Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51370
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈聖峰
dc.contributor.authorTsung-Wei Wangen
dc.contributor.author汪琮瑋zh_TW
dc.date.accessioned2021-06-15T13:31:58Z-
dc.date.available2016-03-08
dc.date.copyright2016-03-08
dc.date.issued2016
dc.date.submitted2016-02-02
dc.identifier.citation黃文伯、葛兆年(2011)。哈盆自然保留區屍食性甲蟲物種生物多樣性監測與氣候變遷之關係。環境與生態學報,4(1),17-34。
孫烜駿(2014)。尼泊爾埋葬蟲促進生態棲位擴張。國立台灣大學生物資源暨農學院昆蟲學研究所。
張安瑜(2013)。氣候及生物因子對尼泊爾埋葬蟲與紅胸埋葬蟲海拔分布的影響。國立台灣大學生態學與演化生物學研究所。
藍美琪(2010)。尼泊爾埋葬蟲(Nicrophorus nepalensis)(Coleoptera: Silphidae)野外個體活動時間、空間分布及親代對子代調節與親疏辨認之研究, 國立台南大學環境生態研究所。
Allee, W. C., & Bowen, E. S. (1932). Studies in animal aggregations: mass protection against colloidal silver among goldfishes. Journal of Experimental Zoology, 61(2), 185-207.
Angulo, E., Roemer, G. W., BEREC, L., Gascoigne, J., & Courchamp, F. (2007). Double Allee effects and extinction in the island fox. Conservation Biology, 21(4), 1082-1091.
Angulo, E., Rasmussen, G. S., Macdonald, D. W., & Courchamp, F. (2013). Do social groups prevent Allee effect related extinctions?: The case of wild dogs. Frontiers in zoology, 10(1), 11.
Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O., Swartz, B., Quental, T. B., ... & Mersey, B. (2011). Has the Earth's sixth mass extinction already arrived?. Nature, 471(7336), 51-57.
Bates D, Maechler M, Bolker B & Walker S (2014). lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7.
Birkhead, T. R. (1977). The effect of habitat and density on breeding success in the common guillemot (Uria aalge). The Journal of Animal Ecology, 751-764.
Brooks, B. W., Sodhi, N. S., and Bradshaw, C. J. A. (2008). Synergies among extinction drivers under global change. Trends in Ecology and Evolution 23, 453-460.
Calvert, W. H., Hedrick, L. E., & Brower, L. P. (1979). Mortality of the monarch butterfly (Danaus plexippus L.): avian predation at five overwintering sites in Mexico. Science, 204(4395), 847-851.
Cahill, A. E., Aiello‐Lammens, M. E., Caitlin Fisher‐Reid, M., Hua, X., Karanewsky, C. J., Ryu, H. Y., ... & Wiens, J. J. (2014). Causes of warm‐edge range limits: systematic review, proximate factors and implications for climate change. Journal of biogeography, 41(3), 429-442.
Ceballos, G.. and Ehrlich, P.R. (2002). Mammal population losses and the extinction crisis. Science 296, 904.
Ceballos, G., Ehrlich, P. R., Barnosky, A. D., Garcia, A., Pringle, R. M., & Palmer, T. M. (2015). Accelerated modern human–induced species losses: Entering the sixth mass extinction. Science Advances, 1(5), e1400253.
Chan S. F., Chen, I. C., Zheng, Y. W. & Shen, S. F. Climatic variability promotes asymmetric competition and exclusion in ectotherms. Manuscript submitted for publication.
Chapin, F. S., Walker, B. H., Hobbs, R. J., Hooper, D. U., Lawton, J. H., Sala, O. E., & Tilman, D. (1997). Biotic control over the functioning of ecosystems. Science, 277(5325), 500-504.
Chesson, P. L. (1986). Environmental variation and the coexistence of species. Community ecology, 240, 54.
Courchamp, F., Clutton-Brock, T. and Grenfell, B. (1999). Inverse density dependence and the Allee effect. Trends in Ecology and Evolution 14, 405–410.
Courchamp, F., Clutton‐Brock, T., & Grenfell, B. (2000). Multipack dynamics and the Allee effect in the African wild dog, Lycaon pictus. Animal Conservation, 3(4), 277-285.
Courchamp, F., & Macdonald, D. W. (2001). Crucial importance of pack size in the African wild dog Lycaon pictus. Animal Conservation, 4(02), 169-174.
Diamond, J. M., Ashmole, N. P., & Purves, P. E..(1989). The Present, past and future of human-caused extinctions. Philosophical Transactions of the Royal Society of London. Series B, BiologicalSciences 325, 469–477.
Donovan, S. E., Hall, M. J. R., Turner, B. D., & Moncrieff, C. B. (2006). Larval growth rates of the blowfly, Calliphora vicina, over a range of temperatures. Medical and veterinary entomology, 20(1), 106-114.
Eggert, A.-K. & Muller, J. K. (1992). Joint breeding in female burying beetles. Behavioral Ecology and Sociobiology 31, 237-242.
Foster, S. A. (1987). Acquisition of a defended resource: a benefit of group foraging for the neotropical wrasse, Thalassoma lucasanum. Environmental biology of fishes, 19(3), 215-222.
Gibbs, J. P., & Stanton, E. J. (2001). Habitat fragmentation and arthropod community change: carrion beetles, phoretic mites, and flies. Ecological Applications, 11(1), 79-85.
Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. (2013). “High-Resolution Global Maps of 21st-Century Forest Cover Change.” Science, 342,850–53.
Hwang, W. 2006. Konkurrenz und Aasnutzung necrophager und necrophiler Kafer in Nord-und Sudtaiwan: mit einem Beitrag zur Biologie von Nicrophorus nepalensis Hope (Coleoptera: Silphidae), Albert-Ludwigs-Universitat Freiburg.
Keitt, T. H., Lewis, M. A., & Holt, R. D. (2001). Allee effects, invasion pinning, and species’ borders. The American Naturalist, 157(2), 203-216.
Kokko, H., & Sutherland, W. J. (2001). Ecological traps in changing environments: ecological and evolutionary consequences of a behaviourally mediated Allee effect. Evolutionary Ecology Research, 3(5), 603-610.
Kramer, A. M., Dennis, B., Liebhold, A. M., & Drake, J. M. (2009). The evidence for Allee effects. Population Ecology, 51(3), 341-354.
Kuparinen, A., & Hutchings, J. A. (2014). Increased natural mortality at low abundance can generate an Allee effect in a marine fish. Royal Society Open Science, 1(2), 140075.
Kruuk, H. (1972). The spotted hyena: a study of predation and social behavior.
Leakey, R. E. (1995). The sixth extinction: patterns of life and the future of humankind. Doubleday Books.
Lootvoet, A. C., Philippon, J., & Bessa-Gomes, C. (2015). Behavioral Correlates of Primates Conservation Status: Intrinsic Vulnerability to Anthropogenic Threats. PloS one, 10(10), e0135585.
Myers, R. A., Barrowman, N. J., Hutchings, J. A., & Rosenberg, A. A. (1995). Population dynamics of exploited fish stocks at low population levels. SCIENCE-NEW YORK THEN WASHINGTON-, 1106-1106.
Neill, S. R. J., & Cullen, J. M. (1974). Experiments on whether schooling by their prey affects the hunting behaviour of cephalopods and fish predators. Journal of Zoology, 172(4), 549-569.
Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D., Descimon, H., ... & Tennent, W. J. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399(6736), 579-583.
Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., ... & Leemans, R. (2000). Global biodiversity scenarios for the year 2100. science, 287(5459), 1770-1774.
Sexton, J. P., McIntyre, P. J., Angert, A. L., & Rice, K. J. (2009). Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40:415-36
Scott MP, Gladstein D. (1993). Calculating males? An empirical and theoretical examination of the duration of paternal care in burying beetles. Evol. Ecol. 7, 362-78
Scott MP. (1994). Competition with flies promotes communal breeding in the burying beetle, Nicrophorus tomentosus. Behav. Ecol. Sociobiol. 34, 367–74
Scott MP. (1996). Communal breeding in burying beetles. Am. Sci. 84, 376–82
Scott, M.P. (1998). The ecology and behavior of burying beetles. Annual Review of Entomology 43, 595-618.
Shen, S. F., Chen, H. C., Vehrencamp, S. L., & Yuan, H. W. (2010). Group provisioning limits sharing conflict among nestlings in joint-nesting Taiwan yuhinas. Biology letters, 6(3), 318-321.
Sikes, D. S., Trumbo, S. T., & Madge, R. B. (2006). Revision of Nicrophorus in part: new species and inferred phylogeny of the nepalensis-group based on evidence from morphology and mitochondrial DNA (Coleoptera: Silphidae: Nicrophorinae). Invertebrate Systematics, 20(3), 305-365.
Skaug H, Fournier D, Bolker B, Magnusson A & Nielsen A (2015). Generalized Linear Mixed Models using 'AD Model Builder'. R package version 0.8.3.2.
Stephens, P.A. and Sutherland, W.J. (1999). Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol. 14, 401-405.
