Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51502
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor容志輝(Chee-Fai Yung)
dc.contributor.authorWei-Chiao Hsuen
dc.contributor.author許惟喬zh_TW
dc.date.accessioned2021-06-15T13:36:36Z-
dc.date.available2017-02-16
dc.date.copyright2016-02-16
dc.date.issued2015
dc.date.submitted2016-01-27
dc.identifier.citation[1] K. Glover, All optimal Hankel-norm approximations of linear multivariable
systems and their L∞-error bounds, Int. J. Control, 39 (1984), 1115–1193.
[2] E. A. Jonckheere and L. M. Silverman, A new set of invariants for
linear systems–application to reduced order compensator design, IEEE Trans.
Automat. Control, 28 (1983), 953–964.
[3] J.D. Doyle, Guaranteed margins for LQG regulators, IEEE Trans. Automat.
Control, 23 (1978), 756–757.
[4] D. Mustafa and K. Glover, Controller Reduction by H∞-balanced truncation,
IEEE Trans. Automat. Control, 36 (1991), 668–682.
[5] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis,
State-Space Solutions to Standard H2 and H1 Control Problems, IEEE Trans.
Automat. Control, 34 (1989), 831–846.
[6] K. Glover and D. Mustafa, Derivation of the maximum entropy H∞-
controller and a state-space formula for its entropy, Int. J. Control, 50 (1989),
899–916.
[7] J. Bender and A. J. Laub, The Linear-Quadratic Optimal Regulator for
Descriptor System, IEEE Trans. Automat. Control, 23 (1987), 672–688.
[8] D. J. Cobb, Controllability, Observability, and Duality in Singular Systems,
IEEE Trans. Automat. Control, 29 (1984), 1076–1082.
[9] S. L. Campbell, Singular Systems of Differential Equations I, Pitman, New
York, (1980).
[10] S. L. Campbell, Singular Systems of Differential Equations II, Pitman, New
York, (1982).
[11] D. J. Cobb, Feedback and Pole Placement in Descriptor Variable Systems ,
Int. J. Control, 33 (1981), 1135-1146.
[12] D. J. Cobb, Descriptor Variable Systems and Optimal State Regulation ,
IEEE Transactions on Automatic Control, 28 (1983), 601-611.
[13] B. R. Copeland and M. G. Safonov, A Generalized Eigenproblem Solution
for Singular H2 and H1 Problems, Control and Dynamic Systems, 50
(1992), 331-394.
[14] L. Dai, Singular Control Systems, Lecture Notes in Control and Information
Sciences, 118, Springer-Verlag, Berlin, (1989).
[15] D. G. Luenberger, Singular Dynamic Leontieff Systems, Econometrica, 45
(1977), 991–995.
[16] D. G. Luenberger, Dynamic Equations in Descriptor Form, IEEE Trans.
Automat. Control, 22 (1977), 312–321.
[17] K. L. Hsiung, and L. Lee, Lyapunov inequality and Bounded Real Lemma
for Discrete-Time Descriptor Systems, IEE Proc.-Control Theory Appl., 146
(1999), 327-331.
[18] T. Stykel, Gramian-based model reduction for descriptor systems, Math.
Control Signals Systems, 16 (2004), 297–319.
[19] J. Mockel, T. Reis, and T. Stykel, Linear-quadratic Gaussian balancing
for model reduction of differential-algebraic systems, Int. J. Control, 84 (2011),
1627–1643.
[20] A. Kawamoto, K. Takaba, and T. Katayama, On the Generalized
Algebraic Riccati Equation for Continuous-time Descriptor Systems, Linear
Algebra and its Applications, 296 (1999) 1-14.
[21] X. Xin, Strong solutions and maximal solutions of generalized algebraic Riccati
equations, Proceedings of the 47th IEEE COnference on Decision and
COntrol, Cancun, Mexico, (2008) 528-533.
[22] X. Zhang, G.P.Zhong, C. Tan, Existence and representations of stabilizing
solutions to generalized algebraic Riccati equations, Proceedings of the
48th IEEE COnference on Decision and Control, Shanghai, (2009) 5923-5928.
[23] H. S. Wang, C. F. Yung, and F. R. Chang, Bounded Real Lemma and
H1 Control for Descriptor Systems, IEE Proceeding D: Control Theory and
Its Applications, 145 (1998), 316-322.
[24] H. S. Wang, C. F. Yung, and F. R. Chang, H∞ Control for Nonlinear
Descriptor Systems, Lecture notes in control and information sciences, Berlin;
Springer-Verlag, (2006).
[25] C. F. Yung, H.S. Wang, and F.R. Chang, Mixed H2/H∞ control problem
for descriptor systems, J. Chinese. Inst. Engrs., 23 (2000), 749-757.
[26] P. F. Wu and C. F. Yung, On the geometric and dynamic structures of the
H2 optimal and H1 central controllers, Automatica, 46 (2010), 1824-1828.
[27] C. F. Yung, A Geometric Approach to H∞ Controller Reduction and Entropy
Minimization for Descriptor Systems, NSC Report, NSC-102-2221-E-019-052,
(2014).
[28] V. Vidyasagar, The graph metric for unstable plants and robustness estimates
for feedback stability, IEEE Trans. Automat. Control, 29 (2001), 403-
418.
[29] Liu, W., Sreeram, V., Teo, K., and Xie, B. (1997), Normalized Coprime
Factorization for Singular Systems, in Proceedings of the American
Control Conference, Albuquerque, NM, June 4-6, pp. 2125-2126.
[30] Zhou, K., Doyle, J., and Glover, K. (1996), Robust and Optimal
Control, Princeton: Prentice-Hall.
[31] D. Mustafa, K. Glover, Minimum Entropy H1 Control, Lecture Notes
in Control and Information Sciences, Springer-Verlag.
[32] Lancaster, P., and Rodman, L., Algebraic Riccati Equations, Oxford:
Clarendon Press (1955).
[33] Gantmacher, F., Theory of Matrices, Vol. 2, New York: Chelsea(1959).
[34] Dai, L., Singular Control Systems, Vol. 118 of Lecture Notes in Control and
Information Sciences, Berlin, Heidelberg: Springer-Verlag(1989).
[35] Sefton, J., and Ober, R., On the Gap Metric and Coprime Factor Perturbations, Automatica, 29, 723-734(1993).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51502-
dc.description.abstract本文透過兩個퐻∞型態的「廣義代數黎卡提方程」將「H∞平衡截斷法」推廣至探討連續時間線性微分代數方程(描述子系統)的模型簡化問題,文中亦估算出了經H∞平衡截斷後的簡化系統與原系統以「間隙度量」為距離之精確誤差;而本文另一大重點為導出了「零D定理」,指出了在連續時間線性描述子系統中,任一給定的線性描述子系統(其D不為零),皆可以等價為另一個(D為零)之線性描述子系統。zh_TW
dc.description.abstractIn this paper, by two H∞ generalized algebraic Riccati equations ,we generalize the method of H∞ balanced truncation to the problem of model reduction of linear
time-invariant continuous-time differential-algebraic equations (descriptor systems) and we also derive the error of between the reduced system and the original system by using the so-called gap metric. On the other hand, we give and prove a new theorem, Zero-D theorem. According to this theorem, for any given linear time-invariant continuous-time descriptor system with D ≠ 0, it can be equivalent to another linear time-invariant continuous-time descriptor system with D = 0.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:36:36Z (GMT). No. of bitstreams: 1
ntu-104-R01221017-1.pdf: 1306418 bytes, checksum: c798bd5918b3930080259eba73e10800 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
1 Introduction 1
2 Notations and Control Theoretic Preliminaries 5
3 Zero-D Theorem 9
4 Generalized Algebraic Riccati Equations of H∞ type 12
5 Normalized Coprime Factorization Constructed by
Solutions of GAREs 19
6 H∞ Gramians and 퐻∞ Balanced Realizations 23
7 H∞ Balanced Truncation and Truncation Error Estimation 25
8 Numerical Example 28
Bibliography 31
dc.language.isoen
dc.subject間隙度量zh_TW
dc.subject模型簡化zh_TW
dc.subject描述子系統zh_TW
dc.subject模型簡化zh_TW
dc.subject平衡截斷zh_TW
dc.subject平衡截斷zh_TW
dc.subject廣義代數黎卡提方程zh_TW
dc.subject間隙度量zh_TW
dc.subject零D定理zh_TW
dc.subject微分代數方程zh_TW
dc.subject廣義代數黎卡提方程zh_TW
dc.subject微分代數方程zh_TW
dc.subject零D定理zh_TW
dc.subject描述子系統zh_TW
dc.subjectZero-D Theoremen
dc.subjectgeneralized algebraic Riccati equationsen
dc.subjectbalanced truncationen
dc.subjectdifferential-algebraic equationen
dc.subjectdescriptor systemsen
dc.subjectgap metricen
dc.subjectZero-D Theoremen
dc.subjectgeneralized algebraic Riccati equationsen
dc.subjectbalanced truncationen
dc.subjectdifferential-algebraic equationen
dc.subjectdescriptor systemsen
dc.subjectgap metricen
dc.title以H-infinity平衡截斷法研究微分代數系統zh_TW
dc.titleH-infinity Balanced Truncation Method for Model Reduction of Differential-Algebraic Systemsen
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.coadvisor張志中(Chih-Chung Chang)
dc.contributor.oralexamcommittee黃皇男(huang-nan huang)
dc.subject.keyword廣義代數黎卡提方程,平衡截斷,微分代數方程,描述子系統,模型簡化,間隙度量,零D定理,zh_TW
dc.subject.keywordgeneralized algebraic Riccati equations,balanced truncation,differential-algebraic equation,descriptor systems,gap metric,Zero-D Theorem,en
dc.relation.page33
dc.rights.note有償授權
dc.date.accepted2016-01-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
1.28 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved