Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51762
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何傳愷(Chuan-Kai Ho)
dc.contributor.authorYing-Jie Wangen
dc.contributor.author王穎婕zh_TW
dc.date.accessioned2021-06-15T13:48:27Z-
dc.date.available2021-02-15
dc.date.copyright2016-02-15
dc.date.issued2015
dc.date.submitted2015-11-09
dc.identifier.citation·Adler, L. S., De Valpine, P., Harte, J., and Call, J. 2007. Effects of long-term experimental warming on aphid density in the field. Journal of the Kansas Entomological Society 80(2): 156-168.
·Ali, A., and Rizvi, P. Q. 2008. Effect of varying temperature on the survival and fecundity of Coccinella septempunctata (Coleoptera: Coccinellidae) fed on Lipaphis erysimi. Journal of Entomology 5: 133-137.
·Anwar, M. R., O’Leary, G., McNeil, D., Hossain, H., and Nelson, R. 2007. Climate change impact on rainfed wheat in south-eastern Australia. Field Crops Research 104(1): 139-147.
·Asseng, S., Ewert, F., Martre, P., Rotter, R. P., Lobell, D. B., Cammarano, D., Kimball, B.A., Ottman, M. J., Wall G. W., White, J. W., Reynolds, M. P., Alderman, P. D., Prasad, P. V. V., Aggarwal, P. K., Anothai, J., Basso, B., Biernath, C., Challinor, A. j., De Sanctis, G., Doltra, J., Fereres, E., Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L. A., Izaurralde, R. C., Jabloun, M., Jones, C. D., Kersebaum, K. C., Koehler, A-K., Muller, C., Naresh Kumar, S., Nendel, C., O’Leary, G., Olesen, J. E., Palosuo, T., Priesack, E., Eyshi Rezaei, E., Ruane, A. C., Semenov, M. A., Shcherbak, I., Stockle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Thorburn, P. J., Waha, K., Wang, E., Wallach, D., Wolf, J., Zhao, Z., and Wallach, D. 2015. Rising temperatures reduce global wheat production. Nature Climate Change 5(2): 143-147.
·Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M., Brown, V. K., Butterfield, J., Buse, A., Coulson, J. C., Farrar, J., Good, J. E. G., Harrington, R., Hartley, S., Jones, T. H., Lindroth, R. L., Press, M. C., Symrnioudis, I., Watt, A. D., and Whittaker, J. B. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 8(1): 1-16.
·Barton, B. T., Beckerman, A. P., and Schmitz, O. J. 2009. Climate warming strengthens indirect interactions in an old-field food web. Ecology 90(9): 2346-2351.
·Barton, B. T., and Ives, A. R. 2014. Species interactions and a chain of indirect effects driven by reduced precipitation. Ecology 95(2): 486-494.
·Barton, B. T. 2014. Reduced wind strengthens top-down control of an insect herbivore. Ecology 95(9): 2375-2381.
·Bebber, D. P., Ramotowski, M. A., and Gurr, S. J. 2013. Crop pests and pathogens move polewards in a warming world. Nature climate change 3(11): 985-988.
·Bell, J. R., Alderson, L., Izera, D., Kruger, T., Parker, S., Pickup, J., Shortall, C. R., Taylor, M. S., Verrier, P., and Harrington, R. 2015. Long‐term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids. Journal of Animal Ecology 84(1): 21-34.
·Boggs, C. L., and Inouye, D. W. 2012. A single climate driver has direct and indirect effects on insect population dynamics. Ecology Letters 15(5): 502-508.
·Braendle, C., Davis, G. K., Brisson, J. A., and Stern, D. L. 2006. Wing dimorphism in aphids. Heredity 97(3): 192-199.
·Chakraborty, S., and Newton, A. C. 2011. Climate change, plant diseases and food security: an overview. Plant Pathology 60(1): 2-14.
