Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51502
標題: 以H-infinity平衡截斷法研究微分代數系統
H-infinity Balanced Truncation Method for Model Reduction of Differential-Algebraic Systems
作者: Wei-Chiao Hsu
許惟喬
指導教授: 容志輝(Chee-Fai Yung)
共同指導教授: 張志中(Chih-Chung Chang)
關鍵字: 廣義代數黎卡提方程,平衡截斷,微分代數方程,描述子系統,模型簡化,間隙度量,零D定理,
generalized algebraic Riccati equations,balanced truncation,differential-algebraic equation,descriptor systems,gap metric,Zero-D Theorem,
出版年 : 2015
學位: 碩士
摘要: 本文透過兩個퐻∞型態的「廣義代數黎卡提方程」將「H∞平衡截斷法」推廣至探討連續時間線性微分代數方程(描述子系統)的模型簡化問題,文中亦估算出了經H∞平衡截斷後的簡化系統與原系統以「間隙度量」為距離之精確誤差;而本文另一大重點為導出了「零D定理」,指出了在連續時間線性描述子系統中,任一給定的線性描述子系統(其D不為零),皆可以等價為另一個(D為零)之線性描述子系統。
In this paper, by two H∞ generalized algebraic Riccati equations ,we generalize the method of H∞ balanced truncation to the problem of model reduction of linear
time-invariant continuous-time differential-algebraic equations (descriptor systems) and we also derive the error of between the reduced system and the original system by using the so-called gap metric. On the other hand, we give and prove a new theorem, Zero-D theorem. According to this theorem, for any given linear time-invariant continuous-time descriptor system with D ≠ 0, it can be equivalent to another linear time-invariant continuous-time descriptor system with D = 0.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51502
全文授權: 有償授權
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.28 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved