請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51740
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳中平(Chung-Ping Chen) | |
dc.contributor.author | Min-Han Hsieh | en |
dc.contributor.author | 謝旻翰 | zh_TW |
dc.date.accessioned | 2021-06-15T13:47:16Z | - |
dc.date.available | 2020-12-01 | |
dc.date.copyright | 2015-12-01 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-11-18 | |
dc.identifier.citation | [1] K. J. Hsiao and T. C. Lee, “An 8-GHz to 10-GHz distributed DLL for multiphase clock generation,”IEEE J. Solid-State Circuits, vol. 44, no.9, pp. 2478–2487, Sept. 2009.
[2] D. Shin, C. Kim, J. Song and H. Chae, “A 7 ps jitter 0.053 mm2 fast lock all-digital DLL with a wide range and high resolution DCC,“ IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2437-2451, Sept. 2009. [3] K. S. Cheng and Y. L. Lo, “A fast-lock wide-range delay-locked loop using frequency-range selector for multiphase clock generator,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 7, pp. 561–565, Jul. 2007. [4] H. -H. Chang, J. -Y Chang, C. -Y Kuo, S. -I Liu, “A 0.7–2-GHz self-calibrated multiphase delay-locked loop”, IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1051-1061, May.2006. [5] C. N. Chuang, S. I. Liu, “A 0.5–5-GHz wide-range multi-phase DLL with a calibrated charge pump,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 11, pp. 939–943, Nov. 2007. [6] M. S. Hwang, J. Kim and D. K. Jeong, 'Reduction of pump current mismatch in charge-pump PLL', IET Electronics Lett., vol. 45, no. 3, pp. 135-136, Jan. 2009. [7] S. J. Kim, S. H. Hong, J. -K. Wee, J. H. Cho, P. S. Lee, J. H. Ahn and J. Y. Chung, “A low-jitter wide-range skew-calibrated dual-loop DLL using antifuse circuitry for high-speed DRAM,” IEEE J. Solid-State Circuits, vol. 37, pp. 726–734, Aug. 2002. [8] B. -G. Kim, L. -S. Kim, K. -I. Park, Y. -H. Jun and S. -I. Cho, “A DLL with jitter reduction techniques and quadrature phase generation for DRAM interfaces,” IEEE J. Solid-State Circuits, vol. 44, pp. 1522–1530, May 2009. [9] M. Hossain, F. Aquil, P. Chau, B. Tsang, P. Le, J. Wei, T. Stone, B. Daly, T. Chanh, J. Eble, K. Knorpp and J. Zerbe, “A 400 MHz –1.6 GHz fast lock, jitter filtering ADDLL based burst mode memory interface,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, June 2013, pp. 244–245. [10] J. -S. Wang, T. -M. Wang, C. -H. Chen and T. -C. Liu, “An ultra-low-power fast-lock-in small-jitter all-digital DLL,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2005, pp. 422–607. [11] R. -J. Yang and S. -I. Liu, “A 2.5 GHz all-digital delay-locked loop in 0.13 µm CMOS technology,” IEEE J. Solid-State Circuits, vol. 42, pp. 2338–2347, Nov. 2007. [12] B. Mesgarzadeh and A. Alvandpour, “A low-power digital DLL-based clock generator in open-loop mode,” IEEE J. Solid-State Circuits, vol. 44, pp. 1907–1913, July 2009. [13] M. -J. E. Lee, W. J. Dally, T. Greer, H.