·Chiu, M. C., Chen, Y. H., and Kuo, M. H. 2012. The effect of experimental warming on a low latitude aphid, Myzus varians. Entomologia Experimentalis et Applicata 142(3): 216-222.
·Costamagna, A. C., and Landis, D. A. 2006. Predators exert top-down control of soybean aphid across a gradient of agricultural management systems. Ecological Applications 16(4): 1619-1628.
·Costamagna, A. C., Landis, D. A., and Brewer, M. J. 2008. The role of natural enemy guilds in Aphis glycines suppression. Biological Control 45(3): 368-379.
·Costamagna, A. C., McCornack, B. P., and Ragsdale, D. W. 2013. Alate immigration disrupts soybean aphid suppression by predators. Journal of Applied Entomology 137(4): 317-320.
·da Silva Peixoto, M., de Barros, L. C., and Bassanezi, R. C. 2008. Predator–prey fuzzy model. Ecological Modelling 214(1): 39-44.
·Dixon, A. F. G. 1977. Aphid ecology: life cycles, polymorphism, and population regulation. Annual Review of Ecology and Systematics 8: 329-353.
·Dixon, A. F. G., Hemptinne, J. L., and Kindlmann, P. 1997. Effectiveness of ladybirds as biological control agents: patterns and processes. Entomophaga 42(1-2): 71-83.
·Desneux, N., O'neil, R. J., and Yoo, H. J. S. 2006. Suppression of population growth of the soybean aphid, Aphis glycines Matsumura, by predators: the identification of a key predator and the effects of prey dispersion, predator abundance, and temperature. Environmental Entomology 35(5): 1342-1349.
·The Food and Agriculture Organization of the United Nations (FAO). 2015. Crop water information: soybean. FAO water development and management unit. http://www.fao.org/nr/water/cropinfo_soybean.html.
·Girousse, C., Moulia, B., Silk, W., and Bonnemain, J. L. 2005. Aphid infestation causes different changes in carbon and nitrogen allocation in alfalfa stems as well as different inhibitions of longitudinal and radial expansion. Plant Physiology 137(4): 1474-1484.
·Gregory, P. J., Johnson, S. N., Newton, A. C., and Ingram, J. S. 2009. Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany 60(10): 2827-2838.
·Hartman, G. L., West, E. D., and Herman, T. K. 2011. Crops that feed the world 2. Soybean – worldwide production , use, and constraints caused by pathogens and pests. Food Security 3: 5-17.
·Hazell, S. P., Gwynn, D. M., Ceccarelli, S., and Fellowes, M. D. E. 2005. Competition and dispersal in the pea aphid: clonal variation and correlations across traits. Ecological Entomology 30(3): 293-298.
·Hodek, I., and Michaud, J. P. 2008. Why is Coccinella septempunctata so successful? (A point-of-view). European Journal of Entomology 105(1): 1-12.
·Hodgson, C. 1991. Dispersal of apterous aphids (Homoptera: Aphididae) from their host plant and its significance. Bulletin of Entomological Research 81(04): 417-427.
·Katsoyannos, P., Stathas, G. J., and Kontodimas, D. C. 1997. Phenology of Coccinella septempunctata (Col.: Coccinellidae) in central Greece. Entomophaga 42 (3): 435-444.
·Kaohsiung District Agricultural Improvement Station (KDAIS). 2014. 青年農民台北開國產大豆直營店 要讓國人吃出鮮美與健康. KDAIS News no.103057.
·Karley, A. J., Parker, W. E., Pitchford, J. W., and Douglas, A. E. 2004. The mid‐season crash in aphid populations: why and how does it occur?. Ecological Entomology 29(4): 383-388.
·Katsarou, I., Margaritopoulos, J. T., Tsitsipis, J. A., Perdikis, D. C., and Zarpas, K. D. 2005. Effect of temperature on development, growth and feeding of Coccinella septempunctata and Hippodamia convergens reared on the tobacco aphid, Myzus persicae nicotianae. BioControl, 50(4), 565-588.
·Kim K. S., Hill, C. B., Hartman, G. L., Mian, R. M., and Diers, B. W. 2008. Discovery of soybean aphid biotypes. Crop Science 48 (3): 923-928, 0011-183X.
·Kindlmann, P., Yasuda, H., Kajita, Y., Sato, S., and Dixon, A. F. 2015. Predator efficiency reconsidered for a ladybird-aphid system. Frontiers in Ecology and Evolution 3: 27.
·Kollipara, K. P., Singh, R. J., and Hymowitz, T. 1997. Phylogenetic and genomic relationships in the genus Glycine Willd. based on sequences from the ITS region of nuclear rDNA. Genome 40: 57–68.
·Krafsur, E. S., Obrycki, J. J., and Harwood, J. D. 2005. Comparative genetic studies of native and introduced Coccinellidae in North America. European Journal of Entomology 102(3): 469.
·Kumagai, E., and Sameshima, R. 2014. Genotypic differences in soybean yield responses to increasing temperature in a cool climate are related to maturity group. Agricultural and forest meteorology 198: 265-272.
·Kumar, B. 2015. Temperature and photoperiod influence prey consumption and utilization by two sympatric Coccinella species (Coleoptera: Coccinellidae) in conspecific and heterospecific combinations. Acta Entomologica Sinica 58(3): 297-307.
·Kunert, G., Otto, S., Rose, U. S., Gershenzon, J., and Weisser, W. W. 2005. Alarm pheromone mediates production of winged dispersal morphs in aphids. Ecology Letters 8(6): 596-603.
·Lin, S. H., and Ho, C. K. Experimental warming effects on crop production, pest population, and biocontrol effectiveness: an example from a soybean-aphid-ladybug system. Manuscript (unpublished).
·Liu, J., Wu, K., Hopper, K. R., and Zhao, K. 2004. Population dynamics of Aphis glycines (Homoptera: Aphididae) and its natural enemies in soybean in northern China. Annals of the Entomological Society of America 97(2): 235-239.
·Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., and Naylor, R. L. 2008. Prioritizing climate change adaptation needs for food security in 2030. Science 319(5863): 607-610.
·Lobell, D. B., and Gourdji, S. M. 2012. The influence of climate change on global crop productivity. Plant Physiology 160(4): 1686-1697.
·Logan, J. A., Regniere, J., and Powell, J. A. 2003. Assessing the impacts of global warming on forest pest dynamics. Frontiers in Ecology and the Environment 1(3): 130-137.
·Lu, L. H., and Chen, R. L. 1993. Study on the production of alatae in soybean aphid, Aphis glycines. Acta Entomologica Sinica (China).
·Masuda, T., and Goldsmith, P. D. 2009. World soybean production: area harvested, yield, and long-term projections. International Food and Agribusiness Management Review 12(4): 143-162.
·Maxmen, A. 2013. Crop pests: under attack. Nature 501(7468): S15-S17.
·McCornack, B. P., Ragsdale, D. W., and Venette, R. C. 2004. Demography of soybean aphid (Homoptera: Aphididae) at summer temperatures. Journal of Economic Entomology 97(3): 854-861.
·Muller, C. B., Williams, I. S., and Hardie, J. 2001. The role of nutrition, crowding and interspecific interactions in the development of winged aphids. Ecological Entomology 26(3): 330-340.
·Nabity, P. D., Zavala, J. A., and DeLucia, E. H. 2009. Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Annals of Botany 103(4): 655-663.
·Obrycki, J. J., and Tauber, M. J. 1981. Phenology of three coccinellid species: thermal requirements for development. Annals of the Entomological Society of America 74(1): 31-36.
·Oerke, E. C. 2006. Crop losses to pests. The Journal of Agricultural Science 144(01): 31-43.
·Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., Centeno, G.S., Khush, G. S., and Cassman, K. G. 2004. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America 101(27): 9971-9975.
·Post, E., and Seebacher, F. 2014. Addressing new challenges in climate change research by highlighting biological complexity. Climate Change Responses 1(1): 5.
·Potts, J., Lynch, M., Wilkings, A., Huppe, G., Cunningham, M., and Voora, V. 2014. The state of sustainability initiatives review 2014. International Institute for Sustainable Development, Winnipeg, and International Institute for Environment and Development, London.
·Powell, J. A., and Bentz, B. J. 2009. Connecting phenological predictions with population growth rates for mountain pine beetle, an outbreak insect. Landscape Ecology 24(5): 657-672.
·Preisser, E. L., and Bastow, J. L. 2005. Plant damage from and defenses against ‘cryptic’herbivory: A guild perspective. Journal of Plant Interactions 1(4): 197-210.
·Ragsdale, D. W., Voegtlin, D. J., and O’neil, R. J. 2004. Soybean aphid biology in North America. Annals of the Entomological Society of America 97(2): 204-208.
·Ragsdale, D. W., Landis, D. A., Brodeur, J., Heimpel, G. E., and Desneux, N. 2011. Ecology and management of the soybean aphid in North America. Annual Review of Entomology 56: 375-399.
·Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C., and Foley, J. A. 2012. Recent patterns of crop yield growth and stagnation. Nature communications 3: 1293.
·Robinet, C., and Roques, A. 2010. Direct impacts of recent climate warming on insect populations. Integrative Zoology 5(2): 132-142.
·Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Muller, C., Arneth, A, Boote, K. J., Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T. A. M., Schmid, E., Stehfest, E., Yang, H., and Jones, J. W. 2014. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences 111(9): 3268-3273.
·Shurtleff, W., and Aoyagi, A. 2005. History of soybeans and soyfoods: 1100 BC to the 1980s. Archived from the original on: 10-18.
·Song, F., Swinton, S. M., DiFonzo, C., O’Neal, M., and Ragsdale, D. W. 2006. Profitability analysis of soybean aphid control treatments in three north-central states. Michigan State University Department of Agricultural Economics. Staff Paper : 24.
·Stephens, A. E. A., and Westoby, M. 2015. Effects of insect attack to stems on plant survival, growth, reproduction and photosynthesis. Oikos 124: 266-273.
·Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., and Boschung, J. 2013. IPCC, 2013: summary for policymakers in climate change 2013: the physical science basis, contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
·Tacarindua, C. R., Shiraiwa, T., Homma, K., Kumagai, E., and Sameshima, R. 2013. The effects of increased temperature on crop growth and yield of soybean grown in a temperature gradient chamber. Field Crops Research 154: 74-81.
·Tao, F., Hayashi, Y., Zhang, Z., Sakamoto, T., and Yokozawa, M. 2008. Global warming, rice production, and water use in China: developing a probabilistic assessment. Agricultural and Forest Meteorology 148(1): 94-110.
·Teixeira, E. I., Fischer, G., van Velthuizen, H., Walter, C., and Ewert, F. 2013. Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology 170: 206-215.
·Van der Werf, W., E. W. Evans, and J. Powell. 2000. Measuring and modeling the dispersal of Coccinella septempunctata (Coleoptera: Coccinellidae) in alfalfa Telds. European Journal of Entomology 97: 487-493.
·Whittaker, J. B., and Tribe, N. P. 1998. Predicting numbers of an insect (Neophilaenus lineatus: Homoptera) in a changing climate. Journal of Animal Ecology: 987-991.
·Wootton, J. T. 1994. The nature and consequences of indirect effects in ecological communities. Annual Review of Ecology, Evolution, and Systematics 25: 443-466.
·Wu, Z., Schenk-Hamlin, D., Zhan, W., Ragsdale, D. W., and Heimpel, G. E. 2004. The soybean aphid in China: a historical review. Annals of the Entomological Society of America 97(2): 209-218.
·Xia, J. Y., Van der Werf, W., and Rabbinge, R. 1999. Temperature and prey density on bionomics of Coccinella septempunctata (Coleoptera: Coccinellidae) feeding on Aphis gossypii (Homoptera: Aphididae) on cotton. Environmental Entomology 28(2): 307-314.
·Xue, Y., Bahlai, C. A., Frewin, A., Sears, M. K., Schaafsma, A. W., and Hallett, R. H. 2009. Predation by Coccinella septempunctata and Harmonia axyridis (Coleoptera: Coccinellidae) on Aphis glycines (Homoptera: Aphididae). Environmental Entomology 38(3): 708-714.
·Yang, X., Chen, F., Lin, X., Liu, Z., Zhang, H., Zhao, J., Li, K., Ye, Q., Li, Y., Lv, S., Yang, P., Wu, W., Li, Z., Lai, R., and Tang, H. 2015. Potential benefits of climate change for crop productivity in China. Agricultural and Forest Meteorology 208: 76-84.
·Zhang, Y., Wang, L., Wu, K., Wyckhuys, K. A., and Heimpel, G. E. 2008. Flight performance of the soybean aphid, Aphis glycines (Hemiptera: Aphididae) under different temperature and humidity regimens. Environmental Entomology 37(2): 301-306.
·Zvereva, E. L., and Kozlov, M. V. 2006. Consequences of simultaneous elevation of carbon dioxide and temperature for plant–herbivore interactions: a metaanalysis. Global Change Biology 12(1): 27-41.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51762-
dc.description.abstract了解暖化對農業系統的影響,是與糧食安全相關的重要議題。暖化對農作物害蟲的影響,會改變作物在暖化下的表現,然而我們仍不清楚1) 暖化會如何改變害蟲族群的大小及組成,進而影響其拓殖?2) 暖化會如何影響三營養階的農業系統 (作物-害蟲-天敵)?本研究利用大豆、大豆蚜、七星瓢蟲探討此議題,因為三者分別為重要的作物、害蟲與生物防治物種。本研究首先進行暖化實驗,檢測暖化對蚜蟲族群數量與組成(有翅型比率)的影響。我們自三個樣區採集大豆蚜,累代飼育,之後隨機挑選無翅型成蚜感染大豆植株,並根據本世紀末2-4oC的暖化預測 (IPCC 2013),進行控制組(24.5°C)、增溫2°C與增溫4oC的暖化處理。其次的拓殖實驗則利用暖化實驗的結果,檢測暖化下不同的族群組成(結構)將如何影響蚜蟲族群的拓殖與天敵(七星瓢蟲)的生物防治效果。最後則利用數學模擬,檢測根據拓殖實驗結果所提出的假說機制。暖化實驗顯示,最適溫度區間4oC的暖化會改變大豆蚜的族群組成(減少有翅型大豆蚜),但不影響大豆蚜族群的總數量(有翅型+無翅型)。拓殖實驗發現,天敵的出現無法控制模擬暖化前(高有翅蚜比率)的蚜蟲族群拓殖,但對模擬暖化後(低有翅蚜比率)的蚜蟲族群拓殖有顯著的抑制效果。數學模擬可產生與拓殖實驗類似的交互作用(有翅蚜比率x 天敵處理)。以上的研究結果顯示,未來發生在亞熱帶地區、最適溫度區間的暖化,可能不影響大豆蚜初期的族群總數量,但卻可能改變其族群組成結構(降低有翅型比率),進而促進天敵控制的成效(減緩蚜蟲族群爆發)。zh_TW
dc.description.abstractUnderstanding warming impact on agricultural system is important because it is related to food security. While it has been known that the response of crop pests to warming (e.g. higher population under warming) is a critical mechanism for the change in crop production under warming (e.g. reduced crop yield), some knowledge gaps remain. For example, it is unclear if warming will affect not only the population size but also the population composition of pests (e.g. alate vs. apterous), consequently changing pest colonization. In addition, warming impact on a tri-trophic system (crop, pest, predator) is less explored. To help fill up the knowledge gaps, this study examined soybeans, soybean aphids, and ladybugs because they represent an important crop, pest, and biocontrol agent, respectively. I first investigated how an experimental warming of 2-4 oC (predicted future warming) would affect aphid population growth and alate proportion in a laboratory. The results showed that warming suppressed alate production (from about 5 to 1 %) without affecting the total aphid population (alate and apterous). Based on the warming experiment results, I then manipulated the initial alate proportion accordingly (warming vs. ambient) in a field colonizatoin experiment, and observed how fast aphids would colonize soybeans in open-top chambers under the presence and absence of a ladybird beetle (major predator and biocontrol agent of aphids). I found interactive effects of alate proportion and predation. Specifically, when the initial proportion of alate aphids was high (5 %; ambient-temperature scenario), aphid outbreaks happened earlier in the presence of a predator. In contrast, when the initial proportion of alate aphids was low (1%; warming scenario), aphid outbreaks happened later in the presence of a predator. Modelings could replicate similar results, suggesting that warming impact on pest population composition (alate proportion) can interact with predator treatment (biocontrol). These results suggest that warming around optimal temperature of soybean aphids may not increase their initial population size but limit their colonization potential by changing population composition (alate proportion), consequently making aphids more susceptible to predation. In other words, biocontrol using predators could become more promising in limiting pest outbreaks and protecting crop yield under future climate change.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:48:27Z (GMT). No. of bitstreams: 1
ntu-104-R01b44007-1.pdf: 4575939 bytes, checksum: 924a221140d9b37beaa3ba7bcc3e891c (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsAcknowledgments i
摘要 ii
Abstract iii
Content v
Content of Tables vii
Content of Figures viii
Introduction 1
Materials and Methods 5
Species 5
Stock establishment 6
Warming experiment 7
Colonization experiment 7
Data analysis 8
Modeling for estimating the ecological process of aphid population dynamics in the colonization experiment 9
Results 12
Warming experiment: warming effect on alate production and population size 12
Colonization experiment: alate and ladybug effects on aphid population growth 12
Colonization experiment: alate and ladybug effects on serious aphid outbreaks 13
Colonization experiment: alate and ladybug effects on plants 14
Hypothetical modeling: alate and ladybug effects on aphid population growth 14
Discussion 15
The relative strength of direct and indirect warming effects 15
The interaction between alate proportion and ladybug treatments (including
modeling results) 16
Serious aphid outbreaks decreased under low alate proportion treatment 18
Seed weight decreased under low alate proportion treatment 19
References 21
Appendix 1 Longevity of alates and apterae 62
Appendix 2 Fecundity of alates and apterae 63
Appendix 3 Model description 64
Appendix 4 Modeling results 66
dc.language.isoen
dc.subject最適溫度zh_TW
dc.subject害蟲生物防治zh_TW
dc.subject種間交互作用zh_TW
dc.subject三營養階層食物鏈zh_TW
dc.subject暖化族群組成zh_TW
dc.subjecttri-trophic food chainen
dc.subjectpest biocontrolen
dc.subjectinterspecific interactionen
dc.subjectpopulation compositionen
dc.subjectwarmingen
dc.title暖化對農作物害蟲族群成長、組成及拓殖的影響 — 以大豆蚜為例zh_TW
dc.titleExperimental warming effects on the population growth and composition of a crop pest (soybean aphid) and the consequences for pest colonization under biocontrolen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee仲澤剛史(Takefumi Nakazawa),黃紹毅(Shao-Yi Huang),三木健(Takeshi Miki),王慧瑜(Hui-Yu Wang)
dc.subject.keyword最適溫度,暖化族群組成,三營養階層食物鏈,種間交互作用,害蟲生物防治,zh_TW
dc.subject.keywordwarming,population composition,tri-trophic food chain,interspecific interaction,pest biocontrol,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2015-11-09
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
4.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved