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Abstract

Biclustering has become an important analytical tool in recent statistical practice,

particularly when it is of interest to group genes under certain experimental conditions.

The goal of such biclustering analysis is to identify sets of genes sharing similar

expression patterns across subsets of samples. Previous developed approaches were

mostly extensions of clustering methods and thus focused more on similarity between

genes across all experimental conditions. Here we proposed a bicluster algorithm via

correlation matrices, called BiCor, between gene expression patterns and between

conditions. Each of these two matrices was visited iteratively to remove the most

irrelevant genes or conditions. Under a pre-specified convergence criterion, the

resulting smaller rectangular contains expression levels that are considered similar at

both the gene and the condition level. We further defined the true discovery rate (TDR)

and discovered true rate (DTR) to assess the performance of the proposed algorithm.

Simulation studies and applications were conducted to evaluate and compare the

proposed BiCor with other existing algorithms.

Key words: Bicluster, correlation, gene expression



Table of Contents

Bt eeeeerrenrenrereeeeeeeeeesnessessessessneseeseessessessessassassessaessessessessessessessees bers B LS L i
PR B B e e il
ADSITACT ...ttt et e et e et e e st e e s be e e et e e e rbee e rbaeesaaeetaaeenaeean 1ii
LSt OF TADIES ...ttt et e v
LSt OF FIGUIES ..eouviieiiieiie ettt ettt ettt et eibe e beeesbeensaesaseenseennns vi
LiSt Of APPENAICES ....eeevvieiiieiiieiie ettt ettt ettt e stteeteesabeesbeessaeesaessseenseessseenseens vii
INEEOAUCTION ...ttt sttt sttt et ebe s 1
1\ (<71 1 Lo T O PSSP 4
SIMUIALION ...ttt e e e et e e st e e e s aeeesssaeessseeesbeeesseeennnes 11
APPIICALION. ...eeitiieeiiie ettt et e et e e et e e e aae e e taeeetaeesntaeeesaeeennreeenraeenns 17
DIISCUSSION ...ttt ettt ettt ettt et e bt e e e e bt e st e sae e bt eatesstenseentesbeenseeneesseenseas 21
RETEIENICES ...ttt st 24
APPEIAIX ..ttt ettt ettt ettt ettt e et e et e e et e e tee et e enbeeenbe e beeenbeenbeennseeneens 42



List of Tables

Table 1 Examples of performance evaluation.........ccoccueevvveeriiieinieenniesieiiecsieesieneis 26
Table 2 Parameter settings for the four bicluster algorithms. ..........coceevvveenniiiiiinins 27
Table 3 Performance comparison of the four bicluster algorithms. ........ccccevvveerneenns 28
Table 4 Different simulation settings for BiCor algorithm. ...........cccoecveeriieiniiiiniiennns 29
Table 5 Performance of BiCor under different data-dependent thresholds. ................ 30
Table 6 Bicluster result of four bicluster algorithms ..........ccccceevviiiniiiinieeniieenieee 32
Table 7 Parameter settings of 3 bicluster algorithms in Arabidopsis data................... 34
Table 8 23 experiment conditions of Arabidopsis data..........ccceceeveevierierieciereeienens 34
Table 9 Genes coding for enzymes in the two isoprenoid pathways ..........cccccveerueene 35
Table 10 Bicluster result of four bicluster algorithms and two cluster results............. 36
Table 11 Parameter settings of 5 bicluster algorithms in Arabidopsis data................. 36



List of Figures

Figure 1 An example of a two-component mixture model for correlations.................. 37
Figure 2 Low true discovery rate and low discovered true rate..........ccceeeveereieiiiiennns 37
Figure 3 High true discovery rate and low discovered true rate.........ccceevveeriveerinennns 37
Figure 4 Low true discovery rate and high discovered true rate...........ccoecveeriveerinennns 37
Figure 5 Performance of four algorithms..........ccoecueeriieiniiiiniiiiicece e 38
Figure 6 Performance of BiCor with fixed thresholds.........ccccceeviiiniiiiniiiiniiiiienns 38
Figure 7 Performance of BiCor with fuzzy threshold.........ccccccoeeiiiniiiiiiiniiiiniene 39

Figure 8 Mixture model of correlation of rows and columns in Arabidopsis data......39

Figure 9 Mixture model of correlation of rows and columns in Arabidopsis data ......40

Figure 10 Correlation of 20 genes and 118 experiments of MVA pathway in

Arabidopsis data.......cc.eceevieecierieie e s 41

Figure 11 Correlation of 19 genes and 118 experiments of MEP pathway in

ArabidopsiS data........ceceerieeciereeie e s 41

vi



List of Appendices

Appendix 1 Code for generating A, 5opsos150) MATIX eeiiiiiiinininniiiiisii i

Appendix 2 Code for random generation fo the (a+b)*(c+d) matrixX .......ccceeeeeiiiiienns

Appendix 3 Code for the biclustering methods via correlation matrix (BiCor)..........

vii



Introduction

In recent years, there have been various efforts to overcome the limitations of
standard clustering approaches for the analysis of gene expression data by grouping
genes and experimental conditions simultaneously. Such analyses are usually called
biclustering and are used to identify sets of genes sharing similar expression patterns
across subsets of samples, meaning the genes may work together under these
conditions. Biclustering methods can be used not only in gene expression profiling
data but also in other biological data.

Biclustering is a method that identifies sets of genes sharing similar expression
patterns across subsets of experiment conditions. The difference between traditional
clustering and biclustering algorithm is that the clustering method clusters only rows
or only columns in a data matrix; while the biclustering method clusters rows and
columns simultaneously. With biclustering, genes belonging to different groups of
conditions may be identified. In addition, a gene functions under different experiment
conditions can be identified if it is grouped in different biclusters.

In contrast, cluster analysis was used to group a set of objects such as subjects
who behave similarly in one group than in others. The main purpose of cluster
analysis is exploratory data mining. There are many cluster analysis methods such as

K-means, hierarchical clustering, Independent component analysis (ICA) and
1



Principal component analysis (PCA). These methods have been applied in many fields,

such as bioinformatics (gene expression data), machine learning, image analysis and

pattern recognition. An underlying assumption of cluster analysis is that the grouped

objects (subjects or genes) behave similarly across all experiment conditions

(measurement), treating all conditions exchangeable. In reality, however, genes tend

to co-regulate in some experiment conditions but not in all experiment conditions. In

this case, therefore, a biclustering algorithm would serve the purpose better than a

clustering algorithm.

The idea of biclustering was first proposed by Hartigan (1972). Currently there

are four biclustering algorithms widely used in research, §-size bicluster, Cheng and

Church’s algorithm (CC, Cheng et al., 2000), Statistical-Algorithmic Method of

Bicluster Analysis (SAMBA, Tanay et al., 2002), Iterative Signature Algorithm (ISA,

Thmels et al., 2002, 2004), and Binary inclusion-maximal biclustering algorithm

(Bimax, Prelic” et al., 2006). A special feature of CC is that it was applied under a

fixed & size of bicluster. This fixed & size denotes the upper limit of the mean squared

residual (MSR) of the bicluster. For SAMBA, it uses bipartite graph and binomial

distribution to find the potential bicluster. For ISA, its pros is that ISA uses

iterative method to see if the output bicluster wiil be the same when different

initial genes are considered as input. The advantage of BiMax is that BiMax can



find the largest number of biclusters because BiMax searches every possible biclusters.

These four methods did not consider correlation between genes or between conditions

but assumed genes independent and experiment conditions independent as well. In

fact, genes may co-express in a condition but not in other conditions, leading to

correlation between conditions for this certain set of genes. Hence, correlation is an

important and intuitive characteristic that should be accounted for in biclustering

algorithms.

In this paper, we calculate first the gene-gene and condition-condition correlation

matrices, and then iteratively reduce the size to a bicluster if the criterion is satisfied.

One advantage of the proposed BiCor is that the algorithm does not need to be

normalized because the operation of correlation matrices is not affected by the

original scales. Next, we carried out simulations and compare BiCor with other

biclustering algorithms. Finally we conclude with a discussion and conclusion.



Method

Notations

Let A., be the data matrix of gene expressions from n genes
{G,,G,,G,,....,G,} and m experiment conditions {C,,C,,C,,...,C_}. Each row
vector X;, i=1,..,n ofthematrix A, isofdimension 1xm ,and can be written
as X; =(0;» Ui, Oin) Where g; stands for the expression level of the gene G,
under the condition C;. Similarly, each column vector y;, j=1...m of the matrix
Ay is of dimension nx1 ,and can be written as y; =(9,;,9,;,---9,;) standing
for the gene expression levels of genes {G,,G,,G,;,...,G,} under the same condition

C,. Thus the matrix A, is

gnl “. g nm
Our algorithm use Pearson correlation coefficient to measuring similarity
between expression patterns of two genes G and G, or between two conditions

C, and C,. For instance, the Pearson correlation coefficient between G and G, is

defined as :

Zm:(gu _g_i)(gi'l _a)
Corr(G,,G,) =Corr(x;,X; ) = —= . (1)

\/Zm:(gn _g_i)2 > (gi'l _g_i-)2

Here the @, and g@,, arethe I-thexpression value of the i-th gene and i'-th

4



gene, and the g_I and a are the mean values over m expression values of the |
-th gene and i'-th gene. Since there are N genes in total, the gene-gene correlation
matrix becomes an nxn matrix G, =(gij )n -

The correlation between conditions C; and C;, is defined in a similar way,
Z(gu _g_j)(glj' _a)

Corr(C;,C;)=Corr(y;.y;) =—— - .
\/Z(glj -9, 2. (9; = 9;)’
=1 I=1

And the resulting column-column correlation matrix C_ = (Cij )mxm is of dimension
mxm.

Abicluster B, can be defined as a subset of genes |, possesing a similar
behavior over a subset of experiment conditions (measurements) J,. Thus, a bicluster
B, can be represented as B, =(l,,J,). This bicluster B, =(l,,J,) contains a
subset I, (I, ={G,,G,,G,,...,G,}) of genes and a subset J,(J, ={C,,C,,C,,...,C_})
of experiment conditions where each gene in |, is correlated with a correlation value

greater than or equal to a pre-specified threshold (J,,,, or ¢,

ene condition )a with all Other

genes in |, over the measurements in J, . Thatis, |Corr(x{,x()[> &, ifboth

gene i andgene i belongto I,)and |Corr(y!,y!)[> g, if the conditions

ondition

j and j' are in the same subset. Note that we used the notations x*' and y(jk) to

indicate that the correlations are measured over the genes and conditions in the

corresponding bicluster B, only, not over the original n genes and m experiment



conditions.
Algorithm
The proposed algorithm starts with the expression matrix A..,, with n genes

and m experiment conditions. For the purpose of illustration, we first perform our
bicluster algorithm on the column-column correlation matrix.

Step 1: Calculate the column-column correlation matrix C_, ., and identify the pair

with the minimum absolute value of correlation. For example, if conditions
C, and C; has the minimum absolute value of correlation in the

column-column correlation matrix C_, . Then delete one of the pair (C;,C;.)

n
whose summation of absolute correlation values over rows, ZI Ci | or
k=1

n
ZI Cix |, is smaller. After removing one condition, the original expression
k=1

data matrix would be reduced to the matrix Aﬁlx)(m_l) .

Step 2: For the remaining n genes and m—1 experiment conditions, calculate the

row-row correlation matrix G and identify the pair of genes

corresponding to the minimum absolute value of correlation. For instance, if
G, and G, has the smallest absolute value of correlation in the row-row

m
correlation G'" | then compute the two sums of correlations, ZI r, | and

k=1

m
ZI I |, and remove either G, or G, with the smaller value. The original
k=1

expression matrix is now updated to fll)x(m_l) .



Step 3: Repeat Steps 1 and 2 until every absolute value of correlation in the
column-column correlation matrix and row-row correlation matrix is greater

than or equal to a pre-specified threshold (5gene or Oconditon ). The resulting

(k) (k)
. . = : 5 >
matrix then leads to a bicluster B = (1. Jy) where | Corr(xi™, %) | 59"“"

) ., () (k)
if gene 'and gene ! belong to l and | Correy i, Y5 ) P> Ouongiion if
itions J i I
conditions and belong to k.
If we start the bicluster algorithm from the row-row correlation matrix, then step
2 will be performed as an initial step before step 1. The Steps are as follows:

Step 1: Calculate the row-row correlation matrix G, and identify the pair with the

minimum absolute value of correlation. For example, if genes G; and G;

has the minimum absolute value of correlation in the row-row correlation

matrix G, . Then delete one of the pair (G; ,G;.) whose summation of

n n
absolute correlation values over rows, Z| ry| or Z| Fiy |, is smaller. After
k=1 k=1

removing one condition, the original expression data matrix would be
reduced to the matrix A}, .

Step 2: For the remaining n—1 genes and M experiment conditions, calculate the
column-column correlation C')  and identify the pair of conditions

corresponding to the minimum absolute value of correlation. For instance, if

C, and C, has the smallest absolute value of correlation in the



column-column correlation C"

mm » then compute the two sums of correlations,

n n
Z| Ci | or ZI Cj |, and remove either C, and C, with the smaller value.
k=1 k=1

The original expression matrix is now updated to (nzzl)x(m_l) .

Step 3: Repeat Steps 1 and 2 until every absolute value of correlation in the

column-column correlation matrix and row-row correlation matrix is greater

than or equal to a pre-specified threshold (5gene or Oconditon ). The resulting

(k) (k)
. . = : 5 >
matrix then leads to a bicluster B = (1. Jy) where | Corr(xi™, %) | 59"“"

) ., )
if gene 'and gene ! belong to l and | COrrey™.Y5) > Seonsiion if
itions J i I
conditions and belong to k.
It is worth noting that no matter which direction (row or column) we start with,
the resulting DTR differs by only 0.02, and the selected rows and columns in the
identified bicluster only differ by 1-2 rows or 1-2 columns.

Choice of Thresholds

We propose three choices for both the threshold &, and o, The first one

gene ondition *

is user-defined. Since the correlation between expression levels in a bicluster may
depend on the strains of cells considered in the study and the treatments applied on the

cells, expert’s opinion on the degree of correlation should be ascertained and to

construct the threshold values. For example, one researcher may prefer o =0.3 and

gene

1)

condition —0- 1 the algorithm; while another may select a more strict standard as 5,



=0.5and O

condition

0.5.

The second choice is data-dependent. For example, one may consider the 75th,

85th or 95th percentile of the correlations in the column-column (or row-row)

correlation matrix as the threshold. Two advantages are associated with this choice.

First, such choice would be practical especially when no expert knowledge is

available. Second, the different percentiles may help to investigate the sensitivity of

the final biclusters in the threshold values. In the rest of the paper, we adopt this

choice and will carry out comparison for different choices.

The third choice is also data-dependent but requires prior statistical inference

from a mixture model. Under the assumption that the correlations in the

column-column (or row-row) correlation matrix consists of a bicluster and noise, we

use the mixtools package in R software to fit a mixture model of two normal

components. The threshold is then determined as the value where two normal density

functions intersect. Figure 1 is an illustration of a mixture model for correlations using

data (S,,.,,, ) randomly selected from A, ,,, with seed 1. A two-component normal

mixture model was then fitted as the figure showed. We can see that there were two

distributions in the mixture model, where the proportion of the red distribution was

84%. The mean of the red distribution was 0.018, while the mean for the green

distribution was 0.15. The intersection occurs at correlation=0.18. If there are three



biclusters in data, then there will be three correlation distributions in the mixture

model. In this case, we can find the rightmost bicluster first, with one pair of

thresholds in the proposed algorithm, and then use the remaining data (the left part of

the histogram of correlations) to undergo further biclustering procedure to separate the

rest two distributions.

10



Simulation

Simulation settings

To evaluate the performance of the proposed biclustering algorithm and to
compare with other existing methods such as CC, Bimax, and ISA, we performed
simulation studies. First we constructed a larger population matrix of expression
levels A, containing a true bicluster B, ., as well as other noises. Let By,
denote the expression levels from 50 truly clustered genes and 50 clustered conditions.
The expression levels in B, ., were generated in a conditional fashion, where the

first random vector in By, ;, was from a multivariate normal distribution
1 05 05

MVN(0,Z 0 =| 0.5 . 05| ),
05 05 1

50*50

and the other random vectors were from another multivariate normal with a

conditional mean vector of the first generated random vector. Such conditioning was

to ensure that the correlations between genes Corr(X;,X.) would be no less than 0.3

(Corr(x;,x.)=0.3); while the correlation between conditions would be around 0.5.

The reason for a larger threshold for the correlations between conditions was because,
in thereal data, the correlation among genes was smaller than the correlation between
conditions. For the remaining components in A, ., , they were all generated from a

standard normal distribution. The large population matrix A, _,,, now contained 200

11



genes and 200 conditions. All the generations were carried out with mvtnorm package
in R software.

Next we selected randomly 100 gene samples under 100 conditions from the
population matrix A, ,, With 30 genes and 30 conditions from the true bicluster

Bsyso to form a sample matrix S . This sample matrix was then analyzed with

100x100
BiCor and other biclutsering algorithms. Such replications were carried out 100 times
and the resulting identified biclsuters were collected for comparison. Another
simulation setting selected 15 genes and 20 conditions from By, to evaluate the
performance.

Criteria for performance evaluation

To evaluate the performance of bicluster algorithm, Li considered gene ontology

weighted enrichment score and protein-protein interaction score (Li et al., 2012),
Prelic considered proportion of disconnected gene pairs and average shortest distance
in the graph for metabolic pathway map (MPM) for A. thaliana and a protein—protein
interaction network (PPI) for S. cerevisiae (Prelic A. et al., 2006). Here we proposed
two criterion for performance evaluation. The first one is true discovery rate (TDR). It

indicates the proportion of the true bicluster among the identified bicluster,

True discovery rate of genes

number of true genes in the identified bicluster

number of genes in the identified bicluster

12



True discovery rate of conditions

_ number of true conditions in the identified bicluster

number of conditions in the dentified bicluster

The bigger the true discovery rate of genes (or conditions) is, the better the
identified bicluster. A value close to 1 implies a large proportion of true genes (or
conditions) in the identified bicluster. This measure, however, cannot evaluate if the
identified bicluster recovers most of the original true bicluster. Therefore, we propose
the second criterion discovered true rate (DTR).

Discovered true rate of genes

_ number of true genes in the identified bicluster

number of genes in simulation setting
Discovered true rate of columns

__ number of true conditions in the identified bicluster

number of conditions in simulation setting

The bigger the discovered true rate of genes (conditions) is, the better the

identified bicluster.

Both criteria above evaluate only one direction of the identified bicluster. To

assess the two-dimensional matrix, we combine the TDR and DTR as an overall

measure of performance:

Overall true discovery rate of bicluster

= \/TDR of genes x TDR of conditions
Overall discovered true rate of bicluster

13



= \/DTR of genes x DTR of conditions
These measurements are next considered in the simulation studies.

For example, if we considered a S matrix for biclustering, where the

(30+70)x(30+70)
first 30 rows and first 30 columns were from the true bicluster B, ., and the rest

components were noise. If the BiCor identified a bicluster B containing 25

(25+2)x(24+3)
true genes and 24 true conditions, but 2 false positive genes and 3 false positive

conditions. Then the criteria of performance can be calculated, as listed in Table 1. If

BiCor identified a much smaller bicluster B then its TDR remained large

(10+0)*(15+0) >
but the DTR decreased reflecting the fact many genes and conditions have not been
recovered. Figures 2-4 are TDR and DTR for three examples. Figure 2 demonstrates
the case when TDR and DTR are small, Figure 3 for large TDR and small DTR, and
Figure 4 for small TDR and large DTR.

Note that DTR is like the sensitivity and TDR the specificity. An alternative way
to compare the performance of the algorithms is the sum of TDR and DTR. One
should bear in mind however that the sum of TDR and DTR may disguise the original
value of TDR or DTR.

Results
To compare with other existing methods, we consider CC (Cheng et al., 2000),

BiMax (Prelic” et al., 2006), and ISA (Ihmels et al., 2002, 2004). Table 2 lists the

14



parameter values suggested by the authors to be used in the algorithms. The results are

shown in Tables 3 and Tables 4. The rates in Tables 3 and Tables 4 were also plotted

in Figure 5 and Figure 6.

In the left part of Table 3, under the first simulation setting of 30 true genes and

30 true conditions in S,,,,,, both the marginal true discovery rate for genes or

conditions and the overall TDR for BiCor under four different sets of threshold values

{(0.3,0.5), (0.2, 0.5), (0.2, 0.4), (0.1, 0.3)} remains close to 1, outperforming CC and

ISA. Although BiCor and BiMax had similar performance in TDR, the computation

time for BiCor was much less than BiMax. The latter took about 5 minutes for each

iteration, while BiCor took only 4 seconds.

The marginal and overall discovered true rates are listed in the right part of Table

3. Such criteria evaluate how many genes or conditions were recovered among the

original 30 genes and 30 conditions. It can be observed that the rates under BiCor

were between 0.63 and 0.92, depending on the strictness of the threshold values. Less

stringent values would lead to better performance. Under these criteria, BiCor

performs the second best, next to CC, indicating that CC’s method usually identifies a

large bicluster, as compared with other algorithms.

In the second simulation we considered a smaller proportion of true bicluster.

The second simulation setting considered only 15 true genes and 20 conditions from

15



the true bicluster By, ,, along with other noise components in the matrix S, ;.4 -
The number of replications remained at 100. The top half of Table 4 contained the
same numbers from the Table 3; while the lower half of Table 4 contained the results
under the second simulation settings. It is obvious that, when the proportion of the

true bicluster in S, ,,, 1s smaller, the performance of BiCor becomes sensitive due
to the fact that the identified bicluster becomes small, especially the marginal and
overall DTR which used 15 and 20 in the denominator than 50 and 50 in the first
setting. The other biclustering algorithms were not compared here because of their
poorer performance than that in the first setting.

In addition, we investigated the sensitivity of the performance with respect to
data-dependent thresholds. In Table 5, different percentiles were considered in both
simulation settings. Although the marginal and overall TDR and DTR in Table 5 were
not as good as those in Table 4 under the fixed thresholds, the rates remain satisfactory.
The values were expressed in Figure 7.

Considering all the factors affecting the performance, we recommend Bicor over
other biclustering algorithms because of its balance between two types of performance

evaluation, less computational burden, and because of its robustness to the choice of

thresholds.

16



Application

For real data analysis, we considered the gene expression data from Arabidopsis
thaliana. Arabidopsis thaliana is a small flower with short life cycle of about 6 weeks
from germination to mature seed. The genome of Arabidopsis thaliana is small, only
approximately 135 megabase pairs (Mbp) in 5 chromosomes, and was the first to be
sequenced in the year 2000. To understand plant traits, it is popular to consider
Arabidopsis thaliana as an experimental material. In the following we introduce
NASC's data and MV A and MEP pathway study as applications.

NASC's data
We used the real Arabidopsis data from NASC's International Affymetrix Service

(http://arabidopsis.info/affy/). The data can be downloaded at

http://data.iplantcollaborative.org/quickshare/dal 75¢84258a9¢13/Exp340.zip.

(Thilmon et al, 2006) The data contain 734 genes and 23 experiment conditions (each

experiment condition were replicated 3 times, leading to a total of 69 experiment

conditions). Details are shown in Table 8. As stated in the paper by Thilmon et al.

(2006), “Pseudomonas syringae pv. tomato DC3000 (Pst) is a virulent pathogen,

which causes disease on tomato and Arabidopsis. The type III secretion system (TTSS)

plays a key role in pathogenesis by translocating virulence effectors from the bacteria

into the plant host cell, while the phytotoxin coronatine (COR) contributes to
17



virulence and disease symptom development.” The goal of this study was to

understand if both TTSS and COR are associated with the suppression of host basal

defenses.

After performing the biclustering algorithm, we can see in Figure 8 that there are

two distributions in correlation of genes and correlation of conditions. Therefore we

used =0.4, O,

gene condition gene

=0.6and S5 __=0.4, O,

condition

=0.7 in the BiCor for analysis.

In Table 6, we can see that CC identified a large bicluster because CC’s original

idea is to find any possible bicluster. BiMax and ISA identified the same condition

(DC3000-10e6-24h) and 8 genes. These 8 genes were also identified by BiMax and

were among the 43 genes found by ISA. Hence, we have more confidence that these 8

genes work together under the DC3000-10e6-24h condition. BiCor’s bicluster is very

different from that under BiMax and ISA. This is because BiCor uses correlation of

gene expression data to bicluster, while BiMax and ISA use gene expression value to

bicluster. As Table 6 shows, BiCor can identify one type of experiment condition

alone with its other replications. The DTR of experiment conditions are 73.3% under

BiCor(0.4,0.7) and 86.7%. under BiCor(0.4,0.6). Although DTR of experiment

conditions under BiCor is smaller than BiMax and ISA, BiCor identified more

experiment conditions than BiMax and ISA.

18



MVA and MEP pathway data

This study investigated two pathways, one was the mevalonate pathway (MVA)

and the other was non-mevalonate pathway (MEP). The data were collected from the

118 GeneChip (Affymetrix) microarrays with 39 genes, where 20 of which were

assigned to MVA and 19 to MEP, as shown in Figure 8 and Table 9. We use this gene

network as a standard to compare the performance of bicluster algorithms. The data

can be downloaded at

http://genomebiology.com/content/supplementary/gb-2004-5-11-r92-s1.txt. [Wille et

al., 2004]

Based on the prior knowledge of the existence of MVA and MEP pathways in

Arabidopsis data, we fitted a mixture model of correlations in the Arabidopsis data

with two distributions (Figure 9). We also plot the histograms of correlations for the

data under MV A and MEP pathways separately in Figures 10 and 11. We can see that

the histograms of correlations of data under MVA and MEP pathways are really

similar to the distributions in the mixture model. We use then considered

1)

condition

=0.8 to perform BiCor.

Table 10 shows the bicluster results of four bicluster algorithms and two cluster

results. BiCor performs the best in terms of TDR for each pathway, the identified

biclusters by BiCor are all in their pathways. However, the DTR of pathways was not
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large. When threshold of gene became strict, the performance of DTR of pathway got

worse. CC performed the best in terms of DTR, almost 74% of genes in two pathways

were found. In fact, the correlations under MVA and MEP pathways are similar,

therefore it is not easy to have good bicluster results. In this case, it is a tradeoff

between TDR and TDR, while one increases when the other decreases.

In cluster algorithms, we use Pearson’s correlation distance as a measure of

similarity to perform hierarchical clustering (HCL) and K-means. The TDR of

pathway and DTR of pathway under K-means was approximately 82%, while that

under HCL was only 49%. K-means performs the best here because the current

application is interested in clustering, not bicluster.
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Discussion

In this paper, we propose a new bicluster algorithm called Biclustering methods
via correlation matrix (BiCor). This method uses two correlation matrices to cluster
data such as gene expression levels. In the simulation studies, we showed that BiCor
can successfully identify the true bicluster with large true discovery rate and
discovered true rate. In addition, BiCor outperforms other existing algorithms like CC,
BiMax and ISA. However, BiCor can identify one bicluster at one time; while others

can find more than one bicluster. To identify more than one biclusters that are

non-overlapping, we can use different pairs of o, and I, as stated at the end

gene ondition »

of Section Choice of Thresholds.

BiCor has three advantages. First, BiCor does not require the normalization step
either in the levels of genes or conditions. Only the correlation among observations
will be investigated. The origin data magnitude as well as the data information will
not be lost. Second, the true discovery rate of bicluster in the simulation studies was
larger than 90%, implying that BiCor has a low false positive rate. Third, BiCor takes
correlation characteristic into consideration, while the CC, BiMax and ISA overlook
this property.

Here in this research, we suggested three criteria to determine the threshold used

in the algorithm. When no expert opinion is available, we recommend the second
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criterion. Thus choice is robust to the correlation pattern in the observed data and to

the subject matter under study. Our simulation studies also suggested a satisfactory

result when this criterion was considered.

Several issues remain for future studies. First, we plan to make the proposed

BiCor algorithm publicly available by providing the code in R so that more people

can use it. Second, the validation of true bicluster in real gene expression data analysis

may be carried out with the Gene Ontology (GO) database. If considering GO as a

standard, then the identified bicluster can be compared with results in GO. We will be

working in this direction in the near future. Third, in the simulations, we have

generated a square matrix of gene expression levels as the population matrix to start

with the replications. This may not be realistic because the number of conditions in

laboratory work is usually smaller. Future investigation may focus on such rectangular

matrices.

There are two limitations in the BiCor algorithm. First, if the data contain more

than the linear correlation, BiCor cannot bicluster well. This is because BiCor uses

Pearson Correlation to find bicluster. A remedy can be the exchangeable correlation,

first-order autoregressive correlation, unstructured correlation or user-specified

correlation matrix, or the kernel methods for nonlinear correlations. In addition. when

the data are binary, then other correlation measurements for categorical data should be
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considered in BiCor. Second, when the correlations within different biclusters are

similar, BiCor may not be able to separate them successfully and may combine these

biclusters as a big one. As a modification, one may consider other algorithms that

focus on features other than correlations. In conclusion, BiCor has good performance

with TDR and moderate DTR; while CC has large DTR but small TDR. On future

direction would be to combine CC and BiCor as two steps in bicluster analysis. We

could use CC as the first step algorithm to find more correlated genes and conditions,

and then use BiCor to check if these genes and conditions are correlated with each

other.
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Table 1 Examples of performance evaluation

Performance BiCor BiCor
B(25+2)*(24+3) B(10+0)*(15+0)
True discovery rate of row 25/(25+2)=0.93 10/(10+0)=1.00

True discovery rate of column  24/(24+3)=0.89 15/(15+0)=1.00
Overall true discovery rate 1/0.93 % 0.89=0.91 +/1.00 * 1.00=1.00
Discovered true rate of row 25/30=0.83 10/30=0.33
Discovered true rate of column 24/30=0.80 15/30=0.50
Overall discovered true rate  /0.83 * 0.80=0.81 +/0.33 * 0.50=0.41
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Table 2 Parameter settings for the four bicluster algorithms.

Algorithm Default Parameter Settings Changed values

Biclustering method via correlation cory = 0.3,cor, = 0.5 cory = 0.3,cor, = 0.5

matrix (BiCor)

CcC 6=050a=0.12 6=050a=0.12

BiMax Normalize genes and conditions~N(0,1) Normalize genes and conditions~N(0,1)

Discretize (to binary values) by percentage=10 Discretize (to binary values) by percentage=30
ISA tg =2.0, t,=2.0,nr. seeds = 13 ty = 1.0, t,=1.0,nr. seeds = 1000

BiCor: cory:min Corr(g;,g,) 25 ; cor;: min Corr(cj,cj,) >0

b

E > (aij —a, —a,j+a”)zs§.

iel,jed

CC: &: the maximum acceptable mean squared residue score. H(L,J) =

a: a threshold for multiple node deletion.
BiMax: Discretize (to binary values) by percentage=30

ISA: nr. seeds: set seed for random number generator, t; = ‘gi 9. ‘ <o t. = ‘Ci . C ‘ )
=915 Iy
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Table 3 Performance comparison of the four bicluster algorithms.

Algorithm

(mean time/each

True discovery
rate of rows

True discovery
rate of columns

Overall true

discovery rate of

Discovered true
rate of rows

Discovered true
rate of columns

Overall
discovered true

permute) (mean, se) (mean, se) bicluster (mean, se) (mean, se) rate of bicluster
(mean, se) (mean, se)

BiCor (0.3,0.5)  1.00 (<0.01) 1.00 (<0.01) 1.00 (<0.01) 0.72 (0.02) 0.63 (0.02) 0.67 (0.02)

(< 0.4 secs)

BiCor (0.2,0.5)  1.00 (<0.01) 1.00 (<0.01) 1.00 (<0.01) 0.78 (0.01) 0.64 (0.02) 0.71 (0.02)

(< 0.4 secs)

BiCor (0.2,0.4)  1.00 (<0.01) 1.00 (<0.01) 1.00 (<0.01) 0.83 (0.02) 0.79 (0.02) 0.81 (0.02)

(< 0.4 secs)

BiCor (0.1,0.3)  0.99 (<0.01) 1.00 (<0.01) 0.99 (<0.01) 0.87 (0.02) 0.87 (0.02) 0.87 (0.01)

(< 0.4 secs)

BiCor 0.99 (<0.01) 1.00 (<0.01) 0.99 (<0.01) 0.85(0.01) 0.92(0.01) 0.88(0.01)

(9Oth 9ot )

(< 0.4 secs)

CcC 0.73(0.02) 0.60(0.02) 0.66 (0.02) 0.93(0.05) 0.92(0.02) 0.92 (0.03)

(< 4 secs)

BiMax (< 1.00 (<0.01) 0.99(<0.01) 0.99 (0.01) 0.28(0.01) 0.30(0.02) 0.29 (<0.01)

5 mins)

ISA (< 5secs) 1.00(<0.01) 0.63(<0.01) 0.79 (<0.01) 0.68(0.02) 0.72(0.02) 0.70 (0.01)

se: standard error

28



Table 4 Different simulation settings for BiCor algorithm.

Algorithm

(mean time/each

True discovery
rate of rows

True discovery
rate of columns

Overall true

discovery rate of

Discovered true
rate of rows

Discovered true
rate of columns

Overall
discovered true

permute) (mean, se) (mean, se) bicluster (mean, se) (mean, se) rate of bicluster
(mean, se) (mean, se)
S(30+70)*(30+70)
BiCor (0.3,0.5) 1.00 (<0.01) 1.00 (<0.01) 1.00 (<0.01) 0.72 (0.02) 0.63 (0.02) 0.69 (0.02)
(< 0.4 secs)
BiCor (0.2,0.5) 1.00 (<0.01) 1.00 (<0.01) 1.00 (<0.01) 0.78 (0.01) 0.64 (0.02) 0.71 (0.02)
(< 0.4 secs)
BiCor (0.2,0.4) 1.00 (<0.01) 1.00 (<0.01) 1.00 (<0.01) 0.83 (0.02) 0.79 (0.02) 0.81 (0.02)
(< 0.4 secs)
S(15+85)*(20+80)
BiCor (0.3,0.5) 0.91 (0.02) 0.94 (0.02) 0.94 (0.02) 0.55(0.02) 0.39 (0.02) 0.49 (0.02)
(< 0.4 secs)
BiCor (0.2,0.5) 0.88 (0.02) 0.93 (0.02) 0.93 (0.02) 0.59 (0.02) 0.40 (0.02) 0.51 (0.02)
(< 0.4 secs)
BiCor (0.2,0.4) 0.89 (0.02) 0.94 (0.02) 0.93 (0.02) 0.61 (0.02) 0.48 (0.02) 0.56 (0.02)
(< 0.4 secs)
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Table 5 Performance of BiCor under different data-dependent thresholds.

Algorithm True discovery  True discovery Overall true Discovered true  Discovered true  Overall
(mean time/each  rate of rows rate of columns discovery rate of  rate of rows rate of columns  discovered true
permute) (mean, se) (mean, se) bicluster (mean, se) (mean, se) rate of bicluster
(mean, se) (mean, se)
S(30+70)x(30+70)
BiCor (60", 0.96(<0.01) 0.97(<0.01) 0.97(<0.01) 0.88(0.01) 0.94(<0.01) 0.91(0.01)
60th)
(< 0.3 secs)
BiCor (70", 0.98(<0.01) 0.98(<0.01) 0.98(<0.01) 0.88(0.01) 0.94(<0.01) 0.91(0.01)
70th)
(< 0.3 secs)
BiCor (80", 0.99(<0.01) 0.99(<0.01) 0.99(<0.01) 0.87(0.01) 0.93(<0.01) 0.90(0.01)
80th)
(< 0.3 secs)
S(15+85)x(20+80)
BiCor (75", 0.81(0.01) 0.88(0.01) 0.85(0.02) 0.70(0.02) 0.68(0.02) 0.71(0.02)
70th)
(< 0.4 secs)
BiCor (85", 0.85(0.01) 0.90(0.01) 0.88(0.02) 0.68(0.02) 0.66(0.02) 0.68(0.02)
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80"
(< 0.4 secs)
BiCor (95", 0.89(0.01) 0.920.01) 0.91(0.02) 0.66(0.02) 0.63(0.02) 0.66(0.02)
90
(< 0.4 secs)
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Table 6 Bicluster result of four bicluster algorithms

Bicluster algorithm Number of genes Id of experiment conditions Discovered true rate of experiment conditions

BiCor (0.4,0.7) 32 16 18 (Cor-hrpS-5x10e7-10h) ,

= 73.39
5%3 %

24 (hrpAfliC-10e8-7h),
2526 27 (hrpA-10e8-7h),
34 35 36 (E.coli-0157-H7-10e8-7h),
37 39 (E.coli-TUV86-2-fliC-10e8-7h)
BiCor (0.4,0.6) 44 16 18 (Cor-hrpS-5x10e7-10h) , 13 g0
23 24 (hrpAfliC-10e8-7h), "
2526 27 (hrpA-10e8-7h),
34 35 36 (E.coli-0157-H7-10e8-7h),
37 38 39 (E.coli-TUV86-2-fliC-10e8-7h)

CcC 155 23 experiment conditions are included

— 0
133 100.0%

BiMax 8 7 8 9 (DC3000-10e6-24h) 3
1%3

= 100.0%
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ISA 8 78 9 (DC3000-10e6-24h) 3 100.0%
- .
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Table 7 Parameter settings of 3 bicluster algorithms in Arabidopsis data

Algorithm Parameter Settings
CcC 6=05a=0.12
BiMax Normalize genes and conditions~N(0,1)

Discretize to binary values by =2
ISA ty =2.0, t,=2.0,nr. seeds = 1000

Table 8 23 experiment conditions of Arabidopsis data

ID Pathogen-cfu/ml Collected time
1-3 Cor-10e6 24h
4-6 Cor-hrpS-10e6 24h
7-9 DC3000-10e6 24h
10-12 Mock-Inoculum 24h
13-15 Cor-5x10e7 10h
16-18 Cor-hrpS-5x10e7 10h
19-21 Mock-Inoculum 10h
22-24  hrpAfliC-10e8 7h
25-27 hrpA-10e8 7h
28-30 DC3000-10e8 7h
31-33 Mock-Inoculum 7h
34-36 E.coli-0157-H7-10e8 7h

37-39 E.coli-TUV86-2-fliC-10e8 7h

Collected time: collected sample time after giving pathogen-cfu/ml
Arabidopsis data from NASC's International Affymetrix Service

734 genes and 23 experiment conditions (each experiment conditions replicate 3 times,

total 69 experiment conditions).
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Table 9 Genes coding for enzymes in the two isoprenoid pathways

Name AGI number Pathway
AACT1 At5g47720 MVA
AACT?2 At5g48230 MVA
CMK At2g26930 MEP
DPPS1 At2g23410 MVA
DPPS2 At5g58770 MVA
DPPS3 At5g58780 MVA
DXPS1 At3g21500 MEP
DXPS2 At4g15560 MEP
DXPS3 At5g11380 MEP
DXR At5g62790 MEP
FPPS1 At4g17190 MVA
FPPS2 At5g47770 MVA
GGPPS1 At1g49530 MVA
GGPPS2 At2g18620 MEP
GGPPS3 At2g18640 MVA
GGPPS4 At2g23800 MVA
GGPPS5 At3g14510 MVA
GGPPS6 At3g14530 MEP
GGPPS8 At3g20160 MVA
GGPPS9 At3g29430 MVA
GGPPS10 At3g32040 MEP
GGPPS11 At4g36810 MEP
GGPPS12 At4g38460 MEP
GPPS At2g34630 MEP
HDR At4g34350 MEP
HDS At5g60600 MEP
HMGR1 Atl1g76490 MVA
HMGR2 At2g17370 MVA
HMGS At4g11820 MVA
IPPI1 At3g02780 MEP
IPPI2 At5g16440 MVA
MCT At2g02500 MEP
MECPS At1g63970 MEP
MK At5g27450 MVA
MPDC1 At2g38700 MVA
MPDC2 At3g54250 MVA
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PPDS1 Atlgl17050 MEP
PPDS2 Atlg78510 MEP
UPPS1 At2g17570 MVA

MVA: Mevalonate pathway; MEP: Non-mevalonate pathway

Table 10 Bicluster result of four bicluster algorithms and two cluster results

Bicluster algorithm True discovery rate of Discovered true rate of
pathway pathway

BiCor (0.1,0.8) 1 0.45
BiCor (0.2,0.8) 1 0.45
BiCor (0.3,0.8) 1 0.35

CC 0.63 0.74
BiMax 0.63 0.25

ISA 0.92 0.55
Cluster algorithm

HCL 0.49 0.49

K means 0.83 0.82

Table 11 Parameter settings of 5 bicluster algorithms in Arabidopsis data

Algorithm Parameter Settings

CcC §=05a=12
BiMax Normalize genes and conditions~N(0,1)
Discretize to binary values by =1
ISA ty = 1.0, t,=1.0,nr. seeds = 10000
HCL Number of cluster=2, single linkage, Pearson’s correlation distance

K means  Number of cluster=2, Pearson’s correlation distance
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Figure 1 An example of a two-component mixture model for correlations.

Performance and comparison:

Figure 2 Low true discovery rate and low discovered true rate.

Red: Setting true bicluster; Green: Identified bicluster; Orange: Overlapping region

Figure 3 High true discovery rate and low discovered true rate

|

Figure 4 Low true discovery rate and high discovered true rate
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Figure 9 Chloroplast (MEP pathway) and cytoplasm (M VA pathway). Taken from
Wille et al. (2004) [5:R92].

Figure 9 Mixture model of correlation of rows and columns in Arabidopsis data
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Figure 10 Correlation of 20 genes and 118 experiments of MVA pathway in
Arabidopsis data
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Figure 11 Correlation of 19 genes and 118 experiments of MEP pathway in
Arabidopsis data
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Appendix

Code in R

Appendix 1 Generate A, 50s0.150) PrOCESS

mydim=50 #EFZEHAEHEBIRVERMVEY » HE R —E %7 ErEME
temp=matrix(rep(0.5),mydim,mydim) #51E 7 5 FL E
diag(temp)=rep(1,mydim) #IE 72 B BB P A 4 R 1
mymatrix=matrix(ncol=mydim,nrow=mydim) #7E ZZ 4 clusterfy4E e
mymatrix[1,]=rmvnorm(1, mean=rep(0,mydim), temp) #5455 —{fErow
mymu=1*mymatrix[1,] # new mean vector for conditional pdf & E{THYmean
IR —HIATRE

temp=matrix( rep(0.5) ,mydim,mydim) # new var-var for conditional pdf
diag(temp)=rep(0.75,mydim)

for (i in 2:mydim){ mymatrix[i,]=rmvnorm(1, mean=mymu, temp) } # 4 F| Y
columns, ¥ AF A 50*50%5 [

yl<-rnorm(n=50%150, m=0, sd=1) #=RAHREANY 50*150 {lE&H}
x1<-array(y1, dim=c(50,150)) #EE R 50%150 FEfEH
x<-cbind(mymatrix,x1) #SF] 50*% (50+150) AEpEH

y2<-rnorm(n=150*200, m=0, sd=1) #4=RAHEAAY 150%200 (& &k}

x2<-array(y2, dim=c(150,200)) #58EE 150*200 FEfE
xfinal<-rbind(x,x2) #5521 (50+150) * (50+150) 5EfH
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Appendix 2 Random generate (a+b)*(c+d) matrix
random_matrix<-function(a,b,c,d){
true sample <- data2[sample(1:50, a,replace=FALSE),]
sample  <- data2[sample(51:200, b,replace=FALSE),]
sample  <-rbind(true sample,sample)

sample  <- t(sample)

true_sample <- sample[sample(1:50, c,replace=FALSE),]
samplel  <- sample[sample(51:200, d,replace=FALSE),]
sample final <- rbind(true_sample,samplel)

sample final <- t(sample final)

Appendix 3 Biclustering methods via correlation matrix (BiCor)
Bicluster cor algorithm<-function(delta gene,delta condition,condition_threshold,ge
ne_threshold,sample ){
X _temp <- sample
aa <- TRUE
1<-1
while(aa){
cat("1=",1,"\n")
cor_col <- abs(cor(X temp))
whichmin <- which(cor col == min(cor col), arr.ind = TRUE)
if(sum(whichmin)==0) {break("stop,no bicluster")}
del col <-
which.min(c(sum(cor_col[whichmin[1,1],]),sum(cor col[whichmin[1,2],])))
if(any(cor col<delta condition )){X temp <-
X_temp[,-whichmin[del col,1]]}
if(dim(X_temp)[2]<3){
OUT <-NA
show(X temp);break("stop")

}

y_temp <- t(X_temp)

cor_row <- abs(cor(y_temp))

whichmin <- which(cor row == min(cor_row), arr.ind = TRUE)
del row <-

hich.min(c(sum(cor_row[whichmin[1,1],]),sum(cor _row[whichmin[1,2],])))
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if(any(cor row<delta gene )){y temp <-y temp[,-whichmin[del row,1]]}
if(dim(y_temp)[2]<3){

OUT <-NA

show(y_temp);break("stop")

b
X _temp <- t(y_temp)

aa <- (any(abs(cor(y_temp))<delta gene) |

any(abs(cor(X temp))<delta condition ))

}

if(aa==TRUE){

delta condition <- min(delta_condition + .01,condition_threshold)
delta gene <- min(delta_gene +.01,gene_threshold)
1<-it+l

if(i > 10000) {stop("Too many iter!")}

telse if(aa==FALSE){OUT <- X temp}

list(OUT,cor(t(t(OUT))),cor(t(OUT)),1)

}
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