請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51673完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳建錦 | |
| dc.contributor.author | Meng Lee | en |
| dc.contributor.author | 李孟 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:43:57Z | - |
| dc.date.available | 2016-02-02 | |
| dc.date.copyright | 2016-02-02 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-12-14 | |
| dc.identifier.citation | Bawden, D., and Robinson, L. 2009. 'The Dark Side of Information: Overload, Anxiety and Other Paradoxes and Pathologies,' Journal of information science (35:2), pp. 180-191.
Breese, J. S., Heckerman, D., and Kadie, C. 1998. 'Empirical Analysis of Predictive Algorithms for Collaborative Filtering,' Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence: Morgan Kaufmann Publishers Inc., pp. 43-52. Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., and Li, H. 2007. 'Learning to Rank: From Pairwise Approach to Listwise Approach,' Proceedings of the 24th international conference on Machine learning: ACM, pp. 129-136. Chen, C. C., Wan, Y.-H., Chung, M.-C., and Sun, Y.-C. 2013. 'An Effective Recommendation Method for Cold Start New Users Using Trust and Distrust Networks,' Information Sciences (224), pp. 19-36. Chen, W.-Y., Chu, J.-C., Luan, J., Bai, H., Wang, Y., and Chang, E. Y. 2009. 'Collaborative Filtering for Orkut Communities: Discovery of User Latent Behavior,' Proceedings of the 18th international conference on World wide web: ACM, pp. 681-690. Chen, W.-Y., Zhang, D., and Chang, E. Y. 2008. 'Combinational Collaborative Filtering for Personalized Community Recommendation,' Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining: ACM, pp. 115-123. Chien, Y.-H., and George, E. I. 1999. 'A Bayesian Model for Collaborative Filtering,' Proceedings of the 7th International Workshop on Artificial Intelligence and Statistics: San Francisco: Morgan Kaufman Publishers,[http://uncertainty99. microsoft. com/proceedings. htm]. Craswell, N., Zoeter, O., Taylor, M., and Ramsey, B. 2008. 'An Experimental Comparison of Click Position-Bias Models,' Proceedings of the 2008 International Conference on Web Search and Data Mining: ACM, pp. 87-94. Deshpande, M., and Karypis, G. 2004. 'Item-Based Top-N Recommendation Algorithms,' ACM Transactions on Information Systems (TOIS) (22:1), pp. 143-177. Ding, S., Zhao, S., Yuan, Q., Zhang, X., Fu, R., and Bergman, L. 2008. 'Boosting Collaborative Filtering Based on Statistical Prediction Errors,' Proceedings of the 2008 ACM conference on Recommender systems: ACM, pp. 3-10. Fan, C., Lan, Y., Guo, J., Lin, Z., and Cheng, X. 2013. 'Collaborative Factorization for Recommender Systems,' Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval: ACM, pp. 949-953. Herlocker, J. L., Konstan, J. A., Borchers, A., and Riedl, J. 1999. 'An Algorithmic Framework for Performing Collaborative Filtering,' Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval: ACM, pp. 230-237. Joachims, T. 2002. 'Optimizing Search Engines Using Clickthrough Data,' Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining: ACM, pp. 133-142. Kohavi, R. 1995. 'A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection,' Ijcai, pp. 1137-1145. Koren, Y. 2010. 'Factor in the Neighbors: Scalable and Accurate Collaborative Filtering,' ACM Transactions on Knowledge Discovery from Data (TKDD) (4:1), p. 1. Li, H. 2014. 'Learning to Rank for Information Retrieval and Natural Language Processing,' Synthesis Lectures on Human Language Technologies (7:3), pp. 1-121. Liu, N. N., and Yang, Q. 2008. 'Eigenrank: A Ranking-Oriented Approach to Collaborative Filtering,' Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval: ACM, pp. 83-90. Liu, N. N., Zhao, M., and Yang, Q. 2009. 'Probabilistic Latent Preference Analysis for Collaborative Filtering,' Proceedings of the 18th ACM conference on Information and knowledge management: ACM, pp. 759-766. Liu, T.-Y. 2009. 'Learning to Rank for Information Retrieval,' Foundations and Trends in Information Retrieval (3:3), pp. 225-331. Ma, H. 2013. 'An Experimental Study on Implicit Social Recommendation,' Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval: ACM, pp. 73-82. Ma, H., Yang, H., Lyu, M. R., and King, I. 2008. 'Sorec: Social Recommendation Using Probabilistic Matrix Factorization,' Proceedings of the 17th ACM conference on Information and knowledge management: ACM, pp. 931-940. McNee, S. M., Riedl, J., and Konstan, J. A. 2006. 'Being Accurate Is Not Enough: How Accuracy Metrics Have Hurt Recommender Systems,' CHI'06 extended abstracts on Human factors in computing systems: ACM, pp. 1097-1101. Mnih, A., and Salakhutdinov, R. 2007. 'Probabilistic Matrix Factorization,' Advances in neural information processing systems, pp. 1257-1264. Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. 2000. 'Application of Dimensionality Reduction in Recommender System-a Case Study,' DTIC Document. Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. 2001. 'Item-Based Collaborative Filtering Recommendation Algorithms,' Proceedings of the 10th international conference on World Wide Web: ACM, pp. 285-295. Sharma, A., and Yan, B. 2013. 'Pairwise Learning in Recommendation: Experiments with Community Recommendation on Linkedin,' Proceedings of the 7th ACM Conference on Recommender Systems: ACM, pp. 193-200. Shi, Y., Larson, M., and Hanjalic, A. 2010. 'List-Wise Learning to Rank with Matrix Factorization for Collaborative Filtering,' Proceedings of the fourth ACM conference on Recommender systems: ACM, pp. 269-272. Spertus, E., Sahami, M., and Buyukkokten, O. 2005. 'Evaluating Similarity Measures: A Large-Scale Study in the Orkut Social Network,' Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining: ACM, pp. 678-684. Yildirim, H., and Krishnamoorthy, M. S. 2008. 'A Random Walk Method for Alleviating the Sparsity Problem in Collaborative Filtering,' Proceedings of the 2008 ACM conference on Recommender systems: ACM, pp. 131-138. Zheng, N., Li, Q., Liao, S., and Zhang, L. 2010. 'Which Photo Groups Should I Choose? A Comparative Study of Recommendation Algorithms in Flickr,' Journal of Information Science (36:6), pp. 733-750. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51673 | - |
| dc.description.abstract | Nowadays, the status of social networking sites become more and more important in people’s life. Many social networking sites encourage users to create their own communities or join other’s communities to interact with other users, but there are information overload problem that users can’t easily find the communities they want to join. And this may pull users back from using the social service.
In this paper, we propose a useful community recommendation approach that combine MF and LTR to model user and community’s preference, and we also incorporate both social information and user-community interactive degree in our method. The result by using a real-world dataset shows that both LTR and social information can help enhance recommendation quality evaluated by coverage and nDCG. We also show that when training pairwise learning to rank model, the recommendation quality can be further improved if one choose the trained pairs wisely. We compare some possible pair selection strategies and found that the most important thing for these pair selections is to recognize the preferable communities for a user. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:43:57Z (GMT). No. of bitstreams: 1 ntu-104-R02725032-1.pdf: 2374958 bytes, checksum: 6c53b839e79759f48a570de2ac07a55a (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv LIST OF FIGURES v LIST OF TABLES vi 1 INTRODUCTION 1 2 RELATED WORK 3 2.1 Collaborative Filtering 3 2.2 Learning to Rank 5 2.3 Community Recommendation 6 3 OUR APPROACH 7 3.1 User-Community Interaction 8 3.2 Quality Pair Selection 8 3.3 Matrix Factorization 10 3.4 Social Factorization 11 3.5 Pairwise Learning with Social Factor 12 4 EXPERIMENT 13 4.1 Data set and Evaluation metric 14 4.2 Parameter Settings 17 4.3 Comparison of Different Pair Selection Strategies 18 4.4 Performance Comparison 20 5 CONCLUSION 24 REFERENCES 25 | |
| dc.language.iso | en | |
| dc.subject | 社交影響 | zh_TW |
| dc.subject | 推薦系統 | zh_TW |
| dc.subject | 成對學習 | zh_TW |
| dc.subject | 社團推薦 | zh_TW |
| dc.subject | 使用者-社團互動 | zh_TW |
| dc.subject | community recommendation | en |
| dc.subject | recommender system | en |
| dc.subject | Learning to rank | en |
| dc.subject | social influence | en |
| dc.subject | pairwise learning | en |
| dc.title | 利用社交資訊及使用者社團互動程度之成對學習社團推薦方法 | zh_TW |
| dc.title | Pairwise Learning for Coummunity Recommendation Utilizing Social Information and User-Community Interaction Degree | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張嘉惠,陳孟彰,蔡銘峰 | |
| dc.subject.keyword | 成對學習,推薦系統,社團推薦,使用者-社團互動,社交影響, | zh_TW |
| dc.subject.keyword | Learning to rank,pairwise learning,recommender system,social influence,community recommendation, | en |
| dc.relation.page | 26 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-12-15 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