-T. Ng, R. Farjad-Rad, J. Poulton, and R. Senthinathan, “Jitter transfer characteristics of delay-locked loops-theories and design techniques,” IEEE J. Solid-State Circuits, vol. 38, no. 4, pp. 614–621, Apr. 2003. [14] J. -S. Wang, C. -Y. Cheng, J. -C. Liu, Y. -C. Liu and Y. -M. Wang, “A duty-cycle-distortion-tolerant half-delay-line low-power fast-lock-in all-digital delay-locked loop,” IEEE J. Solid-State Circuits, vol. 45, pp. 1036–1047, May 2010. [15] H. -H. Chang and S. -I. Liu, “A wide-range and fast-locking all-digital cycle-controlled delay-locked loop,” IEEE J. Solid-State Circuits, vol. 40, pp. 661–670, Mar. 2005. [16] W. -J. Yun, H. W. Lee, D. Shin, S. D. Kang, et al., “A 0.1–to–1.5 GHz 4.2 mW all-digital DLL with dual duty-cycle correction circuit and update gear circuit for DRAM in 66 nm CMOS technology,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2008, pp. 282–613. [17] R. -J. Yang and S. -I. Liu, “A 40–550 MHz harmonic-free all-digital delay-locked loop using a variable SAR algorithm,” IEEE J. Solid-State Circuits, vol. 42, pp. 361–373, Feb. 2007. [18] D. Shin, J. Song, H. Chae and C. Kim, “A 7 ps jitter 0.053 mm2 fast lock all-digital DLL with a wide range and high resolution DCC,” IEEE J. Solid-State Circuits, vol. 44, pp. 2437–2451, Sept. 2009. [19] M. -H. Hsieh, L. -H. Chen, S. -I. Liu and C. -P. Chen, “A 6.7 MHz–to–1.24 GHz 0.0318 mm2 fast-locking all-digital DLL in 90 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2012, pp. 244–246. [20] A. Elshazly, A. Balankutty, Y. -Y. Huang, K. Yu and F. O’Mahony, “A 2 GHz–to–7.5 GHz quadrature clock-generator using digital delay locked loops for multi-standard I/Os in 14 nm CMOS,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, June 2014, pp. 1–2. [21] X. Yu, W. Rhee, Z. Wang, J. -B. Lee and C. Kim, “A 0.4–to–1.6 GHz low-OSR ΔΣ DLL with self-referenced multiphase generation,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2009, pp. 398–399. [22] B. -G. Kim and L. -S. Kim, “A 250-MHz–2-GHz wide-range delay-locked loop,” IEEE J. Solid-State Circuits, vol. 40, pp. 1310–1321, June 2005. [23] “HomrePlug AV white paper,” HomePlug Powerline Alliance, 2005. [24] K. Findlater, A. Bofill, X. Reves, and J. Abad, “A HomePlugAV SoC in 40nm CMOS technology,” in IEEE Custom Integrated Circuits Conference, pp. 1–8 Sept. 2014. [25] K. Findlater, T. Bailey, A. Bofill, N. Calder, S. Danesh, R. Henderson, W. Holland, J. Hurwitz, S. Maughan, A. Sutherland, and E. Watt, “A 90nm CMOS dual-channel powerline communication AFE for homeplug AV with a Gb extension,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 464–465, Feb. 2008. [26] “HomrePlug AV2 white paper,” HomePlug Powerline Alliance, 2013. [27] IEEE standard for broadband over power line networks: medium access control and physical layer specifications, IEEE Standard 1901, 2010. [28] H.-H. Nguyen, H.-N. Nguyen, J. Lee, and S.-G. Lee “A high-linearity low-noise reconfiguration-based programmable gain amplifier,” in IEEE Proceedings of European Solid-State Circuits Conference, pp. 166–169, Sept. 2010. [29] K. N. Leung, P. K. T. Mok, W.-H. Ki, and J. K. O. Sin, “Three stage large capacitive load amplifier with damping-factor control frequency compensation,” IEEE J. Solid-State Circuits, vol. 35, no. 2, pp. 221–230, Feb. 2000. [30] C.-H. Lin and K. Bult, “A 10-b, 500-MSample/s CMOS in 0.6 mm2,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1948–1958, Dec. 1998. [31] O. Stroeble, V. Dias, and C. Schwoerer, “An 80MHz 10b pipeline ADC with dynamic range doubling and dynamic reference selection,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 462–539, Feb. 2004. [32] J. Bauwelinck, E. D. Backer, C. Mélange, G. Torfs, P. Ossieur, X.-Z. Qiu, J. Vandewege, and S. Horvath, “A 1024-QAM analog front-end for broadband powerline communication up to 60 MHz,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1477–1485, May 2009. [33] N. Weling, “Expedient permanent PSD reduction table as mitigation method to protect radio services,” in IEEE Int. Symp. on Power Line Communications and Its Applications, pp. 305–310, Apr. 2011. [34] K. P. Bagadi and S. Das, “MIMO-OFDM channel estimation using pilot carries,” International Journal of Computer Applications, vol 2, no.3, pp.81–88, May 2010. [35] K. H. Afkhamie, S. Katar, L. Yonge, and R. Newman, “An overview of the upcoming HomePlug AV standard,” in IEEE Int. Symp. on Power Line Communications and Its Applications, pp. 400–404, Apr. 2005. [36] R. Hormis, I. Berenguer, and X. Wang, “A simple baseband transmission scheme for power line channels,” IEEE J. Selected Areas in Communications, vol. 24, no. 4, pp. 1351–1363, July 2006. [37] E. Guerrini, G. Dell’Amico, P. Bisaglia, and L. Guerrieri, “Bit-loading algorithms and SNR estimate for HomePlug AV,” in IEEE Int. Symp. on Power Line Communications and Its Applications, pp. 77–82, Mar. 2007. [38] W.-H. Tseng, J.-T. Wu, and Y.-C. Chu, “A CMOS 8-Bit 1.6- GS/s DAC with digital random return-to-zero,” IEEE Trans. on Circuits and Systems–II: Express Briefs, vol. 58, no. 1, pp. 1–5, Jan 2011. [39] A. R. Bugeja, B.-S. Song, P. L. Rakers, and S. F. Gilling, “A 14-b 100-MS/s CMOS DAC designed for spectral performance,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1719–1732, Dec. 1999. [40] V. Dhanasekaran, J. Silva-Martinez, and E. Sanchez-Sinencio, “Design of three-stage class-AB 16Ω headphone driver capable of handling wide range of load capacitance,” IEEE J. Solid-State Circuits, vol. 44, no. 6, pp. 1734–1744, June 2009. [41] K. N. Leung and P. K. T. Mok, “Analysis of multistage amplifier-frequency compensation,” IEEE Trans. on Circuits and Systems–I, vol. 48, no. 9, pp. 1041–1056, Sept. 2001. [42] M. S. Kappes, “A 3-V CMOS low-distortion class AB line driver suitable for HDSL applications,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 371–376, Mar. 2000. [43] O. Jeon, et al., “Analog AGC circuitry for a CMOS WLAN receiver,” IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2291–2300, Oct. 2006. [44] G. Cesura, A. Bosi et al., “A VDSL2 CPE AFE in 0.15μm CMOS with integrated line driver,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 108–109, Feb. 2009. [45] X. Chu, M. Lin et al., “A CMOS programmable gain amplifier with a novel DC-offset cancellation technique,” in IEEE Custom Integrated Circuits Conference, pp. 1–4, Sept. 2010. [46] B.-G. Lee and R. M. Tsang, “A 10-bit 50 MS/s pipelined ADC with capacitor-sharing and variable-gm opamp,” IEEE J. Solid-State Circuits, vol. 44, no.3, pp. 883–890, Mar. 2009. [47] S.-C. Lee, Y.-D. Jeon, J.-K. Kwon, and J. Kim, “A 10-bit 205-MS/s 1.0-mm2 90-nm CMOS pipeline ADC for flat panel display applications,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2688–2695, Dec. 2007. [48] Y.-C. Huang and T.-C. Lee, “A 10-bit 100-MS/s 4.5-mW pipelined ADC with a time-sharing technique,” IEEE Trans. on Circuits and Systems–I, vol. 58, no. 6, pp. 1157-1166, June 2011. [49] M.-H. Hsieh, B.-F. Lin, Y.-S. Wang, H.-H. Chang, and C. C.-P. Chen, “A 2 – 8 GHz multi-phase distributed DLL using phase insertion in 90 nm.” IEEE International Symposium on Circuits and Systems (ISCAS), May 2012. [50] S.-Y. Hung, K.-H. Chan, and C. C.-P. Chen, “A high dynamic range programmable gain amplifier for HomePlug AV powerline communication system,” IEEE International Symposium on Circuits and Systems (ISCAS), May 2013. [51] W.-S. Cheng, S.-H. Hung, M.-H. Hsieh, and C. C.-P. Chen, “A 10-Bit current- steering DAC for HomePlug AV2 powerline communication system in 90 nm CMOS,” IEEE International Symposium on Circuits and Systems (ISCAS), May 2013. [52] P.-K. Liu, S.-Y. Hung, M.-H. Hsieh, and C. C.-P. Chen, “A 52 dBc MTPR line driver for powerline communication HomePlug AV standard in 0.18-μm CMOS technology,” IEEE International Symposium on Circuits and Systems (ISCAS), May 2013. [53] 林柄灃, “A wide-range multi-phase DLL with phase insertion architecture,” 台大電子所碩士論文, 2010. [54] 陳良信, “A wide-range and fast-locking all-digital delay-locked loop using a phase-tracing delay unit,” 台大電子所碩士論文, 2011. [55] 詹凱翔, “A high dynamic range, low gain error programmable gain amplifier for powerline communication systems,” 台大電子所碩士論文, 2012. [56] 林慶峰, “A high speed and low power pipelined ADC for powerline communication system,” 台大電子所碩士論文, 2012. [57] 洪晟淵, “Design of pipelined ADC for powerline communication system,” 台大電子所碩士論文, 2013. [58] 宋東鴻, “Design of 10 bits high speed pipelined ADC for power-line communication system,” 台大電子所碩士論文, 2013. [59] 程韋盛, “A high speed current-steering DAC for powerline communication system,” 台大電子所碩士論文, 2012. [60] 莊賀翔, “A 10-bit current-steering DAC with dynamic element matching for powerline communication system,” 台大電子所碩士論文, 2013. [61] 劉邦楷, “A line driver design for powerline communication systems,” 台大電子所碩士論文, 2012. [62] 李冠賢, “OFDM model for HomePlug AV2 PLC system and configurable gain equalizer for optical link module,” 台大電子所碩士論文, 2012. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51740 | - |
dc.description.abstract | 在資訊爆炸的時代,為了快速傳遞訊息,資料傳輸扮演著非常重要的腳色,除了需要相當高的傳輸速率外,傳輸過程中的穩定度也十分重要。在本篇論文中,針對在通訊界面中做訊號同步非常重要的延遲鎖相迴路提出了改良,包括一個混合訊號多相位寬頻延遲鎖相迴路與一個全數位低功耗小面積延遲鎖相迴路。另外更完成了一個HomePlug AV2高速電力線通訊系統前端收發器。
在離散式多相位混合訊號延遲鎖相迴路架構中,為了達到寬頻帶操作,本篇論文提出了使用相位插入法,利用相位選擇器偵測操作頻率並提供大部分的延遲時間,再藉由可調式延遲器使輸出相位具有正確延遲時間。此延遲鎖相迴路使用90 nm CMOS製程實現,主要電路面積為0.0644 mm2,在2–8 GHz頻率範圍內皆可正常運作,並分別具有1.93 ps與1.53 ps的相位誤差。 在全數位延遲鎖相迴路中,本論文提出了一個使用相位追蹤延遲器取代傳統冗長延遲線的架構,僅包含兩個閘控環形震盪器,在寬頻帶操作下達到節省晶片面積與功耗的成果。此延遲鎖相迴路經由90 nm CMOS製程實現,操作頻帶為6.7 MHz–1.24 GHz,並僅占0.0318 mm2矽面積,功耗為14.5 mW,其質量因數為0.206,且在任何可操作頻率下,鎖定時間僅需5個周期。在1.24 GHz操作頻率下,此延遲鎖相迴路具有2.22 ps峰對峰相位抖動與424.62 fs均方根相位抖動。 電力線通訊系統從20世紀以來以發展許久,近年來,HomePlug聯盟不斷制定通訊協定,其中以2013年所制定的HomePlug AV2使用1.8–86 MHz通訊頻帶,相較於先前的HomePlug AV使用1.8–28 MHz通訊頻帶,具有更高的資料傳輸速度。本論文也針對HomePlug AV2規格,實現了一個前端收發器,發送端包含一個數位類比轉換器與一個線驅動器,接收端包含一個可變增益放大器與一個類比數位轉換器。此前端收發器使用90 nm CMOS製程實現並達到461 Mbps的傳輸速度。 | zh_TW |
dc.description.abstract | While the big data generation coming, with the demands of the data communications, a high-speed and robust communication system has become very important. In this thesis, not only a mixed-mode multi-phase distributed delay-locked loop (DDLL) and an all-digital low-power low-cost delay-locked loop (DLL) have been proposed, but also a digital front-end and an analog front-end for HomePlug AV2 high-speed powerline communication (PLC) system has been presented.