Stephens, P.A., Sutherland, W.J. and Freckleton, R.P. (1999). What is the Allee effect? Oikos. 87:1. 185-190.
Sun, S. J., Rubenstein, D. R., Chen, B. F., Chan, S. F., Liu, J. N., Liu, M., ... & Shen, S. F. (2014). Climate-mediated cooperation promotes niche expansion in burying beetles. eLife, 3, e02440.
Sutherland, W. J. (1998). The importance of behavioural studies in conservation biology. Animal behaviour, 56(4), 801-809.
Taniguchi, Y., & Nakano, S. (2000). Condition-specific competition: implications for the altitudinal distribution of stream fishes. Ecology, 81(7), 2027-2039.
Tilman, D., May, R. M., Lehman, C. L., & Nowak, M. A. (1994). Habitat destruction and the extinction debt. Nature 371, 65-66.
Treherne, J. E., & Foster, W. A. (1980). The effects of group size on predator avoidance in a marine insect. Animal Behaviour, 28(4), 1119-1122.
Vercken, E., Kramer, A. M., Tobin, P. C., & Drake, J. M. (2011). Critical patch size generated by Allee effect in gypsy moth, Lymantria dispar (L.). Ecology letters, 14(2), 179-186.
Wake, D. B., & Vredenburg, V. T. (2008). Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences, 105(Supplement 1), 11466-11473.
Wilson, E. O. (2012). The social conquest ofearth. New York: Liveright.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51370-
dc.description.abstract人類活動造成的棲地改變除了影響環境的非生物因子,也可能改變生物之間的互動,進而影響物種分佈或存續。在探討限制物種分佈的因子時,較多研究支持非生物因子,支持生物因子則較少,主要機制為種間競爭,種內的互動則鮮少被提及。種內互動可能的機制是艾里效應,其描述當族群密度下降時,族群內個體的適存度跟著下降的現象,理論上會因棲地改變影響族群密度而發生。然而鮮有研究討論棲地改變與物種分佈範圍的關係時,同時考慮上述三種因子。尼泊爾埋葬蟲(Nicrophorus nepalensis)在台灣的中部橫貫公路廣泛地分佈,而在中橫西部有大規模的開墾,東部則無,剛好適合我們測試棲地改變如何透過生物與非生物因子造成此分佈改變。我們提出了(1)微氣候條件假說:棲地改變影響微氣候因子而限制了物種的生理;(2)種間競爭假說:棲地改變提高競爭者競爭能力或增加競爭者數量而增加了種間競爭壓力;(3)艾里效應假說:棲地改變致使族群密度下降,影響物種在環境壓力下的表現,進而改變物種分佈。我們在兩地沿著海拔進行尼泊爾埋葬蟲密度調查與繁殖實驗,以繁殖成功定義分佈範圍。發現相同微氣候條件下,東部繁殖範圍較廣,同時東部種間競爭壓力較大,故拒絕了前兩項假說。我們發現東部族群密度較高,族群密度與繁殖群大小呈正相關,而在海拔較低處群大小又與成功率呈正相關。在兩區域沿海拔操作繁殖個體數以模擬高與低密度條件則發現,在海拔較低處,皆是放入6隻個體共同繁殖時較僅2隻時繁殖成功率高,且兩樣區沿著海拔操作密度的趨勢相同,證明造成兩區域埋葬蟲分佈與繁殖差異的關鍵因子在於族群密度,證實艾里效應假說。我們的研究顯示,棲地改變對埋葬蟲的分佈造成影響,並非直接由非生物因子或種間競爭造成,而是透過降低族群密度,使埋葬蟲溫度高競爭壓力較強的海拔無法對抗其競爭對手,限縮了埋葬蟲可繁殖的海拔下界。我們的結果闡明了種內生物因子也是棲地改變影響族群分佈不可或缺的機制,因此保育研究應當更全面地探討生物之間以及生物與環境的關係,方能有效避免生物多樣性持續快速消失。zh_TW
dc.description.abstractHabitat alteration impacts the distribution of species and population dynamics through changing biotic or abiotic factors. Most studies have focused on the changes in abiotic factors, such as temperature, when considering the effect of habitat alteration on species distribution. The role of biotic factors, such as interspecific competition, remains largely unexplored. Furthermore, there are even fewer studies investigating the synergistic effects among abiotic, inter- and intraspecific factors on the distribution of species. Here, we used the burying beetle, Nicrophorus nepalensis, a widely distributed cooperatively breeding species, to study the ecological impact of habitat alteration on the distribution of species. Our study was conducted along two elevational gradients in the central cross-island highway of Taiwan, where the habitats on the west side are extensively altered but nature forests on the east side remain intact. Specifically, we test three alternative, but non-mutually exclusive, hypotheses: (1) “microclimate condition hypothesis”, which means that microclimate alteration in the habitat limits the reproduction of N. nepalensis; (2) “inter-specific competition hypothesis”, which argues that habitat alteration enhances the competitive ability of interspecific competitor, flies; and (3) the “Allee effect hypothesis”, which states that habitat alteration decreases the population density of N. nepalensis, which, in turn, impacts its competitive ability against the flies. Our results showed that, by comparing the microclimate data and group size of flies in natural forests along the two elevational gradients, we rejected the first two hypotheses because the microclimate conditions of the two elevational gradients were similar and the numbers of the flies on the east side were even larger than it was on the west side. Interestingly, we found that the group size was positively correlated with the population density of N. nepalensis, and the probability of successful breeding was positively correlated with the group size of N. nepalensis at the lower elevation. Also, we experimentally manipulated the population density by placing high density (three males and three females) and low density ( one male and one female) in the breeding boxes in the field at two gradients. We found that the probabilities of successful breeding were the same between the two gradients, where the high-density treatment had a higher successful rate than the low-density treatment, small group, supporting the Allee effect hypothesis. In conclusion, our experiment shows that habitat alteration negatively impacts the fitness of burying beetles and, thus, limits their elevational distribution through lowering their population density, which leads to Allee effect and weakens their interspecific competitive ability against flies. Our study, therefore, demonstrates that understanding the synergistic effect of biotic and abiotic factors is crucial for determining the ecological impacts of habitat alteration and conservation.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:31:58Z (GMT). No. of bitstreams: 1
ntu-105-R02b44022-1.pdf: 10253908 bytes, checksum: 74293cab32ce9a200e1bffe258869da4 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
目錄 vii
圖目錄 ix
表目錄 x
前言 1
材料與方法 5
研究物種 5
野外尼泊爾埋葬蟲密度與分佈調查 5
實驗設計 5
實驗裝置 6
自然狀況下尼泊爾埋葬蟲的繁殖表現 6
實驗設計 6
實驗裝置 7
影片觀察 7
操作尼泊爾埋葬蟲在不同族群密度下的繁殖表現 8
實驗設計 8
實驗裝置 8
統計方法與資料處理 9
研究結果 12
東西部微氣候條件的比較 12
尼泊爾埋葬蟲的族群密度 12
尼泊爾埋葬蟲在自然狀況下的繁殖表現 13
東西兩側沿海拔操作尼泊爾埋葬蟲密度的繁殖表現 15
討論 18
結論 23
參考文獻 24
dc.language.isozh-TW
dc.subject尼泊爾埋葬蟲zh_TW
dc.subject棲地改變zh_TW
dc.subject分佈限制zh_TW
dc.subject非生物因子zh_TW
dc.subject生物因子zh_TW
dc.subject艾里效應zh_TW
dc.subject合作生殖zh_TW
dc.subject棲地改變zh_TW
dc.subject分佈限制zh_TW
dc.subject非生物因子zh_TW
dc.subject生物因子zh_TW
dc.subject艾里效應zh_TW
dc.subject合作生殖zh_TW
dc.subject尼泊爾埋葬蟲zh_TW
dc.subjectHabitat alterationen
dc.subjectAbiotic factoren
dc.subjectAllee effecten
dc.subjectCooperative breedingen
dc.subjectBurying beetlesen
dc.subjectHabitat alterationen
dc.subjectRange limiten
dc.subjectBiotic factoren
dc.subjectAbiotic factoren
dc.subjectAllee effecten
dc.subjectCooperative breedingen
dc.subjectBurying beetlesen
dc.subjectRange limiten
dc.subjectBiotic factoren
dc.title棲地改變與艾里效應對尼泊爾埋葬蟲海拔分布範圍之影響zh_TW
dc.titleEffect of habitat alteration and Allee effect on the elevational distribution in burying beetles (Nicrophorus nepalensis)en
dc.typeThesis
dc.date.schoolyear104-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王慧瑜,謝志豪,許鈺鸚,陳一菁
dc.subject.keyword棲地改變,分佈限制,非生物因子,生物因子,艾里效應,合作生殖,尼泊爾埋葬蟲,zh_TW
dc.subject.keywordHabitat alteration,Range limit,Biotic factor,Abiotic factor,Allee effect,Cooperative breeding,Burying beetles,en
dc.relation.page47
dc.rights.note有償授權
dc.date.accepted2016-02-02
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
10.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved