Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5127
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭朱杏(Chuhsing Kate Hsiao)
dc.contributor.authorChian-Wei Chenen
dc.contributor.author陳建瑋zh_TW
dc.date.accessioned2021-05-15T17:52:17Z-
dc.date.available2019-10-20
dc.date.available2021-05-15T17:52:17Z-
dc.date.copyright2014-10-20
dc.date.issued2014
dc.date.submitted2014-08-11
dc.identifier.citation1. Anindya Bhattacharya and Rajat K. De. 2009. Bi-correlation clustering algorithm for determining a set of co-regulated genes. Bioinformatics, 25:21,2795-2801
2. Yizong Cheng and George M. Church. 2000. Biclustering of Expression Data. In Book Biclustering of Expression Data. 93–103
3. Ihmels J and Friedlander G et al. 2002. Revealing modular organization in the yeast transcriptional network. Nature Genetics, 31, 370–377
4. Ihmels J and Sven Bergmann et al. 2004. Defining transcription modules using large-scale gene expression data. Bioinformatics, 20, 1993–2003
5. Li Li and Yang Guo et al. 2012. A comparison and evaluation of five biclustering algorithms by quantifying goodness of biclusters for gene expression data. BioData Mining 5:8
6. Sara C. Madeira and Arlindo L. Oliveira. 2004. Biclustering Algorithms for Biological Data Analysis: A Survey. Ieee transactions on computational biology and bioinformatics. 1:1
7. Amela Prelić and Stefan Bleuler et al. 2006. A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22:1122–1129
8. Udi Ben Porat and Ophir Bleiberg. 2006. Analysis of Biological Networks:Network Modules – Clustering and Biclustering. Lecturer: Roded Sharan
9. Anja Wille and Philip Zimmermann et al. 2004. Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. Genome Biology 2004, 5:R92
10. Amos Tanay and Roded Sharan et al. 2002. Discovering statistically significant biclusters in gene expression data. Bioinformatics, 18 Suppl. 1. S136–S144
11. Thilmony R and Underwood W et al. 2006. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. The Plant Journal 46, 34–53
12. https://www.arabidopsis.org/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5127-
dc.description.abstract雙分群分析方法近年來在統計學上是相當重要的分析工具,特別是在歸類哪些基因在某些特定實驗下會有相似的基因表現。雙分群分析目標是找出哪些基因在一個特定實驗集合下的基因表現會有相同表現趨勢。先前研究大多是類別分析方法的推廣,集中研究於基因在所有的實驗條件之間的相似性。在本篇論文當中我們提出利用基因表達之間的相關性矩陣以及實驗條件之間的相關性矩陣降維進行雙分群分析,簡稱BiCor。利用這兩個相關性矩陣,每次的迭代運算都會刪除最不相關的基因或實驗條件。根據預先指定的收斂條件,結果會得到較小的矩形陣列,此矩形陣列裡的基因表現從基因角度以及實驗條件角度看來都有相似的趨勢。我們更進一步定義真實偵測率(TDR)與成功被偵測率(DTR)用來評估BiCor的表現。最後利用模擬試驗與實際資料進行分析,比較BiCor和其他現有雙分群分析方法優劣。zh_TW
dc.description.abstractBiclustering has become an important analytical tool in recent statistical practice, particularly when it is of interest to group genes under certain experimental conditions. The goal of such biclustering analysis is to identify sets of genes sharing similar expression patterns across subsets of samples. Previous developed approaches were mostly extensions of clustering methods and thus focused more on similarity between genes across all experimental conditions. Here we proposed a bicluster algorithm via correlation matrices, called BiCor, between gene expression patterns and between conditions. Each of these two matrices was visited iteratively to remove the most irrelevant genes or conditions. Under a pre-specified convergence criterion, the resulting smaller rectangular contains expression levels that are considered similar at both the gene and the condition level. We further defined the true discovery rate (TDR) and discovered true rate (DTR) to assess the performance of the proposed algorithm. Simulation studies and applications were conducted to evaluate and compare the proposed BiCor with other existing algorithms.en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:52:17Z (GMT). No. of bitstreams: 1
ntu-103-R01849006-1.pdf: 732947 bytes, checksum: 61cfe146d67c6da3aef969f5a2887fe1 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
List of Tables v
List of Figures vi
List of Appendices vii
Introduction 1
Method 4
Simulation 11
Application 17
Discussion 21
References 24
Appendix 42
dc.language.isoen
dc.subject基因表現zh_TW
dc.subject雙分群zh_TW
dc.subject相關性zh_TW
dc.subjectBiclusteren
dc.subjectcorrelationen
dc.subjectgene expressionen
dc.title利用相關性矩陣降維進行雙分群分析:以基因表現資料為例zh_TW
dc.titleA biclustering method with correlation matrix for gene expression profilingen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭柏秀(Po-Hsiu Kuo),李美賢(Mei-Hsien Lee)
dc.subject.keyword雙分群,相關性,基因表現,zh_TW
dc.subject.keywordBicluster,correlation,gene expression,en
dc.relation.page44
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-08-12
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf715.77 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved