anodes for High-Performance Organic Solar Cells. Advanced Materials 2011, 23 (13), 1514-1518.
98. Wu, J.; Agrawal, M.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P., Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes. ACS Nano 2009, 4 (1), 43-48.
99. Malik, O.; De la Hidalga-W, F. J.; Zúñiga-I, C.; Ruiz-T, G., Efficient ITO–Si solar cells and power modules fabricated with a low temperature technology: Results and perspectives. Journal of Non-Crystalline Solids 2008, 354 (19–25), 2472-2477.
100. Jeong, S.; Garnett, E. C.; Wang, S.; Yu, Z.; Fan, S.; Brongersma, M. L.; McGehee, M. D.; Cui, Y., Hybrid Silicon Nanocone–Polymer Solar Cells. Nano Lett. 2012, 12 (6), 2971-2976.
101. Jia, Y.; Cao, A.; Bai, X.; Li, Z.; Zhang, L.; Guo, N.; Wei, J.; Wang, K.; Zhu, H.; Wu, D.; Ajayan, P. M., Achieving High Efficiency Silicon-Carbon Nanotube Heterojunction Solar Cells by Acid Doping. Nano Lett. 2011, 11 (5), 1901-1905.
102. Mohammed, M.; Li, Z.; Cui, J.; Chen, T.-p., Junction investigation of graphene/silicon Schottky diodes. Nanoscale Research Letters 2012, 7 (1), 302.
103. Miao, X.; Tongay, S.; Petterson, M. K.; Berke, K.; Rinzler, A. G.; Appleton, B. R.; Hebard, A. F., High Efficiency Graphene Solar Cells by Chemical Doping. Nano Letters 2012, 12 (6), 2745-2750.
104. Xie, C.; Zhang, X.; Wu, Y.; Zhang, X.; Zhang, X.; Wang, Y.; Zhang, W.; Gao, P.; Han, Y.; Jie, J., Surface passivation and band engineering: a way toward high efficiency graphene-planar Si solar cells. Journal of Materials Chemistry A 2013, 1 (30), 8567-8574.
105. Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y.-J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; Grigorenko, A. N.; Geim, A. K.; Casiraghi, C.; Neto, A. H. C.; Novoselov, K. S., Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science 2013, 340 (6138), 1311-1314.
106. Zhang, Y.; Zu, F.; Lee, S.-T.; Liao, L.; Zhao, N.; Sun, B., Heterojunction with Organic Thin Layers on Silicon for Record Efficiency Hybrid Solar Cells. Advanced Energy Materials 2014, 4 (2), 1300923.
107. Tune, D. D.; Flavel, B. S.; Krupke, R.; Shapter, J. G., Carbon Nanotube-Silicon Solar Cells. Advanced Energy Materials 2012, 2 (9), 1043-1055.
108. Shi, E.; Zhang, L.; Li, Z.; Li, P.; Shang, Y.; Jia, Y.; Wei, J.; Wang, K.; Zhu, H.; Wu, D.; Zhang, S.; Cao, A., TiO2-Coated Carbon Nanotube-Silicon Solar Cells with Efficiency of 15%. Sci. Rep. 2012, 2, 884.
109. Shi, E.; Li, H.; Yang, L.; Zhang, L.; Li, Z.; Li, P.; Shang, Y.; Wu, S.; Li, X.; Wei, J.; Wang, K.; Zhu, H.; Wu, D.; Fang, Y.; Cao, A., Colloidal Antireflection Coating Improves Graphene–Silicon Solar Cells. Nano Letters 2013, 13 (4), 1776-1781.
110. Do Thanh, L.; Balk, P., Elimination and Generation of Si ‐ SiO2 Interface Traps by Low Temperature Hydrogen Annealing. Journal of The Electrochemical Society 1988, 135 (7), 1797-1801.
111. Lenahan, P. M.; Dressendorfer, P. V., Hole traps and trivalent silicon centers in metal/oxide/silicon devices. Journal of Applied Physics 1984, 55 (10), 3495-3499.
112. Shin, D.-W.; Lee, H. M.; Yu, S. M.; Lim, K.-S.; Jung, J. H.; Kim, M.-K.; Kim, S.-W.; Han, J.-H.; Ruoff, R. S.; Yoo, J.-B., A Facile Route To Recover Intrinsic Graphene over Large Scale. ACS Nano 2012, 6 (9), 7781-7788.
113. Li, X.; Huang, J.-S.; Nejati, S.; McMillon, L.; Huang, S.; Osuji, C. O.; Hazari, N.; Taylor, A. D., Role of HF in Oxygen Removal from Carbon Nanotubes: Implications for High Performance Carbon Electronics. Nano Lett. 2014, 14 (11), 6179-6184.
114. Li, R.; Di, J.; Yong, Z.; Sun, B.; Li, Q., Polymethylmethacrylate coating on aligned carbon nanotube–silicon solar cells for performance improvement. Journal of Materials Chemistry A 2014, 2 (12), 4140-4143.
115. Hecht, E., Optics. 4 ed.; 2001.
116. Meneses, C.; Sanchez, J.; Estrada, M.; Pereyra, I.; Avila-Garcia, A.; Escobosa, A.; Pavanello, M. In Physical Characterization of TiOx layers deposited from sol-gel technique, SBMicro Symposium on IEEE 2013, 1-4.
117. Tongay, S., et al. Stable hole doping of graphene for low electrical resistance and high optical transparency. Nanotechnology 2011, 22. (42), 425701.
118. Liang, X.; Sperling, B. A.; Calizo, I.; Cheng, G.; Hacker, C. A.; Zhang, Q.; Obeng, Y.; Yan, K.; Peng, H.; Li, Q.; Zhu, X.; Yuan, H.; Hight Walker, A. R.; Liu, Z.; Peng, L.-m.; Richter, C. A., Toward Clean and Crackless Transfer of Graphene. ACS Nano 2011, 5 (11), 9144-9153.
119. Yang, R.; Buonassisi, T.; Gleason, K. K., Organic Vapor Passivation of Silicon at Room Temperature. Advanced Materials 2013, 25 (14), 2078-2083.
120. Xie, C.; Zhang, X.; Ruan, K.; Shao, Z.; Dhaliwal, S. S.; Wang, L.; Zhang, Q.; Zhang, X.; Jie, J., High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells. Journal of Materials Chemistry A 2013, 1 (48), 15348-15354.
121. Feng, T.; Xie, D.; Lin, Y.; Zang, Y.; Ren, T.; Song, R.; Zhao, H.; Tian, H.; Li, X.; Zhu, H.; Liu, L., Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate. Applied Physics Letters 2011, 99 (23), 233505.
122. Padmanabhan Ramalekshmi Thanu, D.; Venkataraman, N.; Raghavan, S.; Mahdavi, O., Dilute HF Solutions for Copper Cleaning during BEOL Processes: Effect of Aeration on Selectivity and Copper Corrosion. ECS Transactions 2009, 25 (5), 109-116.
123. Zhang, W.; Chuu, C.-P.; Huang, J.-K.; Chen, C.-H.; Tsai, M.-L.; Chang, Y.-H.; Liang, C.-T.; Chen, Y.-Z.; Chueh, Y.-L.; He, J.-H.; Chou, M.-Y.; Li, L.-J., Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Sci. Rep. 2014, 4, 3826.
124. Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A., Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Natural Nanotechology 2013, 8 (11), 826-830.
125. Radisavljevic, B.; Whitwick, M. B.; Kis, A., Integrated Circuits and Logic Operations Based on Single-Layer MoS2. ACS Nano 2011, 5 (12), 9934-9938.
126. Tosun, M.; Chuang, S.; Fang, H.; Sachid, A. B.; Hettick, M.; Lin, Y.; Zeng, Y.; Javey, A., High-Gain Inverters Based on WSe2 Complementary Field-Effect Transistors. ACS Nano 2014, 8 (5), 4948-4953.
127. Li, L.; Yu, Y.; Ye, G. J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X. H.; Zhang, Y., Black phosphorus field-effect transistors. Natural Nanotechnology 2014, 9 (5), 372-377.
128. Brown, A.; Rundqvist, S., Refinement of the crystal structure of black phosphorus. Acta Crystallographica 1965, 19 (4), 684-685.
129. Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A., Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors. Nano Letters 2014, 14 (6), 3347-3352.
130. Tran, V.; Soklaski, R.; Liang, Y.; Yang, L., Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Physical Review B 2014, 89 (23), 235319.
131. Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J., Isolation and characterization of few-layer black phosphorus. 2D Materials 2014, 1 (2), 025001.
132. Wood, J. D.; Wells, S. A.; Jariwala, D.; Chen, K.-S.; Cho, E.; Sangwan, V. K.; Liu, X.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C., Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Letters 2014, 14 (12), 6964-6970.
133. Doganov, R. A.; O’Farrell, E. C.; Koenig, S. P.; Yeo, Y.; Ziletti, A.; Carvalho, A.; Campbell, D. K.; Coker, D. F.; Watanabe, K.; Taniguchi, T., Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nature communications 2015, 6.
134. Avsar, A.; Vera-Marun, I. J.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Castro Neto, A. H.; Özyilmaz, B., Air-Stable Transport in Graphene-Contacted, Fully Encapsulated Ultrathin Black Phosphorus-Based Field-Effect Transistors. ACS Nano 2015, 9 (4), 4138-4145.
135. Akahama, Y.; Endo, S.; Narita, S.-i., Electrical properties of black phosphorus single crystals. Journal of the Physical Society of Japan 1983, 52 (6), 2148-2155.
136. Xiang, D.; Han, C.; Wu, J.; Zhong, S.; Liu, Y.; Lin, J.; Zhang, X.-A.; Hu, W. P.; Özyilmaz, B.; Neto, A. C., Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nature communications 2015, 6.
137. Ho, P. H.; Li, S. S.; Liou, Y. T.; Wen, C. Y.; Chung, Y. H.; Chen, C. W., Wavelength‐Selective Dual p‐and n‐Type Carrier Transport of an Organic/Graphene/Inorganic Heterostructure. Advanced Materials 2015, 27 (2), 282-287.
138. Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H., Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nature nanotechnology 2012, 7 (6), 363-368.
139. Yu, S. H.; Lee, Y.; Jang, S. K.; Kang, J.; Jeon, J.; Lee, C.; Lee, J. Y.; Kim, H.; Hwang, E.; Lee, S., Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. ACS Nano 2014, 8 (8), 8285-8291.
140. Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F. H.; Konstantatos, G., Hybrid 2D–0D MoS2–PbS Quantum Dot Photodetectors. Advanced Materials 2015, 27 (1), 176-180.
141. Du, Y.; Liu, H.; Deng, Y.; Ye, P. D., Device perspective for black phosphorus field-effect transistors: Contact resistance, ambipolar behavior, and scaling. ACS Nano 2014, 8 (10), 10035-10042.
142. Chuang, S.; Battaglia, C.; Azcatl, A.; McDonnell, S.; Kang, J. S.; Yin, X.; Tosun, M.; Kapadia, R.; Fang, H.; Wallace, R. M., MoS2 p-Type Transistors and Diodes Enabled by High Work Function MoO x Contacts. Nano Letters 2014, 14 (3), 1337-1342.
143. Kim, J. Y.; Kim, S. H.; Lee, H.-H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A. J., New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. 2006.
144. Cho, S.; Seo, J. H.; Lee, K.; Heeger, A. J., Enhanced Performance of Fullerene n‐Channel Field‐Effect Transistors with Titanium Sub‐Oxide Injection Layer. Advanced Functional Materials 2009, 19 (9), 1459-1464.
145. Ho, P.-H.; Lee, W.-C.; Liou, Y.-T.; Chiu, Y.-P.; Shih, Y.-S.; Chen, C.-C.; Su, P.-Y.; Li, M.-K.; Chen, H.-L.; Liang, C.-T., Sunlight-activated graphene-heterostructure transparent cathodes: enabling high-performance n-graphene/p-Si Schottky junction photovoltaics. Energy Environmental Science 2015, 8 (7), 2085-2092.
146. JuL; Velasco Jr, J.; HuangE; KahnS; NosigliaC; Tsai, H.-Z.; YangW; TaniguchiT; WatanabeK; ZhangY; ZhangG; CrommieM; ZettlA; WangF, Photoinduced doping in heterostructures of graphene and boron nitride. Nature Nanotechnology 2014, 9 (5), 348-352.
147. Mimura, T.; Hiyamizu, S.; Fujii, T.; Nanbu, K., A new field-effect transistor with selectively doped GaAs/n-AlxGa1-xAs heterojunctions. Japanese journal of applied physics 1980, 19 (5), L225.
148. RadisavljevicB; RadenovicA; BrivioJ; GiacomettiV; KisA, Single-layer MoS2 transistors. Nat Nano 2011, 6 (3), 147-150.
149. Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y.; Jarillo-Herrero, P., Intrinsic Electronic Transport Properties of High-Quality Monolayer and Bilayer MoS2. Nano Letters 2013, 13 (9), 4212-4216.
150. Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F., Emerging Photoluminescence in Monolayer MoS2. Nano Letters 2010, 10 (4), 1271-1275.
151. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F., Atomically thin MoS 2: a new direct-gap semiconductor. Physical Review Letters 2010, 105 (13), 136805.
152. Liu, H.; Neal, A. T.; Ye, P. D., Channel Length Scaling of MoS2 MOSFETs. ACS Nano 2012, 6 (10), 8563-8569.
153. Liu, H.; Si, M.; Deng, Y.; Neal, A. T.; Du, Y.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Ye, P. D., Switching Mechanism in Single-Layer Molybdenum Disulfide Transistors: An Insight into Current Flow across Schottky Barriers. ACS Nano 2014, 8 (1), 1031-1038.
154. Radisavljevic, B.; Kis, A., Mobility engineering and a metal–insulator transition in monolayer MoS2. Nature Materials 2013, 12 (9), 815-820.
155. Kiriya, D.; Tosun, M.; Zhao, P.; Kang, J. S.; Javey, A., Air-Stable Surface Charge Transfer Doping of MoS2 by Benzyl Viologen. Journal of the American Chemical Society 2014, 136 (22), 7853-7856.
156. Fang, H.; Tosun, M.; Seol, G.; Chang, T. C.; Takei, K.; Guo, J.; Javey, A., Degenerate n-Doping of Few-Layer Transition Metal Dichalcogenides by Potassium. Nano Letters 2013, 13 (5), 1991-1995.
157. Yang, L.; Majumdar, K.; Liu, H.; Du, Y.; Wu, H.; Hatzistergos, M.; Hung, P. Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C.; Ye, P. D., Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS2. Nano Letters 2014, 14 (11), 6275-6280.
158. Mak, K. F.; He, K.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J., Tightly bound trions in monolayer MoS2. Nature Materials 2013, 12 (3), 207-211.
159. McDonnell, S.; Addou, R.; Buie, C.; Wallace, R. M.; Hinkle, C. L., Defect-Dominated Doping and Contact Resistance in MoS2. ACS Nano 2014, 8 (3), 2880-2888.
160. Larentis, S.; Fallahazad, B.; Tutuc, E., Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Applied Physics Letters 2012, 101 (22), 223104.
161. Yue, Q.; Shao, Z.; Chang, S.; Li, J., Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale research letters 2013, 8 (1), 1-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52353-
dc.description.abstract石墨烯是一種單層碳原子以sp2鍵結方式排列而成的二維奈米材料,由於此特殊的幾何結構使得石墨烯有著非常特別的能帶結構、機械性質及熱導性質,尤其在電性的部分,石墨烯具有相當高的室溫載子遷移率>20000cm2V-1S-1,使其具有相當大的潛力去建構下個世代的高速電路。由於目前電路主要由互補式金屬氧化物半導體所組成,不管是p型或n型石墨烯都是相當重要的,因此精準地控制摻雜程度在未來元件製作是相當重要的。
在我之前碩班的實驗中,我發現TiOx對石墨烯是一個相當有效的n型摻雜物質,就像大部分的摻雜物質一樣,TiOx僅可以大略的用濃度來控制摻雜程度。然而在此篇論文中,我們發現TiOx具有光敏化摻雜的特性,n型摻雜程度可以進一步用光的入射劑量來精準調變,在第四章中我們利用石墨烯電晶體和光調變穿隧式顯微技術來研究TiOx的光敏化摻雜機制,最後我們將TiOx在石墨烯上的摻雜分成表面摻雜和光調變摻雜兩種機制,由於光調變摻雜法的摻雜位置是在TiOx薄膜內部(遠離傳輸層),因此可以藉由入射光激發不同的數量摻雜位置來精準調控摻雜的程度在極大的範圍內,並且不會大幅破壞石墨烯的載子遷移率。由於此特殊的摻雜技術,我們將TiOx導入雙層石墨烯電晶體的結構裡當作光閘極,藉由另一個電控制閘極與TiOx光閘極去引發雙層石墨烯的能隙,進而製造出高整流的石墨烯電機體。另一方面,由於TiOx本身能夠在石墨烯底層和上層都能有效摻雜,所以能夠應用的範疇較其他摻雜物更為廣泛,在接下來的幾個章節,我們會將此光調變摻雜技術導入各式不同的光電元件中。
在第五章裡利用TiOx在石墨烯底部的結構,加上表面覆蓋一層有機高分子當作p型光敏化物摻雜物,我們建構出互補式光敏化石墨烯摻雜平台,其內部載子可以相當容易地由外界光波長來決定為p型或是n型傳導。之後再將此平台和光罩及白光結合,成功地製造出石墨烯的p-n接面電晶體,使得此技術在光激發石墨烯電路的設計將有極大的影響力。
在第六章中則是利用TiOx在石墨烯頂部的應用。由於石墨烯在大氣下以p型的形式存在,所以利用n型石墨烯來當作是太陽能電池的陰極是相當困難的。然而TiOx摻雜的石墨烯在照光的時候會藉由吸收少部分的紫外光來提升n型的摻雜程度,是一個理想的概念(光敏化陰極)可以應用在太陽能電池上,在此章中我們將它應用在和矽晶形成的蕭基接面太陽能電池上,達到之前從未有的10.5%高效率(現階段沒有其他團隊超過1%)
在第七章中我們整合了p型和n型摻雜的技術,加上石墨烯的背表面清潔及抗反射技術,我們成功地製造出高效率的石墨烯陰極和陽極基底的蕭基接面太陽能電池,效率可分別達到10.5%(陰極)和14.2%(陽極)。
在第八章裡我們將利用之前的光敏化摻雜以及蕭基接面的原理,將傳統的蕭基接面太陽能電池做結構上的小改變,成功地製造出三極式石墨烯/矽光偵測器。其水平向和鉛直向分別利用光敏化摻雜和蕭基介面來形成光電流,此兩種方式可以分別得到超高的光學增益和高對比的特性,由於此兩方式可以自由選取或是同時使用,將使此元件在未來有極大可能被實際應用或取代現有光偵測器。
在第九章中我們對之前研究關於光敏化石墨烯/TiOx或矽異質接面做個簡單總結,由於光敏化特性使得此異質接面有可調變得光電特性,在光電元件上可以有相當多樣的應用。此外對於光敏化石墨烯/TiOx的系統中,我們提出了光敏化調變摻雜技術,使的石墨烯能夠在高摻雜後仍能擁有相當高的載子遷移率。此外,由於TiOx和其他二維材料的能帶圖也顯示光激發載子可以在此材料間轉移,因此我們預測TiOx也會和其他二維材料有光敏化調變摻雜現象,並將再接下來補充章節(第十、十一章)中提到。
在第十章中我們將TiOx應用於另一個二維的層狀材料系統中─黑磷,由於黑磷本身在大氣中相當容易被氧化而被p型摻雜或破壞,因此目前所以的研究絕大多數都只能達成p型黑磷電晶體且在大氣下無法持續運作即被破壞。在此研究中我們利用所有之前研究提到TiOx的優越特性包含自我封裝、光敏化、超薄以及電子傳輸特性,我們成功製造出高穩定、光調控n型摻雜黑磷電晶體,對於發展以黑磷構築的互補式金屬氧化物電晶體是一個相當大的突破。
在第十一章中我們進一步TiOx和另一種已知的二維材料二硫化鉬做結合。由於一般的二硫化鉬電晶體的載子遷移率受限於二硫化鉬和金屬電極的接面電阻,所以重n型摻雜此步驟在製造高效率二硫化鉬電晶體是必要的。在此研究中我們將TiOx覆蓋在二硫化鉬電晶體上當作是自我封裝及光調變摻雜層,我們成功製造出高載子遷移率、可調變的重n型摻雜二硫化鉬電晶體,使得此TiOx和二硫化鉬異質接面在以後構造互補式氧化物電晶體中將有很大的發揮空間。此外,由於TiOx的光調變摻雜步驟是和劑量成正比,我們同時也利用此現象來當作是入射光劑量偵測器,使得TiOx和二硫化鉬異質接面在未來光電元件中能有更多的應用。
zh_TW
dc.description.abstractGraphene, which consists of a single atom-thick plane of carbon atoms arranged in a honeycomb lattice, has attracted a large amount of research because of its novel electronic, mechanical, and thermal properties arising from its unique 2D energy dispersion. The most attractive properties of graphene is its ultrahigh mobility (>20000cm2V-1S-1 in room temperature), which has potential to apply for the next post-silicon generation. Therefore, the precisely controllable doping graphene is crucial to construct the graphene based circuits with complementary-metal-oxide-semiconductor (CMOS) device.
In my previous thesis, TiOx was found to be an effective n-type dopant which only approximately controlled the doping level with various concentrations as conventional chemical dopant. In this thesis, a photoinduced surface charge transfer at TiOx/graphene heterostructure was discovered, which could further doped graphene with assistance of incident light. The first part (chapter 4) of this thesis investigates the light-induced surface charge transfer at graphene/TiOx heterostructure. By analyzing mechanism with a light-modulated scanning tunneling microscopy (STM) and thin film transistors, the doping mechanism of TiOx/graphene heterostructure could be divided into an interfacial doping and a photoinduced modulation doping. The photoinduced modulation doping precisely controlled the doping to ultra-high level with dopants mainly in bulk TiOx, retaining high mobility of graphene. Consequently, with such unique light-sensitized doping effect, the TiOx was first applied as a photogate in a bilayer graphene transistor. The combination of a photogate and an electric gate successfully opened the band gap of bilayer graphene, resulting in a high/off bilayer graphene transistor. By the way, because TiOx could form n-type doping either on the top of at the bottom of graphene, the photo-sensitized TiOx/graphene heterostructure may provide a considerable flexibility for designing optoelectronic devices as described in the following sections.
Chapter 5 is an application based on TiOx bottom doping structure. By encapsulating graphene with TiOx and another p-type photoactive material on top, an organic-inorganic hybrid doping platform (OIHD) is first fabricated with this structure. The transport type of OIHD can easily be tuned into p-type or n-type with selective-wavelength illumination. In addition, by using a pattern color filter and white light, a photoinduced p-n junction is carried out with this spatially pattern illumination, which indicated that the OIHD would have potential to construct the photonic circuits based on graphene.
Chapter 6 is another application based on TiOx top doping. Owing to intrinsic p-type properties of graphene, the graphene based cathodes for solar cells are usually tough to be fabricated. With only costing a small amount of ultraviolet, the TiOx/graphene would demonstrate excellent n-type properties under illumination, which is an ideal concept for fabricating high performance graphene based cathode. With this special concept, we are the first one to fabricate high performance (10.5%) n-type graphene/p-Si Schottky solar cell, which is usually <1% in previous work.
Chapter 7 is the application of doping technique for graphene based transparent conducting electrodes. With introduce stable p-type (TFSA) and n-type (TiOx) dopants, combing with surface modification and antireflective technique. Both high efficiency n-graphene/p-Si and p-type/n-Si Schottky solar cell are successfully achieved with 10.5 and 14.2% power conversion efficiency, respectively.
In chapter 8, by integrating the concepts of previous photoactive properties and Schottky devices, we cleverly refit the structure of Schottky solar cell to turn into a 3-probe photodetector, which can perform with horizontal and vertical modes. Either ultrahigh gain in horizontal mode and photo-switch application in vertical mode can be manipulated separately or simultaneously, making this device ideal to for the next generation photodetectors.
In chapter 9, we make a brief conclusion of previous chapters about photoactive graphene heterostructure, either for graphene/TiOx or graphene/Si respectively. The photoinduced charge transfer effect results in tunable electronic properties of graphene-based electronic devices. In addition, the photoinduced modulation doping concept is advocated to explain the mechanism in graphene/TiOx heterostructure, preserving high-mobility property of graphene even at high doping level. Owing to the preferred band alignment for charge transfer in TiOx and other 2D materials, we simultaneously predict that the photoinduced charge transfer would also occur in other TiOx/2D-materials heterostructure, which is discussed in the following supplementary chapter 10 and 11.
Chapter 10 (appendix A) is another application of TiOx for another two-dimensional material - black phosphorus (BP). Generally, BP is quite vulnerable in air, resulting in oxidized product which full of electron traps. Therefore, most of reported BP transistor shows p-type dominated property and the performance can be damaged after placing in air for few hours. In this work, ultrathin TiOx acted as a self-encapsulated, an electrode modified layer, and a photoactive material for BP, which protected the as-exfoliated BP and resulted in precisely controlled n-type doping level with light modulation. A stable, n-type BP transistor is first demonstrated by a TiOx/BP heterostructure.
Chapter 11 (appendix B) is another application of TiOx in 2D materials- molybdenum disulfide (MoS2), which is suffered from large contact resistance between contact metal electrodes and MoS2 channel. A strong and controllable n-type doping is needed to fabricate high performance transistor for CMOS circuit. Here, TiOx is used as a self-encapsulated n-type photoactive for MoS2, which precisely controlled the n-type doping level and preserved high mobility of MoS2 with photoinduced modulation doping process. In addition, the cumulative trap-mediated doping process makes it useful as a UV dose detector, which gives more applications for this TiOx/MoS2 heterostructure in future optoelectronic device.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T16:12:36Z (GMT). No. of bitstreams: 1
ntu-104-D01527014-1.pdf: 14148252 bytes, checksum: 4ce2e5c8ce16b42e17efe0763c59df1f (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsContents
口試委員審定書 I
Table of content II
Acknowledgement III
摘要 VIII
Abstract XI
Contents XV
List of Tables XXII
List of Figures XXIII
List of Publications XXXVIII
Chapter 1 Introduction: electronic properties of graphene 1
1.1 Brief history of graphene 1
1.2 Band structure of graphene 2
1.3 Transport measurements in graphene 4
1.4 Chemical doping of graphene 9
1.4.1 Surface transfer doping 9
1.4.2 Substitutional doping 10
1.5 Motivation 11
Chapter 2 Literature Review of Graphene 13
2.1 Raman spectrum of graphene 13
2.2 Massless Dirac fermions in graphene 14
2.2.1 Half-integer Quantum Hall effect 14
2.2.2 Finite minimum conductivity 17
2.3 Structural corrugation and Electron-Hole paddles 18
2.3.1 Corrugations in graphene – broadening of the Dirac point 18
2.2.2 Electron- Hole paddles 20
2.4 Short-range and long-range scattering mechanism in graphene 21
Chapter 3 Fabrication of Graphene Transistors 26
3.1 Exfoliated graphene 26
3.1.1 The Preparation of exfoliated graphene 26
3.2 Chemical Vapor Deposition (CVD) Graphene 29
3.2.1 The synthesis of graphene on copper foil 29
3.2.2 Transfer process for graphene on copper foil 30
3.2.2.1 Transfer with thermal released tap (roll-to-roll method) 30
3.2.2.2 Transfer with Polymethylmethacrylate (PMMA method) 31
3.2.3 Fabricating transistors based on CVD graphene 32
Chapter 4 Atomic scale observation and precise control of ultra-strong photoinduced modulation doping with graphene heterostructure : application for band gap opening 33
4.1 Introduction 34
4.2 Experimental detail of fabricating graphene/TiOx heterostructure 36
4.2.1 Synthesis of TiOx with different band gaps 36
4.2.1.1 Characteristic of TiOx with different degree of hydrolysis 37
4.2.2 Fabrication of graphene/TiOx device for scanning tunneling microscopy 40
4.2.3 Fabrication of graphene/TiOx transistor 42
4.3 Real-space observation of photoinduced surface charge transfer in graphene heterostructure 43
4.3.1 Introduction 43
4.3.2 n-type transport behavior of TiOx/graphene 45
4.3.3 Real space observation of spontaneous photoinduced surface charge transfer in graphene/TiOx heterostructure 47
4.4 Precisely controlled photoinduced modulation doping to ultra-high level with TiOx/graphene heterostructure 52
4.4.1 Precise control doping level with photoinduced surface charge transfer effect 52
4.4.1.1 The role of electric field in photoinduced surface charge 55
4.4.2 Photoinduced modulation doping 57
4.4.2.1 Modulation doping in 2D materials 57
4.4.2.2 Mechanism of photoinduced doping in TiOx/graphene heterostructure 59
4.5 Photoinduced band gap opening of bilayer graphene with effective photogate 63
4.5.1 Introduction 63
4.5.2 Photoinduced band gap opening with effective top photogate 64
4.5.3 Photoinduced band gap opening with effective bottom photogate 66
4.6 Conclusion and future prospects 69
Chapter 5 Wavelength Selective Dual p-Type and n-Type Carrier Transport of an Organic/Inorganic Hybrid Doping Platform 71
5.1 Introduction 72
5.1.1 Introduction of photoactive materials 73
5.2 Design of hybrid doping structure 75
5.2.1 Fabrication of organic-inorganic hybrid doping platform (OIHD) 79
5.3 n-type UV-Sensitized bottom-TiOx-only graphene 80
5.3.1 Positive-bias recovery of the graphene/TiOx(bottom)/SiO2/Si transistor 83
5.4 p-type VIS-Sensitized top-P3HT/PCBM-only graphene 85
5.5 Wavelength-Selective Organic-Inorganic Hybrid Doping platform (OIHD) 89
5.6 Application of OIHD 91
5.6.1 OIHD with spatially patterned illumination 91
5.7 Conclusion 94
Chapter 6 Sunlight-activated graphene-heterostructure transparent cathodes: enabling high-performance n-graphene/p-Si Schottky junction photovoltaics 95
6.1 Introduction 96
6.1.1 Introduction to silicon Schottky Junction solar cell 98
6.1.2 Introduction to silicon Schottky Junction solar cell with transparent conducting electrodes 101
6.2 Fabrication of graphene/Si Schottky solar cell 103
6.3 p-graphene/n-Si V.S. n-graphene/p-Si (effect of native oxide) 104
6.4 Post-BOE treatment (remove native oxide) 107
6.5 TiOx/graphene heterostructure: A self-encapsulated sunlight-activated transparent cathode 109
6.5.1 Self-encapsulated doping layer 109
6.5.2 Photoactive transparent electrodes 110
6.6 High performance Schottky photovoltaic cell with sunlight-active transparent graphene electrodes 115
6.6.1 I-V characteristic of TiOx/graphene/Si Schottky solar cell 115
6.6.1.1 Increased Schottky barrier height of the photoactive TiOx/graphene 118
6.7 Self-encapsulated anti-reflective coating 119
6.7.1 Antireflective technique with double layer coatings 122
6.8 Conclusion 124
Chapter 7 Toward high efficiency Schottky solar cell with active graphene electrodes 125
7.1 Introduction 126
7.2 Graphene/Si schottky solar cell 129
7.2.1 Doping effect of graphene/Si solar cell 129
7.2.2 Techniques for optimization of graphene/Si solar cells 131
7.3 Fabrication of high performance graphene/Si solar cell 133
7.3.1 Interface modification between graphene and silicon 133
7.3.2 Stable p-type and n-type dopants 134
7.3.3 High performance graphene/Silicon Schottky solar cell with doping technique 136
7.3.4 Antireflective and encapsulated layer 139
7.4 Conclusion and future prospects 143
Chapter 8 Ultra-High gain, switchable three-probe Graphene/Si Photo-Detector with fast response speed 144
8.1 Introduction 144
8.2 Fabrication of 3-probe graphene/Si photodetector 146
8.3 Performance of Vertical mode versus horizontal mode 147
8.3.1 Vertical mode 147
8.3.2 Horizontal mode 148
8.3.3 Vertical versus horizontal mode 150
8.4 Conclusion and future work 151
Chapter 9 Conclusion and future prospects 153
Chapter 10 Appendix A: Application of TiOx in 2D Family (I) - Stable and Tunable Photoinduced Doping of n-type Black Phosphorus Transistors Using a Self-Encapsulated Photoactive Layer 156
10.1 Introduction 157
10.2 Self-encapsulated ultra-thin TiOx on BP 159
10.2.1 Fabrication of TiOx/BP Heterostructure 159
10.2.2 Characteristic of TiOx/BP heterostructure 160
10.3 Air-stable, high performance n-type TiOx/BP transistors 163
10.3.1 I-V Characteristic of TiOx/BP transistor 163
10.4 Precisely controlled n-type doping with photoinduced modulation doping 166
10.5 Conclusion 170
Chapter 11 Appendix B: Application of TiOx in 2D Family (II) - Precisely controlled n-type doping level of MoS2 by photoinduced modulation doping 171
11.1 Introduction 172
11.2 Fabrication and characteristic of TiOx/MoS2 heterostructure 173
11.3 Electrical characteristic of TiOx/MoS2 transistors 175
11.4 Photoinduced modulation doping of TiOx/MoS2 transistors 177
11.5 UV dose detector based on TiOx/MoS2 182
11.6 Conclusion 184
Reference 185
List of Tables
Table 3.1 Detail Raman shift data derived from Fig. 3.3 28
Table 6.1 Photovoltaic parameters derived from J-V measurements of n-graphene/p-Si Schottky solar cell. The solar cell parameters of the devices are analyzed from Fig. 6.12 (b) and Fig. 6.14 (c). The detail photovoltaic parameters are open circuit voltage, VOC, short circuit current, JSC, fill factor, FF, and power conversion efficiency (PCE). 118
Table 7.1 Detailed parameters of open circuit voltage (VOC), short-circuit current (JSC), fill factor (FF), power conversion efficiency (PCE) of the graphene/Si Schottky junction solar cells 139
Table 7.2 Detailed parameters of open circuit voltage (VOC), short-circuit current (JSC), fill factor (FF), power conversion efficiency (PCE) and series resistance (Rs) of the graphene/n-Si Schottky junction solar cells with antireflective coating. 142

List of Figures
Fig. 1.1 A closed packaged of carbon atom in a honey-comb shape, different colors of carbon atoms indicate the two identical sublattices, labeled A and B. The orange area makes an unit cell. 3
Fig. 1.2 The band structure of graphene. The zoomed region presents the linear shape of conduction and valence band connected through Dirac point. 4
Fig. 1.3 Structure of a basic graphene device. The thick arrow indicates the current direction. The longitudinal and transverse voltage drop was measure by the electrodes shown in the scheme. 7
Fig. 1.4 Ambipolar electric field effect in single-layer graphene. The insets show its conical low-energy spectrum E(k), indicating changes in the position of the Fermi energy EF with changing gate voltage VG. Positive (negative) VG induces electrons (holes). 8
Fig. 1.5 The conductivity as a function of gate voltage, the linear dependence between conductivity and gate voltage could be clearly seen away from Dirac point. 8
Fig. 1.6 (a) Surface transfer n-type doping with poly(ethylene imine) PEI (b) Surface transfer p-type doping with NO2. The doping concentration increases from zero to 1.5×1012cm-2 due to increasing exposure to NO2. The mobility does not change significantly after doping process. 10
Fig. 1.7 (a) Schematic representation of the N-doped graphene. The blue, red, green, and yellow spheres represent the C,“graphitic” N, “pyridinic” N, and “pyrrolic” N atoms in the N-doped graphene, respectively. (b) Raman spectra for various fluences of N+-ions implanted into the same graphene sample (c) Transfer characteristics of the pristine graphene (Vds at -0.5 V) and the N-doped graphene (Vds at 0.5 and 1.0 V). 11
Fig. 2.1 Raman spectra for (a) monolayer graphene and graphite. The 2D peak (~2600 cm-1) and G (~1600 cm-1) peak could be seen clearly (b) 2D peak with the number of layers. 13
Fig. 2.2 A schematic diagram of landau level density of states and corresponding quantum Hall conductance as a function of energy, the conductance change by an amount of gse2h as Ef crosses a LL. 16
Fig. 2.3 Hall resistance (black) and magnetoresistance (orange) as a function of gate voltage at a fixed magnetic field B= 9T, and T=1.6K 17
Fig. 2.4 Minimum conductivity of graphene for different sample at low temperatures. All presented graphene devices exhibit approximately the same conductivity at the neutral point. 18
Fig. 2.5 A schematic of corrugated 2D sheet. Adapted from Condensed Matter Physics Group of Manchester. 19
Fig. 2.6 Height histogram for graphene on the SiO2 substrate. The histograms are well described by the Gaussian distribution (black line). 20
Fig. 2.7 The spatial density fluctuations and electron/hole paddle at CNP. (a) colour map of the spatial density variations in the graphene flake extracted from surface potential measurements at high density and when the average carrier density is zero. The blue regions correspond to holes and the red regions to electrons. The black contours mark the zero density contours. (b) Histogram of the density distribution in (a). 21
Fig. 2.8 Conductivities in ideal graphene, at T=10K, for randomly distributed scatters versus the carrier concentration n (induced by gate voltage) (a) the dependence upon short-range scatters and (b) long-range scatters. Short-range exhibits sub-linear relation of the conductivity, while long-range exhibits linear relation.45 22
Fig. 2.9 Graphene conductivity calculated using a combination of short and long range scatters. One finds that sub-linear conductivity at high density is likely to be seen in samples with a small Coulomb impurity density and high mobility. 24
Fig. 2.10 Conductance of the suspended graphene. Sample before (blue line) and after (red line) annealing as a function of carrier density. Data are shown for T =40 K. Note the change from near-linear to sublinear behavior before and after annealing, respectively, which indicates short range scattering dominates after annealing. 24
Fig. 2.11 (a) gate-dependent conductivity with different doping doping time at T=20K in UHV. (b) 1μ versus doping time 25
Fig. 3.1 The flow chart of fabricating exfoliated graphene 27
Fig. 3.2 (a) The optical image of exfoliated graphite flake, different layer of graphene was distinguished by different contrast. (b) The AFM height image of graphite flake (area enclosed by white dash line in 3.1(a)), single-, bi-, tri-layer graphene have been observed directly. 27
Fig. 3.3 The Raman spectrum of graphene flakes (shown in 3.2(a)) with different layer number. The excitation is 633nm He-Ne laser. 28
Fig. 3.4 Schematic of the graphene growth process. 29
Fig. 3.5 Schematic of roll-to-roll method of transferring graphene on copper foil 30
Fig. 3.6 (a) Schematic of conventional shadow mask (b) The top-view of device based on CVD graphene 32
Fig. 4.1 As fabricated TiOx as different degrees of hydrolysis. 37
Fig. 4.2 Deconvoluted XPS spectra of TiOx with different O/Ti ratios for (a) Ti 2p (b) O 1s. 38
Fig. 4.3 (a) UV-VIS absorption spectra of L, M, H-TiOx. (b) Band structure of L, M, H-TiOx. 39
Fig. 4.4 (a) Optical image of few layer graphite transferred on TiOx. (b) Raman spectra of different layer number graphene on TiOx. (c) AFM image of few layer graphene on TiOx. (d) The height profile of region depicted in (c). 41
Fig. 4.5 (a) Optical image of monolayer graphene on TiOx. (b) Optical image of graphene contact with metal pad. (c) Photo image of as fabricated STM sample, the silver paste connects the top metal pad to the backside of wafer. (d) Schematic representation of graphene/TiOx sample under STM operation. 42
Fig. 4.6 Graphene transistor devices with (a) top-, (b) bottom- TiOx doping layers. 43
Fig. 4.7 Band structure of graphene with H-,M-,L-TiOx. All species of TiOx have preferred energy level for electrons transfer from TiOx toward graphene 45
Fig. 4.8 Schematic representation of STM measurement of graphene on (a) silica and (b) TiOx. (c) STM topography image (+0.5V, 100pA) of graphene on TiOx/SiO2/Si shows a honeycomb lattice structure. (d) dI/dV curves show the intrinsic and n-type doping behavior of the graphene on SiO2/Si (black line) and TiOx/SiO2/Si (green line) substrate, respectively. The band diagram of graphene/TiOx/SiO2/Si is schematic. The local minimum in green dI/dV curve indicates the location of Dirac point (ED) of n-type doping graphene on TiOx/SiO2/Si. 47
Fig. 4.9 (a) Schematic representation of LM-STM measurement of graphene on TiOx (b) dI/dV curves of graphene on TiOx before (green) and after (purple) illuminated with 405nm light. 48
Fig. 4.10 Real space mapping of dirac point voltage on (a) silica, (b) TiOx, (c) photo-excited TiOx, the inset in (a), (b) and (c) are corresponding distribution of dirac point,respectively. 51
Fig. 4.11 Large scale STM tomography (apparent height) image of graphene on TiOx before (a) and after (b) illumination with 405nm. (c) Amount of photoinduced surface charge transfer in real-space distribution. The marked region in (a), (b) and (c) indicate the heavily (yellow) and lightly (red) doped region respectively. 51
Fig. 4.12 (a) Time resolved source-drain current (VG= -40) of device under different dose of UV (different powers, same illumination period). (b) Gate-dependent characteristic of device after different dose of UV corresponding to condition in (a). 54
Fig. 4.13 (a) Gater-dependent characteristic of device under finely controlled incident dose of UV (b) Extrapolation fitting of the saturation condition, the estimated VCNP is set at -570V. 54
Fig. 4.14 Band diagram of photoinduced doping in graphene/TiOx heterostructure under a positive (a), zero (b), negative (c) back gate bias. 56
Fig. 4.15 Gate-dependent characteristic of device with the same dose of light under different gate bias. 56
Fig. 4.16 Schematic image of (a) conventional substitutional doping in semiconducting technique. (b) Charge scattering in a substitutionally doped semiconductor. (c) Band diagram of modulation doping for a conventional high electron mobility transistor (HEMT). 58
Fig. 4.17 Schematic represent of (a) conventional surface charge transfer doping with molecules or particles, the scattering frequency (black arrows) is high because the scattering site is accumulated in the interface of graphene and dopants. (b) modulation doping with a “film” like dopant. The scattering frequency is low because most of dopants is set in the far region from conducting channel. 59
Fig. 4.18 Mechanism of doping in graphene/TiOx heterostructure for either interfacial charge transfer doping or photoinduced modulation doping. 62
Fig. 4.19 Gate-dependent characteristic of graphene/TiOx device with different dose of UV. The blue and red arrows in the bottom of figure indicate the shift of VCNP due to interfacial doping and photoinduced modulation doping. 62
Fig. 4.20 (a) Field-effect mobility of device derived from Fig. 4.12. (b) Saturation characteristic of device with different thickness of bottom TiOx (c) Schematic diagram of thickness effect on photoinduced modulation doping. 63
Fig. 4.21 (a) Schematic represent of a bilayer graphene transistor with top TiOx photogate. (b) Schematic image of a dual electric displacement induced by bottom electrical gate and top photogate. (c) Gate-dependent resistance of a bilayer graphene transistor with different top photogates. (c) Relation between photogate and induced band gap in bilayer graphene. 66
Fig. 4.22 (a) Schematic represent of a bilayer graphene transistor with top F4TCNQ chemical gate and bottom TiOx photogate. (b) Schematic image of a tri-electrical displacement induced by bottom electrical gate, TiOx photo gate and top chemical gate. 68
Fig. 5.1 (a) Mechanism of photodoping with photoactive materials (b) Controllable doping with graphene and inorganic PbS quantum dots (c) Photodoping with organic photoactive material (chlorophyll) 75
Fig. 5.2 (a) Graphene encapsulated with both n-type and p-type photoactive materials (b) complementary working spectra of n-type and p-type photoactive materials (c) a novel structure to achieve dual-type doping by encapsulating both side of graphene with photoactive materials work at complementary region (d) wavelength-selective dual-type doping with UV and VIS 76
Fig. 5.3 (a) Organic-inorganic hybrid doping structure with P3HT and TiOx (b) Absorption spectra of P3HT and TiOx (c) Band alignment of P3HT, TiOx, and graphene 78
Fig. 5.4 (a) The gate dependent current of the graphene/TiOx (bottom)/SiO2/Si transistor in the dark and under monochromatic 320 nm (1 mW/cm2) optical excitation for 10 s and 30s. (b) Schematic representation of the trap-mediated charge transfer process at the graphene/TiOx interface. (c) The recovery process of the graphene/TiOx transistor device after applying a positive bias (+80 V). (Also see section 4.4.3) (d) Schematic representation of the recovery process. 82
Fig. 5.5 (a) Gate dependent characteristics of the graphene/TiOx(bottom)/SiO2/Si transistor device under UV illumination. The black, red and blue curves represent the curves of those in the dark, under illumination and after recovery treatment, respectively. (b) The temporal responses of (b) the applied gate bias and (c) the source-drain current. 84
Fig. 5.6 (a) Gate-dependent current of the P3HT (top)/graphene/SiO2/Si transistor device in the dark and under monochromatic 560 nm optical excitation (1 mW/cm2). (b) Schematic of photoinduced doping with binding exciton. (c) Gate-dependent current of the P3HT-PCBM(top)/graphene/SiO2/Si transistor device. (d) Schematic of photoinduced doping after adding small amount of PCBM. 87
Fig. 5.7 Time-resolved photoluminescence (TRPL) spectroscopic analysis for pristine P3HT and P3HT:PCBM hybrid films. 88
Fig. 5.8 The temporal response of the P3HT:PCBM(top)/graphene/SiO2/Si transistor device. 88
Fig. 5.9 (a) The device structure and (b) a TEM cross-sectional image of a graphenetransistor device based on the OIHD platform with a device structure of P3HT:PCBM(15 nm)/graphene/TiOx(5 nm)/SiO2/Si. (c) The resistivity (ρ) versus gate voltage (VG) curves of a graphene transistor based on this OIHD platform in the dark and under UV (320 nm,1 mW/cm2) and visible light (550 nm, 1 mW/cm2) irradiation. (d) The corresponding spectral response of the shift of CNPs of the graphene transistor on the OIHD platform as a function of illuminating wavelengths from 320 to 800 nm with an excitation power of 1 mW/cm2 for 60 seconds. 90
Fig. 5.10 (a) Schematic representation of creating a graphene p-n junction on the OIHD platform by spatially patterned UV and visible illumination using a white light source accompanied by two attached color filters. (b) The transmission spectra of the two color filters. The inset shows the corresponding photographic image. (c) The electrical transport behavior of the graphene p-n junction created by spatially patterned UV and visible illumination. (d) Schematic representation of graphene-based optoelectronic circuits by using designed patterning illumination on the OIHD platform. 93
Fig. 6.1 The band alignment of metal and semiconductor (a) before and (b) after contacting each other. 99
Fig. 6.2 Band alignment of Schottky contact under (a) forward and (b) reverse bias 100
Fig. 6.3 Schematic of photovoltaic effect of Schottky junction 101
Fig. 6.4 Fabrication chart of graphene/p-Si Schottky solar cell 104
Fig. 6.5 (a) Schematic images of the graphene/p-Si (top) and graphene/n-Si (bottom) devices. (b) Performance of graphene/n-Si and graphene/p-Si Schottky solar cell without BOE treatment. 105
Fig. 6.6 Schematic representations of interfacial charge carrier transfer and recombination of at graphene/n-Si ((a) and (b)) and graphene/p-Si ((c) and (d)) Schottky junction interfaces. 107
Fig. 6.7 (a) Schematic representation of device treated with BOE. (b) I-V characteristic of device with/without native oxide under AM 1.5. 109
Fig. 6.8 SEM cross-section image of a TiOx/Gr/p-Si device. An uniform TiOx film with thickness around 20nm fully covers the surface of graphene. 110
Fig. 6.9 (a) Schematic image of a TiOx/graphene/p-Si Schottky junction solar cell consisting of a graphene/TiOx heterostructure transparent cathode and a p-Si substrate. (b) Normalized absorption spectrum of the TiOx thin film (red) and solar irradiation spectrum under A.M. 1.5 illumination conditions (black). 111
Fig. 6.10 Transmission spectra of graphene and TiOx/graphene heterostructure films. 112
Fig. 6.11 (a) Sheet resistances of pristine graphene and graphene/TiOx heterostructure before and after illumination (black dot, left). The corresponding work function values measured by Kelvin probe force microscope are also shown in this figure. (red star, right) (b) Surface potential mapping images of a graphene/TiOx heterostructure film measured in the dark (bottom) and under light illumination (top). 114
Fig. 6.12 (a) Schematic representation of a TiOx/graphene/Si Schottky junction solar cell. (b) Current-voltage characteristics of a TiOx/graphene/Si Schottky solar cell as a function of illumination time up to 5 min. The device reaches to a saturated performance after 4 min illumination. (c) The band diagrams of the built-potentials Vbi and Vbiphotoactive of the TiOx/graphene/p-Si Schottky junction solar cells consisting of the as-deposited TiOx/graphene and photoactive TiOx/graphene cathodes. 117
Fig. 6.13 Comparison of dark J-V curve for pristine, TiOx doped and photo-active doped graphene/Si device. 119
Fig. 6.14 (a) Schematic representation of a PMMA/TiOx/graphene/p-Si Schottky junction solar cell, where PMMA was used as an antireflective coating layer. (b) Reflection spectra of the pure p-Si, TiOx/graphene/p-Si, and PMMA/TiOx/graphene/p-Si. (c) The device performance of TiOx/graphene/p-Si Schottky junction solar cell with and without PMMA antireflective coating. (d) Stability test of the devices with and without an encapsulated layer when it was exposed to ambient air. 121
Fig. 6.15 Schematic representation of a double layer (TiOx and PMMA) antireflective coating 123
Fig. 6.16 Optical image of device before (a) and after being coated with (b) TiOx and (c) PMMA. 123
Fig. 7.1 (a) Schematic representation of solar based on graphene electrodes. (b) Band structure of graphene with n- and p-type doping. (c) Band alignment of conventional solar cells with doping graphene as cathodes and anodes. 128
Fig. 7.2 Thickness dependent of various kinds of transparent conducting electrodes.84 128
Fig. 7.3 Band structure of graphene/n-Si Schottky solar cell before (a) and after (b) p-type doping. 130
Fig. 7.4 Band structure of graphene/p-Si Schottky solar cell before (a) and after (b) n-type doping. 130
Fig. 7.5 Band alignment of graphene/n-Si Schottky junction (a) without and (b) with electron blocking layer.92 132
Fig. 7.6 (a) Cross section view of as fabricated silicon hole-array.102 (b) Schematic representation of graphene on silicon pillar-array.103 133
Fig. 7.7 (a) Schematic of antireflective layer (TiO2) on graphene/Si. (b) I-V characteristic of device with antireflective coating. 133
Fig. 7.8 (a) Gate-dependent characteristic of graphene doped with TiOx and TFSA. (b) Sheet resistance of pristine graphene and doped graphene with TiOx or TFSA. (c) Transmission spectra of pristine graphene and doped graphene with TiOx or TFSA. 136
Fig. 7.9 (a) Band alignment of graphene/n-Si Schottky contact with different doping types of graphene. (b) Photovoltaic properties of pristine, n-type , p-type graphene/n-Si Schottky device. (c) Band alignment of graphene/n-Si Schottky contact with different doping types of graphene. (d) Photovoltaic properties of pristine, n-type , p-type graphene/n-Si Schottky device. 138
Fig. 7.10 (a) Schematic representation the reflection mechanism with PMMA as interlayer. (b) Calculated reflection spectra with different thickness of PMMA on silicon. (c) Photo image of graphene/Si device with different thickness of PMMA on top. (d) Experimental result of reflection spectra with different thickness of PMMA on graphene/Si. 141
Fig. 7.11 I-V characteristic of (a) p-Graphene/n-Si and (b) n-graphene/p-Si device with PMMA coating. 142
Fig. 7.12 Stability of p-graphene/n-Si encapsulated with PMMA 143
Fig. 8.1 Schematic representation (a) conventional graphene/Si Schottky solar cell (b) 3-probe graphene/silicon photodetector 145
Fig. 8.2 (a) Optical image of as fabricated 3-probe graphene/Si photodetector, the working area (exposed graphene/Si) is marked with the dashed line. (b) Schematic diagram of 3-probe graphene/Si photodetector under horizontal and vertical operation. 146
Fig. 8.3 (a) Schematic image of detector under vertical mode operation. (b) I-V characteristic of vertical mode. (c) Time-dependent Ilight of vertical mode with different incident light power. 148
Fig. 8.4 (a) Schematic representation of 3-probe photodetector operated in horizontal mode. (b) Working mechanism of horizontal mode, a p-type photo-doped graphene and a quasi-Fermi energy of silicon are formed under illumination. 149
Fig. 8.5 Time-dependent characteristic of (a) light current and (b) photocurrent under different operated voltage. 150
Fig. 8.6 Comparison of vertical and horizontal mode for (a) voltage-dependent photocurrent and (b) power-dependent optical gain (c) power-dependent on/off ratio. 151
Fig. 8.7 Schematic diagram of operating both modes at the same time 152
Fig. 10.1 Flow chart of fabrication TiOx/BP based transistors 160
Fig. 10.2 (a) Optical image of few-layer BP without/with precoated TiOx film before and after aging for one day. AFM image and line profile of pristine BP (b) and TiOx coated BP (c) after aging for one day. (d) Time-dependent surface roughness of BP with and without TiOx film. 162
Fig. 10.3 (a) Schematic represented image of transistor based on pre-coated TiOx/BP heterostructure. (b) Gate-dependent conductivity of TiOx/BP transistor, the inset is one with pristine BP based transistor. (c) and (d) Stability test of TiOx/BP and pristine BP (inset) transistors 164
Fig. 10.4 (a) Schematic representation of band alignment along the transport path for electrons and holes. Transport characteristics of source-drain voltage versus current for electron (b) and hole (c) branch, respectively 166
Fig. 10.5 (a) Schematic represented image of BP/TiOx transistor under illumination (365nm). (b) Mechanism of photoinduced charge transfer effect. 168
Fig. 10.6 (a) Evolution of conductivity versus gate-voltage curves for TiOx/BP transistor with increased irradiation time, the inset is one for pristine BP. (b) Source-drain I-V characteristic of TiOx/BP transistor before and after photoinduced doping. 169
Fig. 10.7 (a) Schematic representation of a modulation doping effect in TiOx/BP heterostructure (b) Evolution of field effect mobility versus photoinduced doping density for a TiOx/BP transistor. 169
Fig. 11.1 (a) Schematic represented fabrication of TiOx/MoS2 heterostructure. (b) AFM image (top) and the corresponding line profile (bottom) of a TiOx/MoS2 heterostructure (c) Photuluminecence spectra of MoS2 and TiOx /MoS2 heterostructure 174
Fig. 11.2 (a) Schematic represented image of TiOx/MoS2 transistor. (b) Gate-dependent characteristic of MoS2 before and after depositing TiOx (c) Charateristic of temperature versus field effect mobility of MoS2 and TiOx/MoS2 transistors. The inset is the band diagram between metal and MoS2 and TiOx doped MoS2. (d) Performance of TiOx/MoS2 transistor in vacuum and air. 177
Fig. 11.3 (a) Time-resolved current charateristic of TiOx/MoS2 under 365nm pulses with different power intensity (Vg= -60V ,Vd=0.5V). (b) Evolution of gate voltage versus source-drain current of TiOx/MoS2 transistor with finely controlled illumination time.(35mW/cm2, 0~1000s) (c) Mechanism of photoinduced doping of TiOx/MoS2 181
Fig. 11.4 (a) Schematic represented of interface doping and photoinduced modulation doping with TiOx/MoS2 heterostructure. (b) Charateristic of doping density versus field effect mobility of TiOx/MoS2 transistor. (c) Temperature-dependent field effect mobility of TiOx/MoS2 transistor under different doping concentrations. 181
Fig. 11.5 (a) Real-time analysis of TiOx/MoS2 transistor under continual UV pulses with different power densisty. (b) Charateristic of current change rate versus incident power density of a TiOx/MoS2 transistor. (c) Recovery of photodoping effect with a positive back-gate bias (100V, 10 minutes). (d) Photo response of TiOx/MoS2 transistor with different wavelength illumination. 183
dc.language.isoen
dc.title光敏化石墨烯於光電元件之應用zh_TW
dc.titleApplications of Optically Activated Graphene for Optoelectronic Devicesen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.oralexamcommittee邱博文(Po-Wen Chiu),王偉華(Wei-Hua Wang),邱雅萍(Ya-Ping Chiu),陳學禮(Hsuen-Li Chen)
dc.subject.keyword石墨烯,缺陷氧化鈦,n型光調變摻雜,薄膜電晶體,光敏化陰極,過渡金屬硫屬化合物,黑磷,zh_TW
dc.subject.keywordGraphene,TiOx,n-type photoinduced modulation doping,Thin film transistor,Photoactive cathode,Transition Metal Dichalcogenides (TMD),Black Phosphorus (Phosphorene),en
dc.relation.page205
dc.rights.note有償授權
dc.date.accepted2015-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
13.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved