請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52247完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭光成(Kuan-Chen Cheng) | |
| dc.contributor.author | Tzu-Jung Huang | en |
| dc.contributor.author | 黃姿蓉 | zh_TW |
| dc.date.accessioned | 2021-06-15T16:10:14Z | - |
| dc.date.available | 2020-08-28 | |
| dc.date.copyright | 2015-08-28 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-08-18 | |
| dc.identifier.citation | (1) Bae-Harboe, Y.-S. C.; Park, H.-Y. Tyrosinase: A Central Regulatory Protein for Cutaneous Pigmentation. J. Invest. Dermatol. 2012, 132 (12), 2678–2680. (2) Kim, K. Effect of ginseng and ginsenosides on melanogenesis and their mechanism of action. J. Ginseng Res. 2015, 39 (1), 1–6. (3) Simon, J. D.; Peles, D.; Wakamatsu, K.; Ito, S. Current challenges in understanding melanogenesis: bridging chemistry, biological control, morphology, and function. Pigment Cell Melanoma Res. 2009, 22 (5), 563–579. (4) Lin, C.-C.; Yang, C.-H.; Lin, Y.-J.; Chiu, Y.-W.; Chen, C.-Y. Establishment of a melanogenesis regulation assay system using a fluorescent protein reporter combined with the promoters for the melanogenesis-related genes in human melanoma cells. Enzyme Microb. Technol. 2015, 68, 1–9. (5) Briganti, S.; Camera, E.; Picardo, M. Chemical and Instrumental Approaches to Treat Hyperpigmentation. Pigment Cell Res. 2003, 16 (2), 101–110. (6) Chan, C.-F.; Huang, C.-C.; Lee, M.-Y.; Lin, Y.-S. Fermented Broth in Tyrosinase- and Melanogenesis Inhibition. Molecules 2014, 19 (9), 13122–13135. (7) Lee, C. S.; Park, M.; Han, J.; Lee, J.; Bae, I.-H.; Choi, H.; Son, E. D.; Park, Y.-H.; Lim, K.-M. Liver X Receptor Activation Inhibits Melanogenesis through the Acceleration of ERK-Mediated MITF Degradation. J. Invest. Dermatol. 2013, 133 (4), 1063–1071. (8) Yasumoto, K.; Yokoyama, K.; Takahashi, K.; Tomita, Y.; Shibahara, S. Functional Analysis of Microphthalmia-associated Transcription Factor in Pigment Cell-specific Transcription of the Human Tyrosinase Family Genes. J. Biol. Chem. 1997, 272 (1), 503–509. (9) Huang, H.-C.; Chou, Y.-C.; Wu, C.-Y.; Chang, T.-M. [8]-Gingerol inhibits melanogenesis in murine melanoma cells through down-regulation of the MAPK and PKA signal pathways. Biochem. Biophys. Res. Commun. 2013, 438 (2), 375–381. (10) Jin, K.-S.; Oh, Y. N.; Hyun, S. K.; Kwon, H. J.; Kim, B. W. Betulinic acid isolated from Vitis amurensis root inhibits 3-isobutyl-1-methylxanthine induced melanogenesis via the regulation of MEK/ERK and PI3K/Akt pathways in B16F10 cells. Food Chem. Toxicol. 2014, 68, 38–43. (11) Costin, G.-E.; Hearing, V. J. Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J. 2007, 21 (4), 976–994. (12) Ebanks, J. P.; Wickett, R. R.; Boissy, R. E. Mechanisms Regulating Skin Pigmentation: The Rise and Fall of Complexion Coloration. Int. J. Mol. Sci. 2009, 10 (9), 4066–4087. (13) Fujimoto, N.; Watanabe, H.; Nakatani, T.; Roy, G.; Ito, A. Induction of Thyroid Tumours in(C57BL/6N×C3H/N)F1 Mice by Oral Administration of Kojic Acid. Food Chem. Toxicol. 1998, 36 (8), 697–703. (14) Campos, P. M.; Horinouchi, C. D. da S.; Prudente, A. da S.; Cechinel-Filho, V.; Cabrini, D. de A.; Otuki, M. F. Effect of a Garcinia gardneriana (Planchon and Triana) Zappi hydroalcoholic extract on melanogenesis in B16F10 melanoma cells. J. Ethnopharmacol. 2013, 148 (1), 199–204. (15) Chang, T.-S. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci. 2009, 10 (6), 2440–2475. (16) Sanodiya, B.; Thakur, G.; Baghel, R.; Prasad, G.; Bisen, P. Ganoderma lucidum: A Potent Pharmacological Macrofungus. Curr. Pharm. Biotechnol. 2009, 10 (8), 717–742. (17) Zhou, X.; Lin, J.; Yin, Y.; Zhao, J.; Sun, X.; Tang, K. Ganodermataceae: Natural Products and Their Related Pharmacological Functions. Am. J. Chin. Med. 2007, 35 (04), 559–574. (18) Bohn, J. A.; BeMiller, J. N. (1→3)-β-d-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr. Polym. 1995, 28 (1), 3–14. (19) Lee, W. Y.; Park, Y.; Ahn, J. K.; Ka, K. H.; Park, S. Y. Factors influencing the production of endopolysaccharide and exopolysaccharide from Ganoderma applanatum. Enzyme Microb. Technol. 2007, 40 (2), 249–254. (20) Xu, J.-W.; Zhao, W.; Zhong, J.-J. Biotechnological production and application of ganoderic acids. Appl. Microbiol. Biotechnol. 2010, 87 (2), 457–466. (21) Zhong, J.-J.; Tang, Y.-J. Submerged cultivation of medicinal mushrooms for production of valuable bioactive metabolites. Adv. Biochem. Eng. Biotechnol. 2004, 87, 25–59. (22) Chien, C.-C.; Tsai, M.-L.; Chen, C.-C.; Chang, S.-J.; Tseng, C.-H. Effects on tyrosinase activity by the extracts of Ganoderma lucidum and related mushrooms. Mycopathologia 2008, 166 (2), 117–120. (23) Zhang, L.; Ding, Z.; Xu, P.; Wang, Y.; Gu, Z.; Qian, Z.; Shi, G.; Zhang, K. Methyl lucidenate F isolated from the ethanol-soluble-acidic components of Ganoderma lucidum is a novel tyrosinase inhibitor. Biotechnol. Bioprocess Eng. 2011, 16 (3), 457–461. (24) Ming-Shi Shiao, Kuan Rong Lee, Lee-Juian Lin, Cheng-Teh Wang. Natural Products and Biological Activities of the Chinese Medicinal Fungus Ganoderma lucidum. In Food Phytochemicals for Cancer Prevention II; ACS Symposium Series; American Chemical Society, 1994; Vol. 547, pp 342–354. (25) Sone, Y.; Okuda, R.; Wada, N.; Kishida, E.; Misaki, A. Structures and Antitumor Activities of the Polysaccharides Isolated from Fruiting Body and the Growing Culture of Mycelium of Ganoderma lucidum. Agric. Biol. Chem. 1985, 49 (9), 2641–2653. (26) el-Mekkawy, S.; Meselhy, M. R.; Nakamura, N.; Tezuka, Y.; Hattori, M.; Kakiuchi, N.; Shimotohno, K.; Kawahata, T.; Otake, T. Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochemistry 1998, 49 (6), 1651–1657. (27) Liu, R.-M.; Zhong, J.-J. Ganoderic acid Mf and S induce mitochondria mediated apoptosis in human cervical carcinoma HeLa cells. Phytomedicine Int. J. Phytother. Phytopharm. 2011, 18 (5), 349–355. (28) Tang, W.; Liu, J.-W.; Zhao, W.-M.; Wei, D.-Z.; Zhong, J.-J. Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells. Life Sci. 2006, 80 (3), 205–211. (29) Wu, G.