In the mixed-mode multi-phase DDLL, the phase insertion technique was adopted to achieve wide operating frequencies. The proposed architecture achieves wide operating frequency range by adding a digital phase selector into the DDLL as a coarse-tune block and a automatic frequency detector. The digital phase selector outputs the selected phases according to the detected operating frequency with the most delay for the following tunable delay cells. Thus the selected phases will be fin-tuned by the tunable delay cells for minimizing the phase errors independently. The DDLL was fabricated in 90 nm CMOS technology and occupies 0.0644 mm2 active areas. The operating frequency range is from 2 GHz to 8 GHz, with 1.93 ps and 1.53 ps phase error, respectively. An all-digital DLL (ADDLL) with a phase-tracing delay unit (PTDU) is the second proposed DLL in the thesis to achieve wide operating frequency range, low power and low cost. For the wide-range DLL, the long delay line is replaced by a phase-tracing delay unit (PTDU) which includes two gated ring oscillators (GROs) for generating the wide delay range with a reduced die area. According to the dual loop control scheme in this work, the input clock rising edge and falling edge are tracked independently to ensure that the ADDLL output maintains the duty cycle of the input reference. Furthermore, the ADDLL utilizes an open-loop scheme to achieve fast lock time of 5 clock cycles for all supported input frequencies. The proposed ADDLL has been fabricated in TSMC 90 nm CMOS technology and supports a wide operating frequency range from 6.7 MHz to 1.24 GHz within a small active area of 0.0318 mm2. The measured peak-to-peak and root-mean-square jitter at 1.24 GHz are 2.22 ps and 424.62 fs respectively. The ADDLL consumes 14.5 mW while operating at 1.24 GHz and achieves the FOM of 0.206. A SoC transceiver for the broadband powerline communication system in HomePlug AV2 standard is presented in this thesis. The transceiver consists of a 10-bit 180 MS/s current steering DAC and a line driver with 86 MHz bandwidth, a PGA with a bandwidth in 86 MHz, a 10-bit 180 MS/s pipelined ADC in receiver, and a PLL. In HomePlug AV2, the proposed transceiver achieves 36 dB multi-tone power ratio (MTPR) in the transmitter and 16 dB loopback MTPR in the receiver under 64–QAM constellation map with -23 dB average error vector magnitude (EVM) in 461 Mbps data rate. The transceiver was fabricated in TSMC 90 nm technology and occupies 2.7 mm2 active area. In HomePlug AV2, the transceiver consumes 30 mW, 1.1 W, 25 mW and 16 mW power in DAC, line driver, ADC and PGA. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:47:16Z (GMT). No. of bitstreams: 1 ntu-104-D98943014-1.pdf: 15433115 bytes, checksum: 5d7f6c3c34f7654cd4d7b2233733ddd7 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | Abstract...............................................ii
Table of Contents.......................................v Figure Captions......................................viii Table Captions........................................xiv Chapter 1 Introductions.................................1 1-1. Motivations and Introductions......................1 1-2. Thesis Organization................................4 Chapter 2 A 2 – 8 GHz Multi-Phase Distributed DLL Using Phase Insertion in 90 nm CMOS...........................5 2-1. Introductions......................................6 2-2. The Proposed Architecture of the Wide-Range DDLL...8 2-2-1. The Proposed Digital Phase Selector..............8 2-2-2. The Analog Distributed Delay-Locked Loop........12 2-3. Experimental Results..............................17 2-4. Conclusions.......................................20 Chapter 3 A 6.7 MHz – 1.24 GHz 0.0318 mm2 Fast-Locking All-Digital DLL using Phase-Tracing Delay Unit in 90 nm CMOS...................................................22 3-1. Introductions.....................................23 3-2. Innovation and Analysis of the Proposed ADDLL.....26 3-3. Architecture and Circuit Implementation of the Proposed ADDLL.........................................39 3-3-1. Phase-Tracing Delay Unit (PTDU).................42 3-3-2. Digital Phase Selector, Digital Phase Mixer and Edge Combiner..........................................46 3-3-3. Control Unit....................................53 3-4. Experimental Results..............................62 3-5. Conclusions.......................................69 Chapter 4 A HomePlug AV2 PLC Transceiver in 90 nm CMOS.72 4-1. Introductions.....................................73 4-2. OFDM-based DFE for the HomePlugAV2 PLC system.....78 4-3. Analog Front-End for the HomePlugAV2 PLC system...85 4-3-1. Transmitter.....................................88 4-3-2. Receiver........................................91 4-4. Experimental Results..............................97 4-5. Conclusions......................................103 Chapter 5 Conclusions.................................104 Reference.............................................106 | |
dc.language.iso | en | |
dc.title | 寬頻混合訊號與全數位延遲鎖相迴路暨HomePlug AV2電力線通訊系統收發器 | zh_TW |
dc.title | A Mixed-Mode DLL and an All-Digital DLL in Wide-Range, and a HomePlug AV2 PLC Transceiver | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 吳重雨(Chung-Yu Wu),劉深淵(Shen-Iuan Liu),鄭國興(Kuo-Hsing Cheng),蔡佩芸(Pei-Yun Tsai) | |
dc.subject.keyword | 寬頻鎖相迴路,相位插入法,閘控環形震盪器延遲線,高速電力線通訊,HomePlug, | zh_TW |
dc.subject.keyword | wide-range DLL,all-digital DLL,phase insertion,phase-tracing delay unit,powerline communication,HomePlug AV2, | en |
dc.relation.page | 115 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-11-18 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 15.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。