Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51858
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳學禮
dc.contributor.authorChih-Yu Luen
dc.contributor.author盧致宇zh_TW
dc.date.accessioned2021-06-15T13:53:45Z-
dc.date.available2019-02-02
dc.date.copyright2016-02-02
dc.date.issued2015
dc.date.submitted2015-09-18
dc.identifier.citation[1] S-kei, https://en.wikipedia.org/wiki/Light-emitting_diode.
[2] S. Pimputkar,J. S. Speck,S. P. DenBaarsandS. Nakamura, 'Prospects for LED lighting', Nat Photon, 2009, 3, 180-182.
[3] Michael J. Scholand, Heather E. Dillon, “Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products”, 2012.
[4] 李仰淳, '利用奈米壓印技術與表面顯微透鏡結構增進白光固態照明元件之研究', 國立台灣大學材料所碩士論文.
[5] A. l. David,T. Fujii,R. Sharma,K. McGroddy,S. Nakamura,S. P. DenBaars,E. L. Hu,C. WeisbuchandH. Benisty, 'Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution', Applied Physics Letters, 2006, 88, 061124.
[6] M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harberes, and M. G. Craford, IEEE, Jounal of Display Technology, Vol. 3, No2, 160-175 (2007).
[7] T. Fujii, Phys. Status Solidi C, 2005, 2, 2836-2840.
[8] M. R. Krames, J. Disp. Technol., 2007, 3, 160-175.
[9] K.-J. Byeon,E.-J. Hong,H. Park,K.-M. Yoon,H. D. Song,J. W. Lee,S.-K. Kim,H. K. Cho,H. K. KwonandH. Lee, 'Two inch large area patterning on a vertical light-emitting diode by nano-imprinting technology', Semiconductor Science and Technology, 2010, 25, 035008.
[10] E.-J. Hong,K.-J. Byeon,H. Park,J. Hwang,H. Lee,K. ChoiandH.-S. Kim, 'Effect of nano-patterning of p-GaN cladding layer on photon extraction efficiency', Solid-State Electronics, 2009, 53, 1099-1102.
[11] J. J. Wierer,A. DavidandM. M. Megens, 'III-nitride photonic-crystal light-emitting diodes with high extraction efficiency', Nature Photonics, 2009, 3, 163-169.
[12] D. Kim,H. Lee,N. Cho,Y. SungandG. Yeom, 'Effect of GaN Microlens Array on Efficiency of GaN-Based Blue-Light-Emitting Diodes', Japanese Journal of Applied Physics, 2005, 44, L18-L20.
[13] M. L.Wu, Y. C. Lee, S. P. Yang, P. S. Lee, and J. Y. Chang, Optics Express, Vol.17, No.8, 6148-6155 (2009).
[14] J. K. Kim,H. Luo,E. F. Schubert,J. Cho,C. SoneandY. Park, 'Strongly Enhanced Phosphor Efficiency in GaInN White Light-Emitting Diodes Using Remote Phosphor Configuration and Diffuse Reflector Cup', Japanese Journal of Applied Physics, 2005, 44, L649-L651.
[15] Z. Liu, S. Liu, K. Wang, and X. Luo, IEEE, Transactions on Device and Materials Reliability, Vol. 9, No. 1, 65-73 (2009)
[16] 李. Baicheng Li,张. Dawei Zhang,黄. Yuanshen Huang,倪. Zhengji Niand庄. Songlin Zhuang, 'A new structure of multi-layer phosphor package of white LED with high efficiency', Chinese Optics Letters, 2010, 8, 221-223.
[17] V. Giannini,A. I. Fernandez-Dominguez,S. C. HeckandS. A. Maier, 'Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters', Chemical reviews, 2011, 111, 3888-912.
[18] N. J. Halas,S. Lal,W. S. Chang,S. LinkandP. Nordlander, 'Plasmons in strongly coupled metallic nanostructures', Chemical reviews, 2011, 111, 3913-61.
[19] H. C. Van de Hulst, Light Scattering by Small Particles. Dover: New York, 1981: 1981.
[20] C. H. Bohren, D., Absorption and Scattering of Light by Small Particles. Wiley: New York: 1983.
[21] Zhao, Q.; Zhou, J.; Zhang, F.; Lippens, D. Mater. Today 2009, 12, 60−69.
[22] J. C. Ginn,I. Brener,D. W. Peters,J. R. Wendt,J. O. Stevens,P. F. Hines,L. I. Basilio,L. K. Warne,J. F. Ihlefeld,P. G. ClemandM. B. Sinclair, 'Realizing optical magnetism from dielectric metamaterials', Physical review letters, 2012, 108, 097402.
[23] A. Garcia-Etxarri,R. Gomez-Medina,L. S. Froufe-Perez,C. Lopez,L. Chantada,F. Scheffold,J. Aizpurua,M. Nieto-VesperinasandJ. J. Saenz, 'Strong magnetic response of submicron silicon particles in the infrared', Optics express, 2011, 19, 4815-26.
[24] A. B. Evlyukhin,C. Reinhardt,A. Seidel,B. S. Luk’yanchukandB. N. Chichkov, 'Optical response features of Si-nanoparticle arrays', Physical Review B, 2010, 82, 045404.
[25] A. B. Evlyukhin,S. M. Novikov,U. Zywietz,R. L. Eriksen,C. Reinhardt,S. I. BozhevolnyiandB. N. Chichkov, 'Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region', Nano letters, 2012, 12, 3749-55.
[26] S. Person,M. Jain,Z. Lapin,J. J. Sáenz,G. WicksandL. Novotny, 'Demonstration of Zero Optical Backscattering from Single Nanoparticles', Nano letters, 2013, 13, 1806-1809.
[27] Kerker, M.; Wang, D.; Giles, C. J. Opt. Soc. Am. 1983, 73, 765−767.
[28] D. A. Neamen, Semiconductor physics and devices. McGraw-Hill Higher Education: 2003.
[29] S. M. SzeandK. K. Ng, Physics of semiconductor devices. John Wiley & Sons: 2006.
[30] W. C. DashandR. Newman, 'Intrinsic Optical Absorption in Single-Crystal Germanium and Silicon at 77°K and 300°K', Physical Review, 1955, 99, 1151-1155.
[31] K. Solt,H. Melchior,U. Kroth,P. Kuschnerus,V. Persch,H. Rabus,M. RichterandG. Ulm, 'PtSi–n–Si Schottky‐barrier photodetectors with stable spectral responsivity in the 120–250 nm spectral range', Applied Physics Letters, 1996, 69, 3662-3664.
[32] X. An,F. Liu,Y. J. JungandS. Kar, 'Tunable graphene-silicon heterojunctions for ultrasensitive photodetection', Nano letters, 2013, 13, 909-16.
[33] Spicer, W. E., 'Photoemissive, photoconductive, and optical absorption studies of alkali–antimony compounds', Phys. Rev. 112, pp. 114-122, 1958.
[34] Spicer, W. E., 'Negative affinity 3–5 photocathodes: Their physics and technology', Appl. Phys. 12, pp. 115-130, 1977.
[35] Kane, E., 'Simple model for collision effects in photoemission', Phys. Rev. 147, pp. 335-339, 1966.
[36] Dalal, V. L., 'Simple model for internal photoemission', J. Appl. Phys. 42, pp. 2274-2279, 1971.
[37] Ye, J. et al., 'Accessing the transport properties of graphene and its multilayers at high carrier density', Proc. Natl Acad. Sci. USA 108, pp. 13002-13006, 2011.
[38] Goykhman, I., Desiatov, B., Khurgin, J., Shappir, J. & Levy, U., 'Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band', Opt. Express 20, pp. 28594-28602, 2012.
[39] Giugni, A. et al., 'Hot-electron nanoscopy using adiabatic compression of surface plasmons', Nature Nanotech. 8, pp. 845-852, 2013.
[40] Scales, C., Breukelaar, I., Charbonneau, R. & Berini, P., 'Infrared performance of symmetric surface-plasmon waveguide Schottky detectors in Si', J. Light. Technol. 29, 1852-1860, 2011.
[41] Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J., 'Photodetection with active optical antennas', Science 332, pp. 702-704, 2011.
[42] Knight, M., Wang, Y. & Urban, A., 'Embedding plasmonic nanostructure diodes enhances hot electron emission', Nano Lett. 13, pp. 1687-1692, 2013.
[43] Lee, Y., Jung, C., Park, J. & Seo, H., 'Surface plasmon-driven hot electron flow probed with metal–semiconductor nanodiodes', Nano Lett. 11, pp. 4251-4255, 2011.
[44] D.-S. Tsai,C.-A. Lin,W.-C. Lien,H.-C. Chang,Y.-L. WangandJ.-H. He, 'Ultra-High-Responsivity Broadband Detection of Si Metal–Semiconductor–Metal Schottky Photodetectors Improved by ZnO Nanorod Arrays', ACS Nano, 2011, 5, 7748-7753.
[45] K. K. Manga,J. Wang,M. Lin,J. Zhang,M. Nesladek,V. Nalla,W. JiandK. P. Loh, 'High-performance broadband photodetector using solution-processible PbSe-TiO(2)-graphene hybrids', Advanced materials, 2012, 24, 1697-702.
[46] Li NaNG, B Eng, Manipulation of Particles On Optical Waveguides, Optoelectronic Reseach Center University of Southampton: 2000.
[47] S.-C. Tseng,H.-L. Chen,C.-C. Yu,Y.-S. LaiandH.-W. Liu, 'Using intruded gold nanoclusters as highly active catalysts to fabricate silicon nanostalactite structures exhibiting excellent light trapping and field emission properties', Energy & Environmental Science, 2011, 4, 5020.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51858-
dc.description.abstract奈米結構被廣泛應用於許多領域中,本論文中將以奈米結構製作光電元件並增益其效率,其中包括發光二極體(LED)的發光展現與寬波段光偵測元件效率之研究。
在本論文的第一部份,為了增加二極體之發光效率,我們模擬奈米粒子對發光二極體之出光效率增益效果,並實際製作發光二極體之改良封裝層確認奈米粒子對發光二極體出光之增益能力。利用奈米粒子破壞螢光封裝層與空氣界面的全反射現象,減少全反射的發生。並配合介電質奈米粒子所具有的磁偶極共振而增益散射現象,增加發光二極體之光萃取效率。除了增加出光效率的優點外,此奈米粒子塗佈之封裝層還可增加白光發光二極體之演色性,並具有減低藍光出光比率的效果。
而在論文的第二部份, 我們利用奈米結構增益寬波段光偵測元件效率。在矽基板製作微小的奈米鐘乳石結構,並在其上鍍上金的薄膜,用以製作寬波段的光偵測器。此奈米結構具有寬波段抗反射特性,配合金薄膜與矽基板間有良好整流特性的蕭特基接面及紅外光波段的熱載子激發效應,使其具有從紫外光至紅外光的寬波段偵測能力。此奈米結構具有製程簡單、便宜,不需複雜的半導體製程之優點。此外,此元件可以在零外加偏壓的情況下進行操作以及偵測弱光的能力。
zh_TW
dc.description.abstractNanostructures have been widely applied in different fields in recent years. In this thesis, we used nanostructures to construct optoelectronic devices and enhance their efficiency. The main topics of the thesis include designing nanostructures for enhancing the performance of light-emitting diodes (LEDs) and broadband working photodetectors.
In the first part of the thesis, we designed a modified phosphor layer of white LED by the scattering effect and magnetic dipole resonance of nanoparticles. Then we fabricated the LED phosphor layer with nanoparticles modification proving the ability to improve light-extraction. The total internal reflection between the interface of phosphor encapsulation and air could be destructed by using nanoparticles, and the output light could be largely scattered by the magnetic dipole resonance effect on nanoparticles, thus enhancing the light extraction of white LED. Furthermore, the nanoparticles based structures could also enhance the color rendering and reduce the blue light emission.
In the second part of the thesis, we used nanostructures to prepare broadband working photodetectors. We fabricated nano-stalactites structures on silicon (Si) wafer, followed by coating Au film on it that could easily prepare the broadband working photodetectors. This nanostructures possess well anti-reflective property from ultraviolet to near infrared ray regime. Combining the anti-reflective property with the Schottky junction of Au/Si, the generated hot carriers could provide the device with broadband detection ability. This nanostructure based devices had the advantages of simple fabrication processes and low cost. Besides, this device can operate at zero bias voltage condition and had the ability of low-light detection.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:53:45Z (GMT). No. of bitstreams: 1
ntu-104-R98527064-1.pdf: 3393265 bytes, checksum: 5b2d33f9da6711062c424840487b8402 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents中文摘要 III
Abstract VI
目 錄 VIII
圖目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 論文架構 2
第二章 文獻回顧 3
2.1 發光二極體(Light emitting diode; LED)元件簡介 3
2.2 白光發光二極體效率之探討 7
2.2.1 藍光發光二極體之元件效率 7
2.2.2 螢光轉換型發光二極體之元件效率 11
2.2.3 磁耦極共振 16
2.3 光偵測器之原理 18
2.3.1 蕭特基光二極體之原理 22
2.3.2 熱載子作用於光伏元件之原理 24
2.3.3 評斷光偵測器特性之參數 26
2.3.4 寬波段光偵測器 28
第三章 利用奈米粒子增益二極體發光展現之研究 31
3.1 研究動機和目的 31
3.2 研究方法 33
3.2.1 利用米氏散射之模擬 34
3.2.2 有限時域差分法之模型設定 36
3.3 模擬結果與討論 37
3.3.1 米式散射模擬結果 37
3.3.2 以FDTD模擬奈米粒子散射增益 44
3.4 實驗方法 51
3.4.1 實驗材料與設備 51
3.4.2 實驗步驟 52
3.5 實驗結果與討論 54
3.5.1 奈米粒子於玻璃基板上的量測結果 54
3.5.2 奈米粒子表面形貌分析 58
3.5.3 奈米粒子對白光發光二極體的光萃取增益 61
3.6 結論 64
第四章 利用奈米結構增益寬波段光偵測元件效率之研究 65
4.1 研究動機與目的 65
4.2 實驗方法 67
4.2.1 實驗材料與設備 67
4.2.2 實驗步驟 68
4.3 實驗結果與討論 71
4.3.1 元件製作結果分析 71
4.3.2 元件之光電效率探討 73
4.3.3 不同入射光波段對於元件光電效應之影響 74
4.3.4 不同入射光強度對於元件光電效應之影響 77
4.3.5元件受熱電效應之影響 81
4.4 結論 85
第五章 結論 86
5.1 研究總結 86
5.2 未來展望 88
dc.language.isozh-TW
dc.subject磁藕極共振zh_TW
dc.subject奈米結構zh_TW
dc.subject發光二極體zh_TW
dc.subject光偵測器zh_TW
dc.subject光萃取效率zh_TW
dc.subject奈米粒子zh_TW
dc.subject蕭特基接面zh_TW
dc.subject演色性zh_TW
dc.subject抗藍光zh_TW
dc.subject抗反射zh_TW
dc.subject奈米鐘乳石結構zh_TW
dc.subjectSchottky junctionen
dc.subjectnanoparticleen
dc.subjectcolor rendering indexen
dc.subjectmagnetic dipole resonanceen
dc.subjectnano-stalactites structureen
dc.subjectbroadband detectionen
dc.subjectanti-reflectionen
dc.subjectanti-blue lighten
dc.subjectnanostructureen
dc.subjectlight-emitting diode (LED)en
dc.subjectphotodetectoren
dc.subjectlight extraction efficiencyen
dc.title以奈米結構增益二極體發光展現與寬波段光偵測元件效率之研究zh_TW
dc.titleThe study of using nanostructure to improve the performance of light-emitting-diode and the efficiency of broadband photodetectoren
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王子建,林俊宏,劉宇倫,游振傑
dc.subject.keyword奈米結構,發光二極體,光偵測器,光萃取效率,奈米粒子,蕭特基接面,演色性,抗藍光,抗反射,奈米鐘乳石結構,磁藕極共振,zh_TW
dc.subject.keywordnanostructure,light-emitting diode (LED),photodetector,light extraction efficiency,nanoparticle,Schottky junction,color rendering index,anti-blue light,anti-reflection,broadband detection,nano-stalactites structure,magnetic dipole resonance,en
dc.relation.page94
dc.rights.note有償授權
dc.date.accepted2015-09-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
3.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved