Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51757
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭光成
dc.contributor.authorWei-Hao Wuen
dc.contributor.author吳偉豪zh_TW
dc.date.accessioned2021-06-15T13:48:10Z-
dc.date.available2020-12-01
dc.date.copyright2015-12-01
dc.date.issued2015
dc.date.submitted2015-11-10
dc.identifier.citationAbouzied, M. M. and Reddy, C. A. Direct Fermentation of Potato Starch to Ethanol by Cocultures of Aspergillus-Niger and Saccharomyces-Cerevisiae. Appl Environ Microb. 1986, 52, 1055-1059
Agbogbo, F. K., Coward-Kelly, G., Torry-Smith, M. and Wenger, K. S. Fermentation of glucose/xylose mixtures using Pichia stipites. Process Biochem. 2006, 41, 2333-2336
Aldén, A. 2008. Optimization of the liquefaction process in bioethanol production and development of method for quantification of nonsolubilized starch in mash. Master’s thesis of Department of Physics, Chemistry and Biology,Linköping University, Sweden
Angenent, L. T., Karim, K., Al-Dahhan, M. H., Wrenn, B. A. and Domíguez-Espinosa, R. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 2004, 22, 477-485.
Arapoglou, D., Varzakas, T., Vlyssides, A. and Israilides, C. Ethanol production from potato peel waste (PPW). Waste Manage. 2010, 30, 1898-1902
Babayemi, O. J. Nutrient value and in vitro gas production of African wild cocoyam (Colocasia esculentrum). African J of Food Agric Nutri Develop 2009, 9, 593-607
Balat, M., Balat, H. and öz, C. Progress in bioethanol processing. Prog Energy Combust Sci 2008, 34, 551-573
Ballesteros, M., Oliva, J. M., Negro, M. J. Manzanares, P., and Ballesteros, I. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem. 2004, 39, 1843-1848
Banat, I. M., Nigam, P. and Marchant, R. Isolation of thermotolerant, fermentative yeasts growing at 52oC and producing ethanol at 45oCand 50oC. World J. Microbiol Biotechnol. 1992, 8, 259-263
Barber, A. R., Henningsson, M. and Pamment, N. B. Acceleration of high gravity yeast fermentations by acetaldehyde addition. Biotechnol. Lett 2002, 24, 891-895
Bauen, A., Berndes, G., Junginger, M., Londo, M. and Vuille, F. Bioenergy- a sustainable and reliable energy source a review of status and prospects. IEA bioenergy 2009, 06.
Birch, R. M. and Walker, G. M. Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzyme and Microbial Technology. 2000, 26, 678-687.
Buléon, A., Colonna, P., Planchot, V. and Ball, S. Starch granules: structure and biosynthesis. Int. J. Biol. Macromol. 1998, 23(2), 85-112.
Cardona, C. A. and Sanchez, O. J. Fuel ethanol production: Process design trends and integration opportunities. Bioresour. Technol. 2007, 98, 2415-2457
Çaylak, B. and Vardar Sukan, F. Comparison of different production processes for bioethanol. Turk. J. Chem. 1998, 22, 351-360.
Cherubini, F., Bird, N. D., Cowie, A., Jungmeier, G., Schlamadinger, B. and Woess-Gallasch, S. Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: Key issues, ranges and recommendations. Resour. Conserv. Recy. 2009, 53, 434-447
Ciesarova, Z., Smogrovicova, D. and Domeny, Z. Enhancement of yeast ethanol tolerance by calcium and magnesium. Folia Microbiol. 1996, 41, 485-488
Claassen, P. A. M., Van Lier, J. B., Contreras, A. L., Van Niel, E. W. J., Sijtsma, L., Stams, A. J. M. and Weusthuis, R. A. Utilisation of biomass for the supply of energy carriers. Applied microbiology and biotechnology. 1999, 52, 741-755.
Debet, M. and Gidley M. Why do gelatinized starch granules not dissolve completely. J. Agric. Food. Chem. 2007, 55, 4752-4760
Dombek, K. M. and Ingram, L. O. Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation. Appl. Environ. Microbiol. 1986, 52, 975-981
Fechner, P., Wartewig, S., Kleinebudde, P. and Neubert, R. Studies of the retrogradation process for various starch gels using raman spectroscopy. Carbohydr. Res. 2005, 340, 2563-2568
Fonseca, G. G., Heinzle, E., Wittmann, C. and Gombert, A. K. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl. Microbiol. Biotechnol. 2008, 79, 339-354
Gerald, B. B. Starch Hydrolysis for Ethanol Production. Miles Laboratories, Inc. Elkhart, Indiana 1980, 264-269.
Ghosh, P. and Ghose, T. K. Bio-ethanol in India: Recent past and emerging future. Adv. Biochem. Eng./Biotechnol. 2003, 85, 1-27
Graf-Sirakaya, B.; Demirci, A. (2004) Industrial grade media evaluation for ethanol fermentation with Saccharomyces cerevisiae. In Proceedings of The Huck Institutes of Life Sciences’ Crossover Symposium on Bioenergy, Pennsylvania State University, University Park, PA, USA.
Gross, R., Leach, M. and Bauen, A. Progress in renewable energy. Environ. Int., 2003, 29, 105-122.
Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M. F., Liden, G. and Zacchi, G. Bio-ethanol - the fuel of tomorrow from the residues of today. Trends Biotechnol. 2006, 24, 549-556
Heuzé V., Tran G., Hassoun P., Renaudeau D., 2015. Taro (Colocasia esculenta). Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. http://www.feedipedia.org/node/537
Hölker, U., Höfer, M. and Lenz, J. Biotechnological advantage of laboratory-scale solid-state fermentation with fungi. Appl. Microbiol. Biotechnol. 2004, 64, 175-186
Hsu, S. Y. (2010) Ethanol production from cellulose and orange peel using thermotolerant yeasts. Thesis, Taiwan: Tatung University, Science Department of Bioengineering.
Ishola, M. M., Jahandideh, A., Haidarian, B., Brandberg, T. and Taherzadeh, M. J. Simultaneous saccharification, filtration and fermentation (SSFF): A novel method for bioethanol production from lignocellulosic biomass. Bioresource Technol. 2013, 133, 68-73.
Izmirlioglu, G. (2010) Ethanol production from waste potato mash using Saccharomyces cerevisiae. Thesis, The Pennsylvania State: The Pennsylvania State University The Graduate School College of Engineering.
Jane, J.; Shen, L.; Chen, J.; Lim, S.; Kasemsuwan, T.; Nip, W. Physical and Chemical Studies of Taro Starches and Flours 1 2. Cereal Chem. 1992, 69, 528-535.
Saunders, J., Levin, D. B. and Izydorczyk, M. (2011). Limitations and challenges for wheat-based bioethanol production. INTECH Open Access Publisher.
J?rgensen H, Kristensen J. B., Felby C. Enzymatic conversion of lignocellulose into fermentable sugars: Challenges and opportunities. Biofuels, Bioprod. Biorefin. 2007, 1,119–134.
Kalil, S. J., Suzan, R., Maugeri, F. and Rodrigues, M. I. Optimization of inulinase production by Kluyveromyces marxianus using factorial design. Appl Biochem Biotech. 2001, 94, 257-264
Kearsley, M. W.; Dziedzic, S. Z. Handbook of starch hydrolysis products and their derivatives. Springer: N.Y., 1995.
Kimble, J. M., Follett, R. F. and Cole, C. V. (1998). The potential of US cropland to sequester carbon and mitigate the greenhouse effect. CRC Press.
Klinke, H. B., Thomen, A. B., Ahring, B. K. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 2004, 66, 10-26
Kobayashi, F. and Nakamura, Y. Mathematical model of direct ethanol production from starch in immobilized recombinant yeast culture. Biochem. Eng. J. 2004, 21, 93-101
Korus, R.A., Hoffman, D.S., Bam, N., Peterson, C.L. and Drown, D.C. (1993) Transesterification process to manufacture ethyl ester of rape oil. In: The Proceedings of the First Biomass Conference of the Americas: Energy, Environment, Agriculture and Industry, vol. II. National Renewable Energy Laboratory, Golden Co., 815–826.
Krishnan, M. S., Nghiem, N. P. and Davison, B. H. Ethanol production from corn starch in a fluidized-bed bioreactor. Appl. Biochem. Biotechnol. 1999, 78, 359-372.
Kurtzman, C., Fell, J. W. and Boekhout, T. (Eds.). (2011). The yeasts: a taxonomic study (Vol. 1). Elsevier.
Kunz, M., Bioethanol: Experiences from running plants, optimization and prospects. Biocatal. Biotransform. 2008, 26(1-2), 128-132
Laopaiboon, L., Thanonkeo, P., Jaisil, P. and Laopaiboon, P. Ethanol production from sweet sorghum juice in batch and fed-batch fermentation by Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 2007, 23, 1497-1501
Lee, S. H. and Jun, S. Enhancement of Sugar Release from Taro Waste Using Ohmic Heating and Microwave Heating Techniques. Transactions of the ASABE, 2011, 54, 1041-1047
Limtong, S., Sringiew, C. and Yongmanitchai, W. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour. Technol. 2007, 98, 3367-3374
Lin, Y. and Tanaka, S. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 2006, 69, 627-642
Lin, Y. S. and Lee, W. C. Bioethanol. Feature Report. 2009, 433, 20-25
Liu, H., He, H., Xiong, L. X., Zhang, X., J. and Zhang, H. X. Characteristics ofbile salt hydrolase by Kluyveromyces marxianus Kl from Tibetan kefir. China Brewing 2010, 224, 69-73
Manera, A. P., Ores, J. D., Ribeiro, V. A. andre, C., Burkert, V. and Kalil, S. J. Optimization of the culture medium for the production of beta-galactosidase from Kluyveromyces marxianus CCT 7082. Food Technol. Biotech., 2008, 46, 66-72
Martinot, E., Chaurey, A., Lew, D., Moreira, J. R. and Wamukonya, N. Renewable energy markets in developing countries. Annu. Rev. Energy Env. 2002, 27, 309-348
Mohan, S. V., Babu, V. L. and Sarma, P. N. Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresour. Technol. 2008, 99, 59-67
Montesinos, T. and Navarro, J. M. Production of alcohol from raw wheat flour by Amyloglucosidase and Saccharomyces cerevisiae. Enzyme Microb. Technol. 2000, 27, 362-370
Olsen, H. S. (2007) Sustainable processing of agricultural products: ethanol production for fuel. Biokemisk forening http://www.biokemi.org/biozoom/issues/515/articles/2295)
Onwueme, I. Taro cultivation in Asia and the Pacific. Rap Publication 1999, 16, 1-9
Onwueme, I.C. and Charles, W.B. (1994) Tropical root and tuber crops: production, perspectives and future prospects (Vol. 126): Food and Agriculture Organization of the UN (FAO)
Ozmihci, S. and Kargi, F. Ethanol fermentation of cheese whey powder solution by repeated fed-batch operation. Enzyme Microb. Technol. 2007, 41, 169-174
Pua, X. H. (2014) Optimization of Glucose Release from Taro Agricultural Resource for Lactic Acid Bacteria Cultivation and Evaluation of Its Biological Activity Properties. Thesis, Taiwan: National Taiwan University, Food Science and Technology College of Bioresources and Agriculture.
Peters, R. L. and Darling, J. D. S. The Greenhouse-Effect and Nature Reserves. J. Bioscience 1985, 35, 707-717
Prasetyo, J., Naruse, K., Kato, T., Boonchird, C., Harashima, S. and Park, E. Y. (2011) Bioconversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14. Biotechnol Biofuels 4
Refaat, A. A. Different techniques for the production of biodiesel from waste vegetable oil. Int. J. Environ. Sci. Technol. 2010, 7, 183-213
Sanchez, O. J. and Cardona, C. A. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 2008, 99, 5270-5295
Schmidt, S. A., Dillon, S., Kolouchova, R., Henschke, P. A. and Chambers, P. J. Impacts of variations in elemental nutrient concentration of Chardonnay musts on Saccharomyces cerevisiae fermentation kinetics and wine composition. Appl. Microbiol. Biotechnol. 2011, 91, 365-375
Srichuwong, S., Fujiwara, M., Wang, X. H., Seyama, T., Shiroma, R., Arakane, M., Mukojima, N. and Tokuyasu, K. Simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash for the production of ethanol. Biomass Bioenerg 2009, 33, 890-898
Staniszewski, M., Kujawski, W. and Lewandowska, M. Semi-continuous ethanol production in bioreactor from whey with co-immobilized enzyme and yeast cells followed by pervaporative recovery of product–Kinetic model predictions considering glucose repression. J. Food Eng. 2009, 91, 240-249.
Tasic, M. B., Konstantinovic, B. V., Lazic, M. L. and Veljkovic, V. B. The acid hydrolysis of potato tuber mash in bioethanol production. Biochem. Eng. J. 2009, 43, 208-211
Tauer, A., Elss, S., Frischmann, M., Tellez, P. and Pischetsrieder, M. Influence of thermally processed carbohydrate/amino acid mixture on the fermentation by Saccharomyces cerevisiae. J. Agric. Food. Chem. 2004, 52, 2042-2046
Tissot, B. and Welte, D. (2012). Petroleum formation and occurrence: a new approach to oil and gas exploration. Springer Science and Business Media.
Tosun, A. and Ergun, M. Use of experimental design method to investigate metal ion effects in yeast fermentations. J Chem Technol Biot 2007, 82, 11-15
Tomás‐Pejó, E., Oliva, J. M., Ballesteros, M. and Olsson, L. Comparison of SHF and SSF processes from steam‐exploded wheat straw for ethanol production by xylose‐fermenting and robust glucose‐fermenting Saccharomyces cerevisiae strains. Biotechnol. Bioeng. 2008, 100(6), 1122-1131.
U.S. DEPARTMENT OF ENERGY (DOE), 2013 http://www.fe.doe.gov/education/energylessons/coal/gen_howformed.html
Venkata Mohan, S., Mohankrishna, G., Sarma, P. N. Integration acidogenic and methanogenic process for simultaneous production of biohydrogen and methane from wastewater treatment. Int. J. Hydrogen Energy 2008, 33, 2156-2166
Walker, G. M. The Roles of Magnesium in Biotechnology. Crit. Rev. Biotechnol. 1994, 14, 311-354
Wang, B. C., Shi, L. C., Zhou, J., Yu, Y. Y. and Yang, Y. H. The influence of Ca2+ on the proliferation of S. cerevisiae and low ultrasonic on the concentration of Ca2+ in the S. cerevisiae cells. Colloids Surf., B 2003, 32, 35-42
Wilkie, A. C., Riedesel, K. J. and Owens, J. M. Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenergy 2000, 19, 63-102
Wu, F. C.; Wu, J. Y.; Liao, Y. J.; Wang, M. Y.; Shih, I. L. Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Bioresour. Technol. 2014, 156, 123-131
Yamamoto, H., Fujino, J. and Yamaji, K. Evaluation of bioenergy potential with a multi-regional global-land-use-and-energy model. Biomass Bioenergy 2001, 21, 185-203.
Yu, C. Y., Jiang, B. H. and Duan, K. J. Production of Bioethanol from Carrot Pomace Using the Thermotolerant Yeast Kluyveromyces marxianus. Energies 2013, 6, 1794-1801
Zhao, X. Q., Xue, C., Ge, X. M., Yuan, W. J., Wang, J. Y. and Bai, F. W. Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation. J. Biotechnol. 2009, 139, 55-60
Zoppellari, F. and Bardi, L. Production of bioethanol from effluents of the dairy industry by Kluyveromyces marxianus. N. Biotechnol., 2013, 30, 607-613
Zwietering, M. H., Jongenburger, I., Rombouts, F. M. and Van't Riet, K. Modeling of the bacterial growth curve. Appl. Environ Microbiol. 1990, 56, 1875-1881
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51757-
dc.description.abstract自工業革命以來人類對於化石燃料的需求日益漸增,其中主要以石油為主。而石油最主要的用途是作為交通運輸工具之燃料。然而,大量利用化石燃料會導致溫室氣體含量增加,進而造成溫室效應及全球暖化。為解決大量燃燒造成空氣汙染及預防能源危機,世界各國開始研發替代燃料,而生質乙醇是生質能源中具有高效能及低環境汙染特性之一種再生能源。
根據不同生質乙醇的原料可分為糖質、澱粉質及纖維素原料。利用澱粉質原料有許多優勢,包括可醱酵糖含量高、生產乙醇的效率較高、操作流程上較簡單等。但澱粉質原料因其多為糧食而備受爭議;第二代生質能源則以纖維素原料為主之農業資材,但其水解條件嚴苛、水解醣利用有限且水解後含有呋喃等抑制物質,因此希望能找尋一種以澱粉為主之農業資材作為乙醇生產之原料。本實驗所用之芋頭為台灣重要作物之一,每年產量約為40,000噸,其主要被製作成糕餅、甜點及小吃等。芋頭農業資材 (taro agricultural resource, TAR)是帶有芋頭澱粉的外皮,主要由芋頭酥工廠所提供,於本研究的目的是利用芋頭工廠所丟棄之芋頭廢棄物,經過前處理及酵素性水解,並利用替代氮源去評估取代酵母萃取物 (氮源) 製造出更具有經濟價值和環保的培養基並應用在生產生質乙醇上。其次,探討培養基最適化包括不同濃度的芋頭農業資材、鹽類離子濃度、接菌量及培養基過濾,利用耐高溫酵母菌K21在不同溫度下分別以分開酵素水解與發酵 (separated hydrolysis and fermentation, SHF) 和同步糖化醱酵 (simultaneous saccharification and fermentation, SSF),最後利用最適化的條件放大至5 L生物反應器進行醱酵。其結果顯示在搖瓶中利用170.17 g/L TAR可水解出約100 g/L的葡萄糖,混入9 g/L的玉米麩粉 (corn gluten meal, CGM) 及鹽離子後不過濾為最理想之培養基,接著以5%接菌量在40oC下以SSF進行醱酵,可得到最大乙醇濃度48.98 g/L,產率為2.23 g/L/h,理論產率為95.85%,而以相同條件放大到5 公升生物反應器中可得最大乙醇濃度43.78 g/L,產率為2.19 g/L/h,理論產率為85.66%。
zh_TW
dc.description.abstractThe demand for fossil fuels has significantly increased since the beginning of industrial revolution. Petroleum, one of the most important types of fossil fuel, is predominantly being used as car’s fuel. Fossil fuel dependence leads to the increase of greenhouse gas, resulting in more severe greenhouse effect and global warming. In order to lessen the amount of air pollution due to fossil fuel burning and to alleviate the energy crisis, many countries began to develop alternative fuels. Bioethanol is one of the high efficient and low environmental impact bioenergy sources. The raw materials that produce bioethanol can be divided into sugar, starchy and lignocellulose materials. Using starchy materials for bioethanol production have many advantages, such as rich in fermented sugar, high efficiency of ethanol production, simple operation and so on. Most of starchy materials are foods and have lot of controversies. Second generation bioethanol are using lignocellulosic materials. These materials have some properties, such as harsh hydrolysis conditions, fewer fermented sugar, and lot of inhibition substances. If we can find a kind of starchy agricultural resource, it can compensate for the disadvantages of both.
Taro is one of the most important crops in Taiwan and annual output about 40,000 tons, which serves as main ingredient of different types of food products such as pastries, snacks, and dessert. In this study, we used taro agricultural resource (TAR), which is provided by taro pastries factory to perform our experiment. The received TAR was mainly composed of taro’s skins that contain many starch residues. We pretreated and enzymatically hydrolyzed TAR. Various alternative nitrogen sources were evaluated as substitute nitrogen source of yeast extract for producing more economic and environmental friendly medium for ethanol production. Subsequently, we are going to discuss about the factors of modification medium, such as TAR loading amount, ions concentration, inoculum and medium filtration. The modification medium is followed by using thermotolerance yeast K21 to separate hydrolysis fermentation (SHF) and simultaneous saccharification fermentation (SSF) under different temperature. Our ultimate goal is scale-up to 5L bioreactor to make sure of conditions can produce ethanol efficiently by using TAR. The flask scale result showed the optimizing medium was using 170 g/L TAR which can hydrolyze about 100 g/L glucose and added 9 g/L CGM and salt without filtration. The optimizing medium was inoculated 5% K21 under 40oC by SSF can carry out the maximum ethanol concentration (48.98g/L) and productivity (2.23g/L/h). The result of maximum ethanol concentration and productivity were 43.78 g/L and 2.19 g/L/h, respectively in 5L bioreactor under the optimizing condition.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:48:10Z (GMT). No. of bitstreams: 1
ntu-104-R01641023-1.pdf: 7263002 bytes, checksum: 13f5129ea922e209df5b3526aab329bf (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書--II
謝 誌--III
中文摘要--V
Abstract--VII
表目錄--XIII
圖目錄--XIV
壹、前言--1
貳、文獻回顧--3
2.1 前言--3
2.2 化石燃料介紹及其議題--3
2.3 生物能源--5
2.4生物柴油--6
2.5 生質乙醇--6
2.5.1 生質乙醇生產--7
2.5.2 生質乙醇醱酵的原料--8
2.5.2.1 利用醣質原料醱酵生質乙醇--8
2.5.2.2 利用纖維素原料醱酵生質乙醇--9
2.5.2.3 利用澱粉質原料醱酵生質乙醇--10
2.5.2.3.1 利用馬鈴薯醱酵生質乙醇--14
2.5.2.3.2 利用小麥醱酵生質乙醇--14
2.5.2.3.3 利用玉米醱酵生質乙醇--14
2.5.3 生產生質乙醇的微生物--15
2.5.4 培養基中鹽離子對於酵母菌和乙醇產量的影響--16
2.5.4.1 鈣離子--16
2.5.4.2 鎂離子--17
2.5.4.3 鉀離子--18
2.5.4.4 鋅離子--19
2.5.5醱酵生產生質乙醇--20
2.5.5.1 批式醱酵--21
2.5.5.2 饋料-批式醱酵--22
2.5.5.3 連續式醱酵--22
2.5.6 同步糖化醱酵--23
2.6 芋頭概述--24
2.6.1 芋頭農業資材--25
2.7 芋頭農業資材生產生質乙醇的潛力--26
2.7.1 利用芋頭農業資材進行糖化之限制--26
2.6.1.1 回凝--27
2.6.1.2 梅納反應--27
2.6.1.3 不溶性澱粉--27
參、材料與方法--29
3.1澱粉酵素性水解--29
3.2 醱酵菌株--29
3.3醱酵基質--29
3.4 芋頭農業資材--30
3.5 替代氮源--30
3.6 HPLC標準品及分析溶劑--31
3.7 儀器設備--31
3.8實驗目的--32
3.9實驗架構--34
3.10 菌種保存--34
3.11 基本醱酵培養基配製--36
3.12 芋頭農業資材的前處理及酵素性的水解--36
3.12.1 芋頭農業資材前處理--36
3.12.2 液化及糖化條件--36
3.13 培養基成分及處理最適化--36
3.13.1 TAR培養基測試--37
3.13.2 氮源試驗--37
3.13.3 沉澱物過濾試驗--37
3.13.4 芋頭農業資材濃度--37
3.13.5 離子濃度試驗--38
3.13.6 接菌量試驗--38
3.14 醱酵策略及條件最適化--39
3.14.1 分開酵素水解與醱酵--39
3.14.2 同步糖化醱酵--39
3.14.3 溫度試驗--39
3.15生物反應器醱酵--40
3.16 分析--40
3.16.1 葡萄糖分析--40
3.16.2 乙醇分析--40
3.16.3 HPLC條件--40
3.17 統計分析--41
肆、結果與討論--42
4.1 芋頭農業資材組成及處理--42
4.2 Kluyveromyces marxianus K21 之特性--42
4.3 乙醇醱酵--44
4.4 培養基最適化--46
4.4.1芋頭農業資材培養基--46
4.4.2 替代氮源--47
4.4.3 過濾試驗--51
4.4.4 芋頭農業資材濃度試驗--53
4.4.5 離子濃度試驗--57
4.4.6 接菌量--62
4.5 培養條件最適化--64
4.5.1 以SHF進行溫度試驗--64
4.5.2以SSF進行溫度試驗--67
4.5.3 比較SHF和SSF--69
4.6 以5公升生物反應器進行擴增培養--69
伍、結論與展望--72
陸、Reference--75
dc.language.isozh-TW
dc.subjectKluyveromyces marxianus K21zh_TW
dc.subject芋頭農業資材zh_TW
dc.subject同步糖化醱酵zh_TW
dc.subject生質乙醇zh_TW
dc.subject替代氮源zh_TW
dc.subjectbioethanolen
dc.subjectKluyveromyces marxianus K21en
dc.subjectTaro agriculture resourceen
dc.subjectsimultaneous saccharification fermentationen
dc.subjectalternative nitrogen sourceen
dc.title利用芋頭農業資材以嗜高溫酵母菌Kluyveromyces marxianus K21醱酵生產生質乙醇zh_TW
dc.titleBioethanol Production from Taro Agricultural Resource Using Thermotolerance Yeast Kluyveromyces marxianus K21en
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee劉文雄,楊昭順,孟孟孝,李重義,王正利
dc.subject.keyword芋頭農業資材,替代氮源,同步糖化醱酵,生質乙醇,Kluyveromyces marxianus K21,zh_TW
dc.subject.keywordTaro agriculture resource,alternative nitrogen source,simultaneous saccharification fermentation,bioethanol,Kluyveromyces marxianus K21,en
dc.relation.page114
dc.rights.note有償授權
dc.date.accepted2015-11-11
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
7.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved