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中文摘要 

雙分群分析方法近年來在統計學上是相當重要的分析工具，特別是在歸類哪

些基因在某些特定實驗下會有相似的基因表現。雙分群分析目標是找出哪些基因

在一個特定實驗集合下的基因表現會有相同表現趨勢。先前研究大多是類別分析

方法的推廣，集中研究於基因在所有的實驗條件之間的相似性。在本篇論文當中

我們提出利用基因表達之間的相關性矩陣以及實驗條件之間的相關性矩陣降維

進行雙分群分析，簡稱 BiCor。利用這兩個相關性矩陣，每次的迭代運算都會刪

除最不相關的基因或實驗條件。根據預先指定的收斂條件，結果會得到較小的矩

形陣列，此矩形陣列裡的基因表現從基因角度以及實驗條件角度看來都有相似的

趨勢。我們更進一步定義真實偵測率（TDR）與成功被偵測率（DTR）用來評估

BiCor 的表現。最後利用模擬試驗與實際資料進行分析，比較 BiCor 和其他現有

雙分群分析方法優劣。 

 

關鍵字: 雙分群, 相關性, 基因表現 
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Abstract  

Biclustering has become an important analytical tool in recent statistical practice, 

particularly when it is of interest to group genes under certain experimental conditions. 

The goal of such biclustering analysis is to identify sets of genes sharing similar 

expression patterns across subsets of samples. Previous developed approaches were 

mostly extensions of clustering methods and thus focused more on similarity between 

genes across all experimental conditions. Here we proposed a bicluster algorithm via 

correlation matrices, called BiCor, between gene expression patterns and between 

conditions. Each of these two matrices was visited iteratively to remove the most 

irrelevant genes or conditions. Under a pre-specified convergence criterion, the 

resulting smaller rectangular contains expression levels that are considered similar at 

both the gene and the condition level. We further defined the true discovery rate (TDR) 

and discovered true rate (DTR) to assess the performance of the proposed algorithm. 

Simulation studies and applications were conducted to evaluate and compare the 

proposed BiCor with other existing algorithms.  

 

Key words: Bicluster, correlation, gene expression 
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Introduction 

In recent years, there have been various efforts to overcome the limitations of 

standard clustering approaches for the analysis of gene expression data by grouping 

genes and experimental conditions simultaneously. Such analyses are usually called 

biclustering and are used to identify sets of genes sharing similar expression patterns 

across subsets of samples, meaning the genes may work together under these 

conditions. Biclustering methods can be used not only in gene expression profiling 

data but also in other biological data.  

Biclustering is a method that identifies sets of genes sharing similar expression 

patterns across subsets of experiment conditions. The difference between traditional 

clustering and biclustering algorithm is that the clustering method clusters only rows 

or only columns in a data matrix; while the biclustering method clusters rows and 

columns simultaneously. With biclustering, genes belonging to different groups of 

conditions may be identified. In addition, a gene functions under different experiment 

conditions can be identified if it is grouped in different biclusters.   

In contrast, cluster analysis was used to group a set of objects such as subjects 

who behave similarly in one group than in others. The main purpose of cluster 

analysis is exploratory data mining. There are many cluster analysis methods such as 

K-means, hierarchical clustering, Independent component analysis (ICA) and 
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Principal component analysis (PCA). These methods have been applied in many fields, 

such as bioinformatics (gene expression data), machine learning, image analysis and 

pattern recognition. An underlying assumption of cluster analysis is that the grouped 

objects (subjects or genes) behave similarly across all experiment conditions 

(measurement), treating all conditions exchangeable. In reality, however, genes tend 

to co-regulate in some experiment conditions but not in all experiment conditions. In 

this case, therefore, a biclustering algorithm would serve the purpose better than a 

clustering algorithm.   

 The idea of biclustering was first proposed by Hartigan (1972). Currently there 

are four biclustering algorithms widely used in research, ߜ-size bicluster, Cheng and 

Church’s algorithm (CC, Cheng et al., 2000), Statistical-Algorithmic Method of 

Bicluster Analysis (SAMBA, Tanay et al., 2002), Iterative Signature Algorithm (ISA, 

Ihmels et al., 2002, 2004), and Binary inclusion-maximal biclustering algorithm 

(Bimax, Prelic´ et al., 2006). A special feature of CC is that it was applied under a 

fixed ߜ size of bicluster. This fixed ߜ size denotes the upper limit of the mean squared 

residual (MSR) of the bicluster.	For	SAMBA, it	uses	bipartite	graph	and	binomial	

distribution	to	find	the	potential	bicluster.	For	ISA,	its	pros	is	that	ISA	uses	

iterative	method	to	see	if	the	output	bicluster	wiil	be	the	same	when	different	

initial	genes	are	considered	as	input.	The	advantage	of	BiMax is that BiMax can 
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find the largest number of biclusters because BiMax searches every possible biclusters. 

These four methods did not consider correlation between genes or between conditions 

but assumed genes independent and experiment conditions independent as well. In 

fact, genes may co-express in a condition but not in other conditions, leading to 

correlation between conditions for this certain set of genes. Hence, correlation is an 

important and intuitive characteristic that should be accounted for in biclustering 

algorithms.   

  In this paper, we calculate first the gene-gene and condition-condition correlation 

matrices, and then iteratively reduce the size to a bicluster if the criterion is satisfied. 

One advantage of the proposed BiCor is that the algorithm does not need to be 

normalized because the operation of correlation matrices is not affected by the 

original scales. Next, we carried out simulations and compare BiCor with other 

biclustering algorithms. Finally we conclude with a discussion and conclusion. 
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Method  

Notations 

Let *n mA  be the data matrix of gene expressions from n  genes 

1 2 3{ , , ,..., }nG G G G  and m  experiment conditions 1 2 3{ , , ,..., }mC C C C . Each row 

vector ix , 1,...,i n  of the matrix *n mA  is of dimension 1 m  , and can be written 

as 1 2( , ,..., )i i i img g gx  where ijg  stands for the expression level of the gene iG  

under the condition jC . Similarly, each column vector jy , 1,...,j m  of the matrix 

*n mA  is of dimension 1n  , and can be written as 1 2( , ,..., )j j j njg g gy  standing 

for the gene expression levels of genes 1 2 3{ , , ,..., }nG G G G  under the same condition 

jC .  Thus the matrix *n mA  is   

11 1

*

1

m

n m

n nm

g g

A

g g

 
   
 
 


  


. 

  Our algorithm use Pearson correlation coefficient to measuring similarity 

between expression patterns of two genes iG  and 'iG  or between two conditions 

jC  and 'jC . For instance, the Pearson correlation coefficient between iG  and 'iG is 

defined as : 

' '
1

' '

2 2
' '

1 1

( )( )
( , ) ( , )

( ) ( )

m

il i i l i
l

i i i i m m

il i i l i
l l

g g g g
Corr G G Corr

g g g g



 

 
 

 



 
x x .          (1) 

Here the ilg  and 'i lg  are the l -th expression value of the i -th gene and 'i -th 
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gene, and the ig  and 'ig  are the mean values over m  expression values of the i

-th gene and 'i -th gene. Since there are n  genes in total, the gene-gene correlation 

matrix becomes an n n  matrix  n n ij n n
G g 

 . 

The correlation between conditions jC  and 'jC  is defined in a similar way,  

' '
1

' '

2 2
' '

1 1

( )( )
( , ) ( , )

( ) ( )

m

lj j lj j
l

j j j j m m

lj j lj j
l l

g g g g
Corr C C Corr

g g g g



 

 
 

 



 
y y .  

And the resulting column-column correlation matrix  m m ij m m
C c 

  is of dimension 

m m .  

 A bicluster kB  can be defined as a subset of genes kI  possesing a similar 

behavior over a subset of experiment conditions (measurements) kJ . Thus, a bicluster 

kB  can be represented as ( , )k k kB I J . This bicluster ( , )k k kB I J  contains a 

subset 1 2 3( { , , ,..., })k k nI I G G G G  of genes and a subset 1 2 3( { , , ,..., })k k mJ J C C C C  

of experiment conditions where each gene in kI  is correlated with a correlation value 

greater than or equal to a pre-specified threshold ( gene  or condition ), with all other 

genes in kI  over the measurements in kJ  . That is, ( ) ( )
'| ( , ) |k k

i i geneCorr x x  if both 

gene i  and gene 'i  belong to kI ) and ( ) ( )
'| ( , ) |k k

j j conditionCorr y y  if the conditions 

j  and 'j  are in the same subset. Note that we used the notations ( )k
ix  and ( )k

jy  to 

indicate that the correlations are measured over the genes and conditions in the 

corresponding bicluster kB  only, not over the original n  genes and m  experiment 
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conditions.  

Algorithm 

 The proposed algorithm starts with the expression matrix *n mA  with n  genes 

and m  experiment conditions. For the purpose of illustration, we first perform our 

bicluster algorithm on the column-column correlation matrix.   

Step 1: Calculate the column-column correlation matrix m mC   and identify the pair 

with the minimum absolute value of correlation. For example, if conditions 

jC  and 'jC  has the minimum absolute value of correlation in the 

column-column correlation matrix m mC  . Then delete one of the pair ( jC , 'jC ) 

whose summation of absolute correlation values over rows, 
1

| |
n

jk
k

c

  or 

'
1

| |
n

j k
k

c

 , is smaller. After removing one condition, the original expression 

data matrix would be reduced to the matrix (1)
( 1)n mA   .    

Step 2: For the remaining n  genes and 1m  experiment conditions, calculate the 

row-row correlation matrix (1)
n nG   and identify the pair of genes 

corresponding to the minimum absolute value of correlation. For instance, if 

iG  and 'iG  has the smallest absolute value of correlation in the row-row 

correlation (1)
n nG  , then compute the two sums of correlations, 

1

| |
m

ik
k

r

  and 

'
1

| |
m

i k
k

r

 , and remove either iG  or 'iG  with the smaller value. The original 

expression matrix is now updated to (2)
( 1) ( 1)n mA    .   
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Step 3: Repeat Steps 1 and 2 until every absolute value of correlation in the 

column-column correlation matrix and row-row correlation matrix is greater 

than or equal to a pre-specified threshold ( gene
 or condition ). The resulting 

matrix then leads to a bicluster ( , )k k kB I J  where 
( ) ( )

'| ( , ) |k k
i i geneCorr x x

 

if gene i and gene 
'i  belong to kI  and 

( ) ( )
'| ( , ) |k k

j j conditionCorr y y
 if 

conditions j  and 
'j  belong to kJ . 

If we start the bicluster algorithm from the row-row correlation matrix, then step 

2 will be performed as an initial step before step 1. The Steps are as follows: 

Step 1: Calculate the row-row correlation matrix n nG   and identify the pair with the 

minimum absolute value of correlation. For example, if genes jG  and 'jG  

has the minimum absolute value of correlation in the row-row correlation 

matrix n nG  . Then delete one of the pair ( jG , 'jG ) whose summation of 

absolute correlation values over rows, 
1

| |
n

jk
k

r

  or '

1

| |
n

j k
k

r

 , is smaller. After 

removing one condition, the original expression data matrix would be 

reduced to the matrix (1)
( 1)n mA   .    

Step 2: For the remaining 1n  genes and m  experiment conditions, calculate the 

column-column correlation (1)
m mC   and identify the pair of conditions 

corresponding to the minimum absolute value of correlation. For instance, if 

iC  and 'iC  has the smallest absolute value of correlation in the 
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column-column correlation (1)
m mC  , then compute the two sums of correlations, 

1

| |
n

jk
k

c

  or '

1

| |
n

j k
k

c

 , and remove either iC  and 'iC  with the smaller value. 

The original expression matrix is now updated to (2)
( 1) ( 1)n mA    . 

Step 3: Repeat Steps 1 and 2 until every absolute value of correlation in the 

column-column correlation matrix and row-row correlation matrix is greater 

than or equal to a pre-specified threshold ( gene
 or condition ). The resulting 

matrix then leads to a bicluster ( , )k k kB I J  where 
( ) ( )

'| ( , ) |k k
i i geneCorr x x

 

if gene i and gene 
'i  belong to kI  and 

( ) ( )
'| ( , ) |k k

j j conditionCorr y y
 if 

conditions j  and 
'j  belong to kJ . 

It is worth noting that no matter which direction (row or column) we start with, 

the resulting DTR differs by only 0.02, and the selected rows and columns in the 

identified bicluster only differ by 1-2 rows or 1-2 columns.  

Choice of Thresholds  

  We propose three choices for both the threshold gene  and condition . The first one 

is user-defined. Since the correlation between expression levels in a bicluster may 

depend on the strains of cells considered in the study and the treatments applied on the 

cells, expert’s opinion on the degree of correlation should be ascertained and to 

construct the threshold values. For example, one researcher may prefer gene =0.3 and 

condition =0.5 in the algorithm; while another may select a more strict standard as gene
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=0.5 and condition =0.5.  

The second choice is data-dependent. For example, one may consider the 75th, 

85th or 95th percentile of the correlations in the column-column (or row-row) 

correlation matrix as the threshold. Two advantages are associated with this choice. 

First, such choice would be practical especially when no expert knowledge is 

available. Second, the different percentiles may help to investigate the sensitivity of 

the final biclusters in the threshold values. In the rest of the paper, we adopt this 

choice and will carry out comparison for different choices.   

The third choice is also data-dependent but requires prior statistical inference 

from a mixture model. Under the assumption that the correlations in the 

column-column (or row-row) correlation matrix consists of a bicluster and noise, we 

use the mixtools package in R software to fit a mixture model of two normal 

components. The threshold is then determined as the value where two normal density 

functions intersect. Figure 1 is an illustration of a mixture model for correlations using 

data ( 100 100S  ) randomly selected from 200 200A   with seed 1. A two-component normal 

mixture model was then fitted as the figure showed. We can see that there were two 

distributions in the mixture model, where the proportion of the red distribution was 

84%. The mean of the red distribution was 0.018, while the mean for the green 

distribution was 0.15. The intersection occurs at correlation=0.18. If there are three 
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biclusters in data, then there will be three correlation distributions in the mixture 

model. In this case, we can find the rightmost bicluster first, with one pair of 

thresholds in the proposed algorithm, and then use the remaining data (the left part of 

the histogram of correlations) to undergo further biclustering procedure to separate the 

rest two distributions.  
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Simulation  

Simulation settings  

To evaluate the performance of the proposed biclustering algorithm and to 

compare with other existing methods such as CC, Bimax, and ISA, we performed 

simulation studies. First we constructed a larger population matrix of expression 

levels 200 200A   containing a true bicluster 50 50B   as well as other noises. Let 50 50B 

denote the expression levels from 50 truly clustered genes and 50 clustered conditions. 

The expression levels in 50 50B   were generated in a conditional fashion, where the 

first random vector in 50 50B   was from a multivariate normal distribution  

50*50

50*50

1 0.5 0.5

( , 0.5 0.5 )

0.5 0.5 1

MVN

 
    
 
 

0  , 

and the other random vectors were from another multivariate normal with a 

conditional mean vector of the first generated random vector. Such conditioning was 

to ensure that the correlations between genes '( , )i i
Corr x x  would be no less than 0.3 

( '( , ) 0.3i i
Corr x x ); while the correlation between conditions would be around 0.5. 

The reason for a larger threshold for the correlations between conditions was because, 

in thereal data, the correlation among genes was smaller than the correlation between 

conditions. For the remaining components in 200 200A  , they were all generated from a 

standard normal distribution. The large population matrix 200 200A   now contained 200 
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genes and 200 conditions. All the generations were carried out with mvtnorm package 

in R software.  

Next we selected randomly 100 gene samples under 100 conditions from the 

population matrix 200 200A   with 30 genes and 30 conditions from the true bicluster 

50 50B   to form a sample matrix 100 100S  . This sample matrix was then analyzed with 

BiCor and other biclutsering algorithms. Such replications were carried out 100 times 

and the resulting identified biclsuters were collected for comparison. Another 

simulation setting selected 15 genes and 20 conditions from 50 50B   to evaluate the 

performance.   

Criteria for performance evaluation  

 To evaluate the performance of bicluster algorithm, Li considered gene ontology 

weighted enrichment score and protein-protein interaction score (Li et al., 2012), 

Prelic considered proportion of disconnected gene pairs and average shortest distance 

in the graph for metabolic pathway map (MPM) for A. thaliana and a protein–protein 

interaction network (PPI) for S. cerevisiae (Prelic A. et al., 2006). Here we proposed 

two criterion for performance evaluation. The first one is true discovery rate (TDR). It 

indicates the proportion of the true bicluster among the identified bicluster,  

	ݏ݁݊݁݃	݂݋	݁ݐܽݎ	ݕݎ݁ݒ݋ܿݏ݅݀	݁ݑݎܶ

ൌ
ݎ݁ݐݏݑ݈ܾܿ݅	݂݀݁݅݅ݐ݊݁݀݅	݄݁ݐ	݊݅		ݏ݁݊݁݃	݁ݑݎݐ	݂݋	ݎܾ݁݉ݑ݊
ݎ݁ݐݏݑ݈ܾܿ݅	݂݀݁݅݅ݐ݊݁݀݅	݄݁ݐ	݊݅	ݏ݁݊݁݃	݂݋	ݎܾ݁݉ݑ݊
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ݏ݊݋݅ݐ݅݀݊݋ܿ	݂݋	݁ݐܽݎ	ݕݎ݁ݒ݋ܿݏ݅݀	݁ݑݎܶ

ൌ
ݎ݁ݐݏݑ݈ܾܿ݅	݂݀݁݅݅ݐ݊݁݀݅	݄݁ݐ	݊݅	ݏ݊݋݅ݐ݅݀݊݋ܿ	݁ݑݎݐ	݂݋	ݎܾ݁݉ݑ݊

ݎ݁ݐݏݑ݈ܾܿ݅	݂݀݁݅݅ݐ݊݁݀	݄݁ݐ	݊݅	ݏ݊݋݅ݐ݅݀݊݋ܿ	݂݋	ݎܾ݁݉ݑ݊
 

The bigger the true discovery rate of genes (or conditions) is, the better the 

identified bicluster. A value close to 1 implies a large proportion of true genes (or 

conditions) in the identified bicluster. This measure, however, cannot evaluate if the 

identified bicluster recovers most of the original true bicluster. Therefore, we propose 

the second criterion discovered true rate (DTR).  

	ݏ݁݊݁݃	݂݋	ateݎ	݁ݑݎݐ	݀݁ݎ݁ݒ݋ܿݏ݅ܦ

ൌ
ݎ݁ݐݏݑ݈ܾܿ݅	݂݀݁݅݅ݐ݊݁݀݅	݄݁ݐ	݊݅		ݏ݁݊݁݃	݁ݑݎݐ	݂݋	ݎܾ݁݉ݑ݊

	݃݊݅ݐݐ݁ݏ	݊݋݅ݐ݈ܽݑ݉݅ݏ	݊݅		ݏ݁݊݁݃	݂݋	ݎܾ݁݉ݑ݊
 

ݏ݊݉ݑ݈݋ܿ	݂݋	݁ݐܽݎ	݁ݑݎݐ	݀݁ݎ݁ݒ݋ܿݏ݅ܦ

ൌ
ݎ݁ݐݏݑ݈ܾܿ݅	݂݀݁݅݅ݐ݊݁݀݅	݄݁ݐ	݊݅	ݏ݊݋݅ݐ݅݀݊݋ܿ	݁ݑݎݐ	݂݋	ݎܾ݁݉ݑ݊

	݃݊݅ݐݐ݁ݏ	݊݋݅ݐ݈ܽݑ݉݅ݏ	݊݅	ݏ݊݋݅ݐ݅݀݊݋ܿ	݂݋	ݎܾ݁݉ݑ݊
 

The bigger the discovered true rate of genes (conditions) is, the better the 

identified bicluster.  

Both criteria above evaluate only one direction of the identified bicluster. To 

assess the two-dimensional matrix, we combine the TDR and DTR as an overall 

measure of performance:  

 	ݎ݁ݐݏݑ݈ܾܿ݅	݂݋	݁ݐܽݎ	ݕݎ݁ݒ݋ܿݏ݅݀	݁ݑݎݐ	݈݈ܽݎ݁ݒܱ

ൌ ඥܴܶܦ	݂݋	ݏ݁݊݁݃ ∗   ݏ݊݋݅ݐ݅݀݊݋ܿ	݂݋	ܴܦܶ

 	ݎ݁ݐݏݑ݈ܾܿ݅	݂݋	݁ݐܽݎ	݁ݑݎݐ	݀݁ݎ݁ݒ݋ܿݏ݅݀	݈݈ܽݎ݁ݒܱ
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ൌ ඥܴܶܦ	݂݋	ݏ݁݊݁݃ ∗   ݏ݊݋݅ݐ݅݀݊݋ܿ	݂݋	ܴܶܦ

These measurements are next considered in the simulation studies.  

For example, if we considered a (30 70) (30 70)S     matrix for biclustering, where the 

first 30 rows and first 30 columns were from the true bicluster 50 50B   and the rest 

components were noise. If the BiCor identified a bicluster (25 2) (24 3)B     containing 25 

true genes and 24 true conditions, but 2 false positive genes and 3 false positive 

conditions. Then the criteria of performance can be calculated, as listed in Table 1. If 

BiCor identified a much smaller bicluster (10 0)*(15 0)B   , then its TDR remained large 

but the DTR decreased reflecting the fact many genes and conditions have not been 

recovered. Figures 2-4 are TDR and DTR for three examples. Figure 2 demonstrates 

the case when TDR and DTR are small, Figure 3 for large TDR and small DTR, and 

Figure 4 for small TDR and large DTR. 

Note that DTR is like the sensitivity and TDR the specificity. An alternative way 

to compare the performance of the algorithms is the sum of TDR and DTR. One 

should bear in mind however that the sum of TDR and DTR may disguise the original 

value of TDR or DTR. 

Results  

To compare with other existing methods, we consider CC (Cheng et al., 2000), 

BiMax (Prelic´ et al., 2006), and ISA (Ihmels et al., 2002, 2004). Table 2 lists the 
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parameter values suggested by the authors to be used in the algorithms. The results are 

shown in Tables 3 and Tables 4. The rates in Tables 3 and Tables 4 were also plotted 

in Figure 5 and Figure 6. 

In the left part of Table 3, under the first simulation setting of 30 true genes and 

30 true conditions in 100 100S   both the marginal true discovery rate for genes or 

conditions and the overall TDR for BiCor under four different sets of threshold values 

{(0.3, 0.5), (0.2, 0.5), (0.2, 0.4), (0.1, 0.3)} remains close to 1, outperforming CC and 

ISA. Although BiCor and BiMax had similar performance in TDR, the computation 

time for BiCor was much less than BiMax. The latter took about 5 minutes for each 

iteration, while BiCor took only 4 seconds.  

The marginal and overall discovered true rates are listed in the right part of Table 

3. Such criteria evaluate how many genes or conditions were recovered among the 

original 30 genes and 30 conditions. It can be observed that the rates under BiCor 

were between 0.63 and 0.92, depending on the strictness of the threshold values. Less 

stringent values would lead to better performance. Under these criteria, BiCor 

performs the second best, next to CC, indicating that CC’s method usually identifies a 

large bicluster, as compared with other algorithms.    

In the second simulation we considered a smaller proportion of true bicluster. 

The second simulation setting considered only 15 true genes and 20 conditions from 
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the true bicluster 50 50B  , along with other noise components in the matrix 100 100S  . 

The number of replications remained at 100. The top half of Table 4 contained the 

same numbers from the Table 3; while the lower half of Table 4 contained the results 

under the second simulation settings. It is obvious that, when the proportion of the 

true bicluster in 100 100S   is smaller, the performance of BiCor becomes sensitive due 

to the fact that the identified bicluster becomes small, especially the marginal and 

overall DTR which used 15 and 20 in the denominator than 50 and 50 in the first 

setting. The other biclustering algorithms were not compared here because of their 

poorer performance than that in the first setting.  

In addition, we investigated the sensitivity of the performance with respect to 

data-dependent thresholds. In Table 5, different percentiles were considered in both 

simulation settings. Although the marginal and overall TDR and DTR in Table 5 were 

not as good as those in Table 4 under the fixed thresholds, the rates remain satisfactory.  

The values were expressed in Figure 7. 

Considering all the factors affecting the performance, we recommend Bicor over 

other biclustering algorithms because of its balance between two types of performance 

evaluation, less computational burden, and because of its robustness to the choice of 

thresholds.    
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Application 

For real data analysis, we considered the gene expression data from Arabidopsis 

thaliana. Arabidopsis thaliana is a small flower with short life cycle of about 6 weeks 

from germination to mature seed. The genome of Arabidopsis thaliana is small, only 

approximately 135 megabase pairs (Mbp) in 5 chromosomes, and was the first to be 

sequenced in the year 2000. To understand plant traits, it is popular to consider 

Arabidopsis thaliana as an experimental material. In the following we introduce 

NASC's data and MVA and MEP pathway study as applications. 

NASC's data 

We used the real Arabidopsis data from NASC's International Affymetrix Service 

(http://arabidopsis.info/affy/). The data can be downloaded at 

http://data.iplantcollaborative.org/quickshare/da175c84258a9cf3/Exp340.zip. 

(Thilmon et al, 2006) The data contain 734 genes and 23 experiment conditions (each 

experiment condition were replicated 3 times, leading to a total of 69 experiment 

conditions). Details are shown in Table 8. As stated in the paper by Thilmon et al. 

(2006), “Pseudomonas syringae pv. tomato DC3000 (Pst) is a virulent pathogen, 

which causes disease on tomato and Arabidopsis. The type III secretion system (TTSS) 

plays a key role in pathogenesis by translocating virulence effectors from the bacteria 

into the plant host cell, while the phytotoxin coronatine (COR) contributes to 
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virulence and disease symptom development.” The goal of this study was to 

understand if both TTSS and COR are associated with the suppression of host basal 

defenses.  

After performing the biclustering algorithm, we can see in Figure 8 that there are 

two distributions in correlation of genes and correlation of conditions. Therefore we 

used gene =0.4, condition =0.6 and gene =0.4, condition =0.7 in the BiCor for analysis. 

In Table 6, we can see that CC identified a large bicluster because CC’s original 

idea is to find any possible bicluster. BiMax and ISA identified the same condition 

(DC3000-10e6-24h) and 8 genes. These 8 genes were also identified by BiMax and 

were among the 43 genes found by ISA. Hence, we have more confidence that these 8 

genes work together under the DC3000-10e6-24h condition. BiCor’s bicluster is very 

different from that under BiMax and ISA. This is because BiCor uses correlation of 

gene expression data to bicluster, while BiMax and ISA use gene expression value to 

bicluster. As Table 6 shows, BiCor can identify one type of experiment condition 

alone with its other replications. The DTR of experiment conditions are 73.3% under 

BiCor(0.4,0.7) and 86.7%. under BiCor(0.4,0.6). Although DTR of experiment 

conditions under BiCor is smaller than BiMax and ISA, BiCor identified more 

experiment conditions than BiMax and ISA. 
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MVA and MEP pathway data 

This study investigated two pathways, one was the mevalonate pathway (MVA) 

and the other was non-mevalonate pathway (MEP). The data were collected from the 

118 GeneChip (Affymetrix) microarrays with 39 genes, where 20 of which were 

assigned to MVA and 19 to MEP, as shown in Figure 8 and Table 9. We use this gene 

network as a standard to compare the performance of bicluster algorithms. The data 

can be downloaded at 

http://genomebiology.com/content/supplementary/gb-2004-5-11-r92-s1.txt. [Wille et 

al., 2004]  

Based on the prior knowledge of the existence of MVA and MEP pathways in 

Arabidopsis data, we fitted a mixture model of correlations in the Arabidopsis data 

with two distributions (Figure 9). We also plot the histograms of correlations for the 

data under MVA and MEP pathways separately in Figures 10 and 11. We can see that 

the histograms of correlations of data under MVA and MEP pathways are really 

similar to the distributions in the mixture model. We use then considered 

0.8condition   to perform BiCor. 

Table 10 shows the bicluster results of four bicluster algorithms and two cluster 

results. BiCor performs the best in terms of TDR for each pathway, the identified 

biclusters by BiCor are all in their pathways. However, the DTR of pathways was not 
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large. When threshold of gene became strict, the performance of DTR of pathway got 

worse. CC performed the best in terms of DTR, almost 74% of genes in two pathways 

were found. In fact, the correlations under MVA and MEP pathways are similar, 

therefore it is not easy to have good bicluster results. In this case, it is a tradeoff 

between TDR and TDR, while one increases when the other decreases.  

In cluster algorithms, we use Pearson’s correlation distance as a measure of 

similarity to perform hierarchical clustering (HCL) and K-means. The TDR of 

pathway and DTR of pathway under K-means was approximately 82%, while that 

under HCL was only 49%. K-means performs the best here because the current 

application is interested in clustering, not bicluster. 

  



21 
 

Discussion 

 In this paper, we propose a new bicluster algorithm called Biclustering methods 

via correlation matrix (BiCor). This method uses two correlation matrices to cluster 

data such as gene expression levels. In the simulation studies, we showed that BiCor 

can successfully identify the true bicluster with large true discovery rate and 

discovered true rate. In addition, BiCor outperforms other existing algorithms like CC, 

BiMax and ISA. However, BiCor can identify one bicluster at one time; while others 

can find more than one bicluster. To identify more than one biclusters that are 

non-overlapping, we can use different pairs of gene  and condition , as stated at the end 

of Section Choice of Thresholds.     

BiCor has three advantages. First, BiCor does not require the normalization step 

either in the levels of genes or conditions. Only the correlation among observations 

will be investigated. The origin data magnitude as well as the data information will 

not be lost. Second, the true discovery rate of bicluster in the simulation studies was 

larger than 90%, implying that BiCor has a low false positive rate. Third, BiCor takes 

correlation characteristic into consideration, while the CC, BiMax and ISA overlook 

this property. 

 Here in this research, we suggested three criteria to determine the threshold used 

in the algorithm. When no expert opinion is available, we recommend the second 
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criterion. Thus choice is robust to the correlation pattern in the observed data and to 

the subject matter under study. Our simulation studies also suggested a satisfactory 

result when this criterion was considered.   

 Several issues remain for future studies. First, we plan to make the proposed 

BiCor algorithm publicly available by providing the code in R so that more people 

can use it. Second, the validation of true bicluster in real gene expression data analysis 

may be carried out with the Gene Ontology (GO) database. If considering GO as a 

standard, then the identified bicluster can be compared with results in GO. We will be 

working in this direction in the near future. Third, in the simulations, we have 

generated a square matrix of gene expression levels as the population matrix to start 

with the replications. This may not be realistic because the number of conditions in 

laboratory work is usually smaller. Future investigation may focus on such rectangular 

matrices.  

 There are two limitations in the BiCor algorithm. First, if the data contain more 

than the linear correlation, BiCor cannot bicluster well. This is because BiCor uses 

Pearson Correlation to find bicluster. A remedy can be the exchangeable correlation, 

first-order autoregressive correlation, unstructured correlation or user-specified 

correlation matrix, or the kernel methods for nonlinear correlations. In addition. when 

the data are binary, then other correlation measurements for categorical data should be 
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considered in BiCor. Second, when the correlations within different biclusters are 

similar, BiCor may not be able to separate them successfully and may combine these 

biclusters as a big one. As a modification, one may consider other algorithms that 

focus on features other than correlations. In conclusion, BiCor has good performance 

with TDR and moderate DTR; while CC has large DTR but small TDR. On future 

direction would be to combine CC and BiCor as two steps in bicluster analysis. We 

could use CC as the first step algorithm to find more correlated genes and conditions, 

and then use BiCor to check if these genes and conditions are correlated with each 

other. 
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Table 1 Examples of performance evaluation  

Performance BiCor  

(25 2)*(24 3)B    

BiCor 

(10 0)*(15 0)B    

True discovery rate of row  25/(25+2)=0.93 10/(10+0)=1.00 

True discovery rate of column 24/(24+3)=0.89 15/(15+0)=1.00 

Overall true discovery rate √0.93 ∗ 0.89=0.91 √1.00 ∗ 1.00=1.00 

Discovered true rate of row  25/30=0.83 10/30=0.33 

Discovered true rate of column 24/30=0.80 15/30=0.50 

Overall discovered true rate √0.83 ∗ 0.80=0.81 √0.33 ∗ 0.50=0.41 
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Table 2 Parameter settings for the four bicluster algorithms.  

Algorithm Default Parameter Settings Changed values 

Biclustering method via correlation 

matrix (BiCor)  

௚ݎ݋ܿ ൌ 0.3, ௖ݎ݋ܿ ൌ ௚ݎ݋ܿ 0.5 ൌ 0.3, ௖ݎ݋ܿ ൌ 0.5 

CC δ ൌ 0.5, α ൌ 0.12 δ ൌ 0.5, α ൌ 0.12 

BiMax Normalize genes and conditions~Nሺ0,1ሻ 

Discretize (to binary values) by percentage=10 

Normalize genes and conditions~Nሺ0,1ሻ 

Discretize (to binary values) by percentage=30 

ISA ݐ௚ = 2.0, ݐ௖= 2.0,nr. seeds = 13 ݐ௚ = 1.0, ݐ௖= 1.0,nr. seeds = 1000 

BiCor: ܿݎ݋௚:min '( , )i i
Corr g g  ; 	min	௖:ݎ݋ܿ '( , )j j

Corr c c   

CC: δ:	the maximum acceptable mean squared residue score.  2

,

1
H(I,J) ij iJ Ij IJ

i I j J

a a a a
I J


 

     .  

α: a threshold for multiple node deletion. 

BiMax: Discretize (to binary values) by percentage=30 

ISA: nr. seeds: set seed for random number generator, ݐ௚ ൌ ', ,i j i j
g g   ௖ݐ  ൌ ', ,i j i j

c c    
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Table 3 Performance comparison of the four bicluster algorithms. 

Algorithm  

(mean time/each 

permute) 

True discovery 

rate of rows 

(mean, se) 

True discovery 

rate of columns 

(mean, se) 

Overall true 

discovery rate of 

bicluster  

(mean, se)  

Discovered true 

rate of rows 

(mean, se) 

Discovered true 

rate of columns 

(mean, se) 

Overall 

discovered true 

rate of bicluster 

(mean, se) 

BiCor (0.3,0.5) 

(൑ ૙. ૝	ܛ܋܍ܛ)  

1.00 (<0.01) 1.00 (<0.01) 1.00 (<0.01) 0.72 (0.02) 0.63 (0.02) 0.67 (0.02) 

BiCor (0.2,0.5) 

(൑ ૙. ૝	ܛ܋܍ܛ)  

1.00 (<0.01) 1.00 (<0.01) 1.00 (<0.01) 0.78 (0.01) 0.64 (0.02) 0.71 (0.02) 

BiCor (0.2,0.4) 

(൑ ૙. ૝	ܛ܋܍ܛ)  

1.00 (<0.01) 1.00 (<0.01) 1.00 (<0.01) 0.83 (0.02) 0.79 (0.02) 0.81 (0.02) 

BiCor (0.1,0.3) 

(൑ ૙. ૝	ܛ܋܍ܛ)  

0.99 (<0.01) 1.00 (<0.01) 0.99 (<0.01) 0.87 (0.02) 0.87 (0.02) 0.87 (0.01) 

BiCor 

(90th ,90th ) 

(൑ ૙. ૝	ܛ܋܍ܛ) 

0.99 (<0.01) 1.00 (<0.01) 0.99 (<0.01) 0.85(0.01) 0.92(0.01) 0.88(0.01) 

CC   

(൑ ૝	ܛ܋܍ܛ) 

0.73(0.02) 0.60(0.02) 0.66 (0.02) 0.93(0.05) 0.92(0.02) 0.92 (0.03) 

BiMax  (൑

૞	ܛܖܑܕ) 

1.00 (<0.01) 0.99(<0.01) 0.99 (0.01) 0.28(0.01) 0.30(0.02) 0.29 (<0.01) 

ISA  (൑ ૞ (ܛ܋܍ܛ 1.00 (<0.01) 0.63(<0.01) 0.79 (<0.01) 0.68(0.02) 0.72(0.02) 0.70 (0.01) 

se: standard error 



29 
 

 Table 4 Different simulation settings for BiCor algorithm.  

Algorithm  

(mean time/each 

permute) 

True discovery 

rate of rows 

(mean, se) 

True discovery 

rate of columns 

(mean, se) 

Overall true 

discovery rate of 

bicluster  

(mean, se)  

Discovered true 

rate of rows 

(mean, se) 

Discovered true 

rate of columns 

(mean, se) 

Overall 

discovered true 

rate of bicluster 

(mean, se) 

(30 70)*(30 70)S    
      

BiCor (0.3,0.5)

(൑ ૙. ૝	ܛ܋܍ܛ)  

1.00 (<0.01) 1.00 (<0.01) 1.00 (<0.01) 0.72 (0.02) 0.63 (0.02) 0.69 (0.02) 

BiCor (0.2,0.5)

(൑ ૙. ૝	ܛ܋܍ܛ)  

1.00 (<0.01) 1.00 (<0.01) 1.00 (<0.01) 0.78 (0.01) 0.64 (0.02) 0.71 (0.02) 

BiCor (0.2,0.4)

(൑ ૙. ૝	ܛ܋܍ܛ)  

1.00 (<0.01) 1.00 (<0.01) 1.00 (<0.01) 0.83 (0.02) 0.79 (0.02) 0.81 (0.02) 

(15 85)*(20 80)S    
      

BiCor (0.3,0.5)

(൑ ૙. ૝	ܛ܋܍ܛ)  

0.91 (0.02) 0.94 (0.02) 0.94 (0.02) 0.55 (0.02) 0.39 (0.02) 0.49 (0.02) 

BiCor (0.2,0.5)

(൑ ૙. ૝	ܛ܋܍ܛ)  

0.88 (0.02) 0.93 (0.02) 0.93 (0.02) 0.59 (0.02) 0.40 (0.02) 0.51 (0.02) 

BiCor (0.2,0.4)

(൑ ૙. ૝	ܛ܋܍ܛ)  

0.89 (0.02) 0.94 (0.02) 0.93 (0.02) 0.61 (0.02) 0.48 (0.02) 0.56 (0.02) 



30 
 

 Table 5 Performance of BiCor under different data-dependent thresholds.  

Algorithm  

(mean time/each 

permute) 

True discovery 

rate of rows 

(mean, se) 

True discovery 

rate of columns 

(mean, se) 

Overall true 

discovery rate of 

bicluster  

(mean, se)  

Discovered true 

rate of rows 

(mean, se) 

Discovered true 

rate of columns 

(mean, se) 

Overall 

discovered true 

rate of bicluster 

(mean, se) 

(30 70) (30 70)S     
      

BiCor (60th , 

60th) 

(൑ ૙. ૜	ܛ܋܍ܛ)  

0.96(<0.01) 0.97(<0.01) 0.97(<0.01) 0.88(0.01) 0.94(<0.01) 0.91(0.01) 

BiCor (70th , 

70th) 

(൑ ૙. ૜	ܛ܋܍ܛ)  

0.98(<0.01) 0.98(<0.01) 0.98(<0.01) 0.88(0.01) 0.94(<0.01) 0.91(0.01) 

BiCor (80th , 

80th) 

(൑ ૙. ૜	ܛ܋܍ܛ)  

0.99(<0.01) 0.99(<0.01) 0.99(<0.01) 0.87(0.01) 0.93(<0.01) 0.90(0.01) 

(15 85) (20 80)S     
      

BiCor (75th , 

70th) 

(൑ ૙. ૝	ܛ܋܍ܛ)  

0.81(0.01) 0.88(0.01) 0.85(0.02) 0.70(0.02) 0.68(0.02) 0.71(0.02) 

BiCor (85th , 0.85(0.01) 0.90(0.01) 0.88(0.02) 0.68(0.02) 0.66(0.02) 0.68(0.02) 
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80th) 

(൑ ૙. ૝	ܛ܋܍ܛ)  

BiCor (95th , 

90th) 

(൑ ૙. ૝	ܛ܋܍ܛ)  

0.89(0.01) 0.920.01) 0.91(0.02) 0.66(0.02) 0.63(0.02) 0.66(0.02) 
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Table 6 Bicluster result of four bicluster algorithms 

Bicluster algorithm Number of genes Id of experiment conditions Discovered true rate of experiment conditions

BiCor (0.4,0.7) 32 16 18 (Cor-hrpS-5x10e7-10h) , 

24 (hrpAfliC-10e8-7h), 

25 26 27 (hrpA-10e8-7h), 

34 35 36 (E.coli-0157-H7-10e8-7h), 

37 39 (E.coli-TUV86-2-fliC-10e8-7h) 

11
5 ∗ 3

ൌ 73.3% 

BiCor (0.4,0.6) 44 16 18 (Cor-hrpS-5x10e7-10h) , 

23 24 (hrpAfliC-10e8-7h), 

25 26 27 (hrpA-10e8-7h), 

34 35 36 (E.coli-0157-H7-10e8-7h), 

37 38 39 (E.coli-TUV86-2-fliC-10e8-7h) 

13
5 ∗ 3

ൌ 87.7% 

CC 155 23 experiment conditions are included 39
13 ∗ 3

ൌ 100.0% 

BiMax 8 7 8 9 (DC3000-10e6-24h) 3
1 ∗ 3

ൌ 100.0% 
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ISA 43 7 8 9 (DC3000-10e6-24h) 3
3
ൌ 100.0% 
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Table 7 Parameter settings of 3 bicluster algorithms in Arabidopsis data 

Algorithm Parameter Settings 

CC δ ൌ 0.5, α ൌ 0.12 

BiMax Normalize genes and conditions~Nሺ0,1ሻ 

Discretize to binary values by =2 

ISA ݐ௚ = 2.0, ݐ௖= 2.0,nr. seeds = 1000 

 

 

Table 8 23 experiment conditions of Arabidopsis data 

ID Pathogen-cfu/ml Collected time

1-3 Cor-10e6 24h 

4-6 Cor-hrpS-10e6 24h 

7-9 DC3000-10e6 24h 

10-12 Mock-Inoculum 24h 

13-15 Cor-5x10e7 10h 

16-18 Cor-hrpS-5x10e7 10h 

19-21 Mock-Inoculum 10h 

22-24 hrpAfliC-10e8 7h 

25-27 hrpA-10e8 7h 

28-30 DC3000-10e8 7h 

31-33 Mock-Inoculum 7h 

34-36 E.coli-0157-H7-10e8 7h 

37-39 E.coli-TUV86-2-fliC-10e8 7h 

Collected time: collected sample time after giving pathogen-cfu/ml 

Arabidopsis data from NASC's International Affymetrix Service  

734 genes and 23 experiment conditions (each experiment conditions replicate 3 times, 

total 69 experiment conditions). 
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Table 9 Genes coding for enzymes in the two isoprenoid pathways 

Name AGI number Pathway 

AACT1 At5g47720 MVA 

AACT2 At5g48230 MVA 

CMK At2g26930 MEP 

DPPS1 At2g23410 MVA 

DPPS2 At5g58770 MVA 

DPPS3 At5g58780 MVA 

DXPS1 At3g21500 MEP 

DXPS2 At4g15560 MEP 

DXPS3 At5g11380 MEP 

DXR At5g62790 MEP 

FPPS1 At4g17190 MVA 

FPPS2 At5g47770 MVA 

GGPPS1 At1g49530 MVA 

GGPPS2 At2g18620 MEP 

GGPPS3 At2g18640 MVA 

GGPPS4 At2g23800 MVA 

GGPPS5 At3g14510 MVA 

GGPPS6 At3g14530 MEP 

GGPPS8 At3g20160 MVA 

GGPPS9 At3g29430 MVA 

GGPPS10 At3g32040 MEP 

GGPPS11 At4g36810 MEP 

GGPPS12 At4g38460 MEP 

GPPS At2g34630 MEP 

HDR At4g34350 MEP 

HDS At5g60600 MEP 

HMGR1 At1g76490 MVA 

HMGR2 At2g17370 MVA 

HMGS At4g11820 MVA 

IPPI1 At3g02780 MEP 

IPPI2 At5g16440 MVA 

MCT At2g02500 MEP 

MECPS At1g63970 MEP 

MK At5g27450 MVA 

MPDC1 At2g38700 MVA 

MPDC2 At3g54250 MVA 
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PPDS1 At1g17050 MEP 

PPDS2 At1g78510 MEP 

UPPS1 At2g17570 MVA 

MVA: Mevalonate pathway; MEP: Non-mevalonate pathway 

 

Table 10 Bicluster result of four bicluster algorithms and two cluster results 

Bicluster algorithm True discovery rate of 

pathway  

Discovered true rate of 

pathway  

BiCor (0.1,0.8)  1 0.45 

BiCor (0.2,0.8)  1 0.45 

BiCor (0.3,0.8)  1 0.35 

CC   0.63 0.74 

BiMax  0.63 0.25 

ISA   0.92 0.55 

Cluster algorithm   

HCL 0.49 0.49 

K means  0.83 0.82 

 

Table 11 Parameter settings of 5 bicluster algorithms in Arabidopsis data 

Algorithm Parameter Settings 

CC δ ൌ 0.5, α ൌ 1.2 

BiMax Normalize genes and conditions~Nሺ0,1ሻ 

Discretize to binary values by =1 

ISA ݐ௚ = 1.0, ݐ௖= 1.0,nr. seeds = 10000 

HCL Number of cluster=2, single linkage, Pearson’s correlation distance 

K means Number of cluster=2, Pearson’s correlation distance 
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Figure 5 Performance of four algorithms 

 

 
Figure 6 Performance of BiCor with fixed thresholds  
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Appendix 

Code in R 

Appendix 1 Generate (50 150)*(50 150)A   process 

mydim=50  #定義要生出的有相關的矩陣的維度，其實不一定要方正矩陣  

temp=matrix(rep(0.5),mydim,mydim) #先定義變異數矩陣 

diag(temp)=rep(1,mydim)           #定義變異數矩陣對角線為1 

mymatrix=matrix(ncol=mydim,nrow=mydim)  #定義要被cluster的矩陣 

mymatrix[1,]=rmvnorm(1, mean=rep(0,mydim), temp)  #先生出第一個row 

mymu=1*mymatrix[1,]   # new mean vector for conditional pdf 後面直行的mean

跟第一列有關 

temp=matrix( rep(0.5) ,mydim,mydim) # new var-var for conditional pdf 

diag(temp)=rep(0.75,mydim) 

for (i in 2:mydim){ mymatrix[i,]=rmvnorm(1, mean=mymu, temp)  } # 生剩下的

columns,現在有50*50矩陣  

 

 

y1<-rnorm(n=50*150, m=0, sd=1)  #生不相關的 50*150 個資料 

x1<-array(y1, dim=c(50,150))    #變成 50*150 矩陣 

x<-cbind(mymatrix,x1)    #得到 50*（50+150）矩陣 

  

y2<-rnorm(n=150*200, m=0, sd=1)  #生不相關的 150*200 個資料 

x2<-array(y2, dim=c(150,200))   #變成 150*200 矩陣 

xfinal<-rbind(x,x2)      #得到（50+150）*（50+150）矩陣 
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Appendix 2 Random generate (a+b)*(c+d) matrix  

random_matrix<-function(a,b,c,d){ 

 true_sample  <- data2[sample(1:50, a,replace=FALSE),] 

 sample  <- data2[sample(51:200, b,replace=FALSE),] 

 sample  <- rbind(true_sample,sample) 

 sample  <- t(sample)  

 

 true_sample  <- sample[sample(1:50, c,replace=FALSE),] 

 sample1  <- sample[sample(51:200, d,replace=FALSE),] 

 sample_final <- rbind(true_sample,sample1) 

 sample_final <- t(sample_final)  

} 

 

Appendix 3 Biclustering methods via correlation matrix (BiCor) 

Bicluster_cor_algorithm<-function(delta_gene,delta_condition,condition_threshold,ge

ne_threshold,sample ){ 

 X_temp <- sample 

 aa <- TRUE 

 i <- 1 

 while(aa){ 

  cat("i=",i,'\n') 

  cor_col <- abs(cor(X_temp)) 

  whichmin <- which(cor_col == min(cor_col), arr.ind = TRUE) 

  if(sum(whichmin)==0){break("stop,no bicluster")} 

  del_col <- 

which.min(c(sum(cor_col[whichmin[1,1],]),sum(cor_col[whichmin[1,2],]))) 

  if(any(cor_col<delta_condition )){X_temp <- 

X_temp[,-whichmin[del_col,1]]} 

  if(dim(X_temp)[2]<3){ 

  OUT <- NA 

  show(X_temp);break("stop") 

  } 

  

  y_temp <- t(X_temp) 

  cor_row <- abs(cor(y_temp)) 

  whichmin <- which(cor_row == min(cor_row), arr.ind = TRUE) 

      del_row <- 

hich.min(c(sum(cor_row[whichmin[1,1],]),sum(cor_row[whichmin[1,2],]))) 
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  if(any(cor_row<delta_gene )){y_temp <- y_temp[,-whichmin[del_row,1]]} 

  if(dim(y_temp)[2]<3){ 

  OUT <- NA 

  show(y_temp);break("stop") 

  } 

  X_temp <- t(y_temp) 

  

  aa <- (any(abs(cor(y_temp))<delta_gene) | 

any(abs(cor(X_temp))<delta_condition )) 

   if(aa==TRUE){ 

   delta_condition <- min(delta_condition + .01,condition_threshold) 

   delta_gene      <- min(delta_gene      + .01,gene_threshold) 

   i <- i+1 

   if(i > 10000) {stop("Too many iter!")} 

   }else if(aa==FALSE){OUT <- X_temp} 

} 

list(OUT,cor(t(t(OUT))),cor(t(OUT)),i) 

} 

 


