請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51673| 標題: | 利用社交資訊及使用者社團互動程度之成對學習社團推薦方法 Pairwise Learning for Coummunity Recommendation Utilizing Social Information and User-Community Interaction Degree |
| 作者: | Meng Lee 李孟 |
| 指導教授: | 陳建錦 |
| 關鍵字: | 成對學習,推薦系統,社團推薦,使用者-社團互動,社交影響, Learning to rank,pairwise learning,recommender system,social influence,community recommendation, |
| 出版年 : | 2015 |
| 學位: | 碩士 |
| 摘要: | Nowadays, the status of social networking sites become more and more important in people’s life. Many social networking sites encourage users to create their own communities or join other’s communities to interact with other users, but there are information overload problem that users can’t easily find the communities they want to join. And this may pull users back from using the social service.
In this paper, we propose a useful community recommendation approach that combine MF and LTR to model user and community’s preference, and we also incorporate both social information and user-community interactive degree in our method. The result by using a real-world dataset shows that both LTR and social information can help enhance recommendation quality evaluated by coverage and nDCG. We also show that when training pairwise learning to rank model, the recommendation quality can be further improved if one choose the trained pairs wisely. We compare some possible pair selection strategies and found that the most important thing for these pair selections is to recognize the preferable communities for a user. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51673 |
| 全文授權: | 有償授權 |
| 顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