-S.; Lu, J.-J.; Guo, J.-J.; Li, Y.-B.; Tan, W.; Dang, Y.-Y.; Zhong, Z.-F.; Xu, Z.-T.; Chen, X.-P.; Wang, Y.-T. Ganoderic acid DM, a natural triterpenoid, induces DNA damage, G1 cell cycle arrest and apoptosis in human breast cancer cells. Fitoterapia 2012, 83 (2), 408–414. (30) Shiao, M.-S. Triterpenoid Natural Products in the Fungus Ganoderma Lucidum. J. Chin. Chem. Soc. 1992, 39 (6), 669–674. (31) Kleinw auml;chter, P.; Anh, N.; Kiet, T. T.; Schlegel, B.; Dahse, H.-M.; H auml;rtl, A.; Gr auml;fe, U. Colossolactones, New Triterpenoid Metabolites from a Vietnamese Mushroom Ganoderma colossum§. J. Nat. Prod. 2001, 64 (2), 236–239. (32) Kim, B. K.; Choi, E. C.; Chung, K. S.; Kang, C. Y.; Kim, S. H.; Kim, J. S.; Kim, Y. J.; Lee, K. L.; Lee, J. K. Studies on the constituents of higher fungi of Korea. Arch. Pharm. Res. 1982, 5 (1), 21–23. (33) Jia-Le Wang, Y.-B. L. Kinetic study of 7-O-ethyl ganoderic acid O stability and its importance in the preparative isolation. Biochem. Eng. J. 2011, 53 (2), 182–186. (34) Hirotani, M.; Asaka, I.; Ino, C.; Furuya, T.; Shiro, M. Ganoderic acid derivatives and ergosta-4,7,22-triene-3,6-dione from Ganoderma lucidum. Phytochemistry 1987, 26 (10), 2797–2803. (35) Yue, Q.-X.; Song, X.-Y.; Ma, C.; Feng, L.-X.; Guan, S.-H.; Wu, W.-Y.; Yang, M.; Jiang, B.-H.; Liu, X.; Cui, Y.-J.; et al. Effects of triterpenes from Ganoderma lucidum on protein expression profile of HeLa cells. Phytomedicine 2010, 17 (8–9), 606–613. (36) Burdock, G. A.; Soni, M. G.; Carabin, I. G. Evaluation of Health Aspects of Kojic Acid in Food. Regul. Toxicol. Pharmacol. 2001, 33 (1), 80–101. (37) Cabanes, J.; Chazarra, S.; Garcia-Carmona, F. Kojic Acid, a Cosmetic Skin Whitening Agent, is a Slow-binding Inhibitor of Catecholase Activity of Tyrosinase. J. Pharm. Pharmacol. 1994, 46 (12), 982–985. (38) Masse, M.-O.; Duvallet, V.; Borremans, M.; Goeyens, L. Identification and quantitative analysis of kojic acid and arbutine in skin-whitening cosmetics. Int. J. Cosmet. Sci. 2001, 23 (4), 219–232. (39) Lee, S.; Kim, W.-G.; Kim, E.; Ryoo, I.-J.; Lee, H. K.; Kim, J. N.; Jung, S.-H.; Yoo, I.-D. Synthesis and melanin biosynthesis inhibitory activity of (±)-terrein produced by Penicillium sp. 20135. Bioorg. Med. Chem. Lett. 2005, 15 (2), 471–473. (40) Sharma, V. K.; Choi, J.; Sharma, N.; Choi, M.; Seo, S.-Y. In vitro anti-tyrosinase activity of 5-(hydroxymethyl)-2-furfural isolated from Dictyophora indusiata. Phytother. Res. 2004, 18 (10), 841–844. (41) Kim, J.-P.; Kim, B.-K.; Yun, B.-S.; Ryoo, I.-J.; Lee, C. H.; Lee, I.-K.; Kim, W.-G.; Lee, S.; Pyun, Y.-R.; Yoo, I.-D. Melanocins A, B and C, new melanin synthesis inhibitors produced by Eupenicillium shearii. I. Taxonomy, fermentation, isolation and biological properties. J. Antibiot. (Tokyo) 2003, 56 (12), 993–999. (42) Esp iacute;n, J. C.; Garc iacute;a-Ruiz, P. A.; Tudela, J.; Garc iacute;a-C aacute;novas, F. Study of stereospecificity in mushroom tyrosinase. Biochem. J. 1998, 331 (Pt 2), 547–551. (43) Pan HongYang, Dai YuCheng. Ganoderma weberianum newly recorded from mainland of China. Fungal Sci. 2001, 16 (3/4), 31–34. (44) Fang, Q.-H.; Zhong, J.-J. Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites—ganoderic acid and polysaccharide. Biochem. Eng. J. 2002, 10 (1), 61–65. (45) Xu, Y.-N.; Zhong, J.-J. Impacts of calcium signal transduction on the fermentation production of antitumor ganoderic acids by medicinal mushroom Ganoderma lucidum. Biotechnol. Adv. 2012, 30 (6), 1301–1308. (46) Fang, Q.-H.; Zhong, J.-J. Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochem. 2002, 37 (7), 769–774. (47) Tang, Y.-J.; Zhong, J.-J. Role of oxygen supply in submerged fermentation of Ganoderma lucidum for production of Ganoderma polysaccharide and ganoderic acid. Enzyme Microb. Technol. 2003, 32 (3–4), 478–484. (48) You, B.-J.; Lee, M.-H.; Tien, N.; Lee, M.-S.; Hsieh, H.-C.; Tseng, L.-H.; Chung, Y.-L.; Lee, H.-Z. A Novel Approach to Enhancing Ganoderic Acid Production by Ganoderma lucidum Using Apoptosis Induction. PLoS ONE 2013, 8 (1), e53616. (49) Fang, Q.-H.; Tang, Y.-J.; Zhong, J.-J. Significance of inoculation density control in production of polysaccharide and ganoderic acid by submerged culture of Ganoderma lucidum. Process Biochem. 2002, 37 (12), 1375–1379. (50) Solano, F.; Briganti, S.; Picardo, M.; Ghanem, G. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res. 2006, 19 (6), 550–571. (51) Smit, N.; Vicanova, J.; Pavel, S. The Hunt for Natural Skin Whitening Agents. Int. J. Mol. Sci. 2009, 10 (12), 5326–5349. (52) Picardo, M.; Carrera, M. New and experimental treatments of cloasma and other hypermelanoses. Dermatol. Clin. 2007, 25 (3), 353–362, ix. (53) Videira, I. F. dos S.; Moura, D. F. L.; Magina, S.; Videira, I. F. dos S.; Moura, D. F. L.; Magina, S. Mechanisms regulating melanogenesis*. An. Bras. Dermatol. 2013, 88 (1), 76–83. (54) Wangthong, S.; Tonsiripakdee, I.; Monhaphol, T.; Nonthabenjawan, R.; Wanichwecharungruang, S. P. Post TLC developing technique for tyrosinase inhibitor detection. Biomed. Chromatogr. 2007, 21 (1), 94–100. (55) Kamagaju, L.; Morandini, R.; Bizuru, E.; Nyetera, P.; Nduwayezu, J. B.; St eacute;vigny, C.; Ghanem, G.; Duez, P. Tyrosinase modulation by five Rwandese herbal medicines traditionally used for skin treatment. J. Ethnopharmacol. 2013, 146 (3), 824–834. (56) Burchill, S. A.; Bennett, D. C.; Holmes, A.; Thody, A. J. Tyrosinase expression and melanogenesis in melanotic and amelanotic B16 mouse melanoma cells. Pathobiol. J. Immunopathol. Mol. Cell. Biol. 1991, 59 (5), 335–339. (57) Dong, Y.; Wang, H.; Cao, J.; Ren, J.; Fan, R.; He, X.; Smith, G. W.; Dong, C. Nitric oxide enhances melanogenesis of alpaca skin melanocytes in vitro by activating the MITF phosphorylation. Mol. Cell. Biochem. 2011, 352 (1-2), 255–260. (58) Busc agrave;, R.; Ballotti, R. Cyclic AMP a Key Messenger in the Regulation of Skin Pigmentation. Pigment Cell Res. 2000, 13 (2), 60–69. (59) Park, H. Y.; Kosmadaki, M.; Yaar, M.; Gilchrest, B. A. Cellular mechanisms regulating human melanogenesis. Cell. Mol. Life Sci. 2009, 66 (9), 1493–1506. (60) Huang, H.-C.; Chang, S.-J.; Wu, C.-Y.; Ke, H.-J.; Chang, T.-M. Shogaol Inhibits α-MSH-Induced Melanogenesis through the Acceleration of ERK and PI3K/Akt-Mediated MITF Degradation. BioMed Res. Int. 2014, 2014, e842569. (61) Li, Q.; Uitto, J. Zebrafish as a Model System to Study Skin Biology and Pathology. J. Invest. Dermatol. 2014, 134 (6), e21. (62) Driever, W.; Solnica-Krezel, L.; Schier, A. F.; Neuhauss, S. C.; Malicki, J.; Stemple, D. L.; Stainier, D. Y.; Zwartkruis, F.; Abdelilah, S.; Rangini, Z.; et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 1996, 123 (1), 37–46. (63) Langheinrich, U. Zebrafish: A new model on the pharmaceutical catwalk. BioEssays 2003, 25 (9), 904–912. (64) Zon, L. I.; Peterson, R. T. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 2005, 4 (1), 35–44. (65) Esther Camp, M. L. Tyrosinase gene expression in zebrafish embryos. Dev. Genes Evol. 2001, 211 (3), 150–153. (66) Choi, T.-Y.; Kim, J.-H.; Ko, D. H.; Kim, C.-H.; Hwang, J.-S.; Ahn, S.; Kim, S. Y.; Kim, C.-D.; Lee, J.-H.; Yoon, T.-J. Zebrafish as a new model for phenotype-based screening of melanogenic regulatory compounds. Pigment Cell Res. 2007, 20 (2), 120–127. (67) Chen, Y.; Xie, M.-Y.; Gong, X.-F. Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. J. Food Eng. 2007, 81 (1), 162–170. (68) Likhitwitayawuid, K.; Sritularak, B. A New Dimeric Stilbene with Tyrosinase Inhibitiory Activity From Artocarpus gomezianus. J. Nat. Prod. 2001, 64 (11), 1457–1459. (69) Bellei, B.; Maresca, V.; Flori, E.; Pitisci, A.; Larue, L.; Picardo, M. p38 Regulates Pigmentation via Proteasomal Degradation of Tyrosinase. J. Biol. Chem. 2010, 285 (10), 7288–7299. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/52247 | - |
| dc.description.abstract | 近幾十年來,關於天然物成分分析之研究相當盛行,這些天然物成分常應用於日常生活中,作為食品添加物或皮膚保養等香粧品之成分。本研究中,我們探討廣泛生長於台灣低海拔闊葉樹下的靈芝-韋伯靈芝(Ganoderma weberianum),利用 5L 攪拌式醱酵槽大量生產其液態醱酵生成之靈芝菌絲體,先由 95% 酒精初步萃取後,經三氯甲烷 (Chloroform) 和乙酸乙酯 (Ethyl acetate) 進行極性分割,得到三氯甲烷層萃取物 (CE) 及乙酸乙酯層萃取物 (EE),並以 Sephadex LH-20 進行液相層析分離(liquid-liquid partition),再利用UV照射下,平板層析 (TLC-Thin layer chromatography) 分析之結果作為依據,分別在 CE 和 EE 中皆收集出 6 個分劃,接著進一步探討其對於黑色素生成之影響。 利用老鼠 B16-F10 黑色素瘤細胞 (mouse B16-F10 melanoma cell) 作為篩選有效抑制黑色素生成之細胞平台,實驗結果篩選出四個具有抑制效果的樣品,其中,最為有效抑制黑色素生成之樣品為三氯甲烷層中的 Fraction-3 (F3)。首先,探討其抑制黑色素生成之機制,發現能有效抑制黑色素細胞內酪胺酸脢 (tyrosinase) 之活性,進一步分析酪胺酸脢的蛋白質表現量,發現亦無顯著差異;然而,經探討其他與黑色素生成之相關基因的mRNA層級之表現量,發現其對於MITF, tyrosinase, TRP-1, TRP-2 皆無造成較顯著的差異,因此我們初步推論此靈芝萃取層析物對於抑制老鼠黑色素瘤細胞產生黑色素的途徑,是藉由影響酪胺酸酶之活性所造成之結果。 最後,利用斑馬魚動物模式 (zebrafish animal model) 進行試驗,初步看見靈芝萃取物的分離層析物 F3,對於斑馬魚胚胎孵化的黑化過程造成抑制效果。由此可知,此經由液態醱酵培養之靈芝菌絲體,其分離層析物 F3 具有抑制黑色素生成之潛力。 | zh_TW |
| dc.description.abstract | Nature products isolated from Chinese medical herb have been used extensively in the inhibition of melanogenesis in skin whitening cosmetic products and preventing the browning of food products. ‘‘Lingzhi’’ is a common ingredient in various cosmetic lines and may result in the whitening effect of skin. This property is highly valued by many oriental countries. Skin whitening can be partially achieved via the inhibition of tyrosinase, a key enzyme in melanogenesis. Classical inhibitors of tyrosinase such as arbutin and kojic acid are commonly used in various skin whitening products. However, due to their side effects and safety concerns, the need to find alternative inhibitors of melanogenesis with lower toxicity remains an important field in skin whitening. Several studies have identified compounds isolated from fungal sources to possess inhibitory activities towards tyrosinase as well. Here, my work focuses on the discovery of active compound(s) with anti-melanogenesis potential from the submerged culture of Ganoderma weberianum and elucidating their mechanism of action. The mycelium of the submerged culture was first extracted using 95% ethanol, followed by partition using chloroform and ethyl acetate. These two crude extracts were then further separated using a Sephadex LH-20 column into six fractions. By the B16-F10 melanoma cell model test, some specific fractions had the ability to inhibit the melanogenesis. In particular, fraction three (F3) had the strongest inhibitory effect toward melanogenesis on the in vivo tyrosinase activity without affecting the quantity. For the mRNA level, it shows no apparent difference between the control and F3 treatment for the transcription of melanognesis related gene, Microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1(TRP-1), and tyrosinase-related protein-2 (TRP-2). For the zebrafish model test, it also showed the inhibition ability on the pigmentation within the growth of embryo. Thus, our study has demonstrated that the chemical compounds isolated from Ganoderma weberianum have the potential to serve as alternative ingredients in skin whitening products. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T16:10:14Z (GMT). No. of bitstreams: 1 ntu-104-R02641003-1.pdf: 7095744 bytes, checksum: 8c87829455b6b11f61f08af8cf9eb9d3 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 謝誌 i Abstract ii 中文摘要 iv List of Figures x List of Tables xiv 1.0 Introduction - 1 - 2.0 Literature Review - 5 - 2.1 Ganoderma lucidum - 5 - 2.1.1 Ganoderic acid - 6 - 2.2 Ganoderma weberianum and its optimum culture condition - 10 - 2.2.1 G. weberiamun - 10 - 2.2.2 Culture medium - 10 - 2.2.3 Initial pH value - 13 - 2.2.4 Oxygen profile - 14 - 2.2.5 The culture age on the potato dextrose agar (PDA) - 15 - 2.2.6 The inoculation density - 17 - 2.3 Skin whitening - 18 - 2.3.1 Tyrosinase inhibition. - 18 - 2.3.2 The melanogenesis in mouse B16-F10 melanoma cells - 21 - 2.3.3 Melanogenesis related genes - 23 - 2.3.4 Formation of melanogenic regulatory compounds in zebrafish - 27 - 3.0 Material Methodology - 29 - Overview of Methodology - 30 - 3.1 Chemicals - 30 - 3.2Fungal strain and cultural maintenance - 31 - 3.2.1 Potato-agar-dextrose (PDA) solid cultures - 31 - 3.2.2 Shake-flask cultures - 31 - 3.2.3 6L Bioreactor culture - 32 - 3.3 Purification of the 95% EtOH crude extract - 33 - 3.3.1 Extraction using 95% ethanol - 33 - 3.3.2 Liquid-liquid partition of the ethanol extract - 33 - 3.3.3 Fractionation of the two solvent layers - 36 - 3.4 Evaluation of skin whitening effect by the extracts of G. weberianum. - 36 - 3.4.1 In vitro tyrosinase activity assay - 37 - 3.4.2 Inhibition of melanin synthesis in mouse B16-F10 melanoma cells. - 37 - 3.4.3 Formation of melanogenic regulatory compounds in zebrafish in vivo. - 43 - 3.5 Statistics - 44 - 4.0 Results and Discussion - 45 - 4.1 Optimization of submerged culture length of of Ganoderma weberianum - 45 - 4.2 Further reduction of chemical complexities of the chloroform and ethyl acetate extracts of 7 days old G. weberianum mycelium culture - 48 - 4.3 The cytotoxicity of B16-F10 melanoma cells under the treatment of all fractions. - 50 - 4.4 Fractions from both the chloroform and ethyl acetate extracts can reduce the extracellular melanin content of B16-F10 mouse melanoma cell culture. - 53 - 4.5 Fractions effective in reducing extracellular melanin content show no cytotoxicity towards human keratinocyte cells. - 57 - 4.6 Investigation of the effect on the production of intracellular-melanin content with or without α-MSH pretreatment. - 58 - 4.7 The extracellular-melanin and intracellular-melanin content analysis at 48 hours post treatment of effective fractions. - 64 - 4.8 The investigation of anti-melanogenesis mechanism of the treatment of F3 from the G. weberianum. - 69 - 4.8.1 The in vivo tyrosinase activity - 69 - 4.8.2 The mRNA expression of the melanogenesis-related genes - 71 - 4.8.3 The protein expression of the tyrosinase - 73 - 4.9 The zebrafish test - 75 - 5.0 Conclusion - 77 - 6.0 Future Work - 80 - 7.0 List of Reference 83 | |
| dc.language.iso | en | |
| dc.subject | 黑色素 | zh_TW |
| dc.subject | B16-F10老鼠黑色素瘤細胞 | zh_TW |
| dc.subject | 酪胺酸脢 | zh_TW |
| dc.subject | 抑制黑色素生成 | zh_TW |
| dc.subject | 韋伯靈芝 | zh_TW |
| dc.subject | 萃取物 | zh_TW |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | extraction | en |
| dc.subject | melanin | en |
| dc.subject | tyrosinase | en |
| dc.subject | B16-F10 melanoma cell | en |
| dc.subject | zebrafish | en |
| dc.subject | anti-melanogenesis | en |
| dc.subject | Ganoderma multipileum | en |
| dc.title | 以液態發酵生產韋伯靈芝(Ganoderma weberianum)菌絲體及其萃取物對於黑色素生成之影響 | zh_TW |
| dc.title | Effects of Extracts from mycelium of Submerged Cultures of Ganoderma weberianum on Melanogenesis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉文雄(Wen-Hsiung Liu),孟孟孝(Meng-Hsiao Meng,),王正利(Jeng-Li Wang),楊昭順(Chao-Hsun Yang),李重義(Lee) | |
| dc.subject.keyword | 韋伯靈芝,抑制黑色素生成,B16-F10老鼠黑色素瘤細胞,酪胺酸脢,黑色素,萃取物,斑馬魚, | zh_TW |
| dc.subject.keyword | Ganoderma multipileum,anti-melanogenesis,B16-F10 melanoma cell,tyrosinase,melanin,extraction,zebrafish, | en |
| dc.relation.page | 93 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-08-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 6.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
