請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50844完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛人愷(Ren-Kae Shiue) | |
| dc.contributor.author | Han-Wei Lu | en |
| dc.contributor.author | 呂翰瑋 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:01:49Z | - |
| dc.date.available | 2021-08-03 | |
| dc.date.copyright | 2016-08-03 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-11 | |
| dc.identifier.citation | 1. D. Feron, Stress Corrosion Cracking of Nickel Based Alloy in Water-Cooled Nuclear Reactors: The Coriou Effect, 1st. ed., European Federation of Corrosion Publication, 2013.
2. W.F. Smith, Structure and Properties of Engineering Alloys: McGraw-Hill Science/Engineering/Math, 1993. 3. D. Kotecki, Stainless Steel Welding Guide, 2003, Lincoln Electric Company. 4. W.G. Moffatt, The Handbook of Binary Phase Diagrams, General Electric Company, Corporate Research and Development, Technology Marketing Operation, 1981. 5. G. Humpston, D.M. Jacobson, Principle of Soldering and Brazing, 1993, Materials Park, OH: ASM International. 6. S. Kou, Welding Metallurgy, 2nd. ed., 2002, p. 122-141. 7. A.M. Saeed, et al., The Effect of Welding Parameters on the Weldability of Different Materials Using Brazing Alloy Fillers, Material &Design, 2011. 32(8-9): p.3339-3345. 8. Introductory Welding Metallurgy, American Welding Society, Miami, FL, 1968. 9. L. E. Murr, Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Reading, Mass., 1975. 10. Y. Yuan, T.R. Lee, Contact Angle and Wetting Properties, Surface Science Techniques, 51, 3-34, 2013. 11. A. J. Palmer, Brazing Refractory Metals Used in High-temperature Nuclear Instrumentation, ANIMMA, First International Conference on, 2009. 12. M. M. Schwartz, Brazing, ASM International, 2003. 13. R.W. Messler Jr, Chapter7-Brazing: A Subclassification of Welding, in Joining of Materials and Structures, 2004, Butterworth-Heinemann: Burlington. p. 349-387. 14. T. Noda, et al., Joining of TiAl and Steels by Induction Braing, Material Science and Engineering: A, 1997. 239-240(0): p. 613-618. 15. H. Ji, M. Li, Y. Lu, and C. Wang, Mechanical Properties and Microstructures of Hybrid Ultrasonic Resistance Brazing of WC-Co/BeCu, Journal of Materials Processing Technology, 2012. 212(9): p. 1885-1891. 16. Y. K. Yu, D. W. Liaw, R. K. Shiue, Infrared brazing Inconel 601 and 422 stainless steel using the 70Au-22Ni-8Pd braze alloy, Journal of Material Science, 2005. 40(13): p. 3445-3452. 17. M. M. Schwartz, Brazing for the Engineering Technologist, Chapman and Hall, London, 1995. 18. W. L. Winterbottom, Process Control Criteria for Brazing under Vacuum, Welding Journal, 1984, p. 33-39. 19. T. Zaharinie, et al., Effect of Brazing Temperature on the Shear Strength of Inconel 600 Joint, International Journal of Advanced Manufacturing Technology, 2014. 20. J.R. Mcdermid, et al., The Interaction of Reaction-Bonded Silicon Carbide and Inconel 600 with a Nickel-Based Brazing Alloy, Metallurgical Transaction, 1998. 21. Handbook of Chemistry and Physics, 61st ed., CRC Press Inc., Boca Raton, Florida, 1981, D-198. 22. 周士凱,使用三種填料真空硬銲Inconel 600之研究,碩士論文,國立台灣大學,2015。 23. 王正彥,使用兩種填料真空硬銲Incolony 800之研究,碩士論文,國立台灣大學,2014。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50844 | - |
| dc.description.abstract | 本實驗使用Cu-6Sn填料合金,來分別真空硬銲接合鎳基(Inconel 600)、鐵鎳基(Incoloy 800)、鐵基(316L Stainless Steel)三種基材合金,Cu-6Sn填料比起傳統接合製程常使用的Cu箔填料,擁有較高的抗腐蝕性能和機械性能,由於Sn的添加,熔點大幅降低使製程溫度下降,亦可達節省能源之效益。藉由調整硬銲製程中的硬銲溫度、持溫時間等參數來進行接合,透過掃描式電子顯微鏡觀察接合後的銲道顯微結構與析出物分布狀況,並進行EPMA成分定量分析。再將部分試片進行剪力測試,觀察破壞表面形貌和斷裂橫截面來探討顯微組織與剪力強度的關係。
實驗結果顯示Inconel 600基材接合後,銲道兩側形成Cr3C2碳化析出物,破斷面主要為滑移方式所造成的韌性破壞形貌,在硬銲條件1080°C持溫10分鐘時有最大剪力強度353±21 MPa;Incoloy 800基材接合後,銲道內並無析出物形成,由於填料中的Cu與Fe不互溶,因此可觀察到填料原子沿晶界擴散的滲透現象,破斷面為準劈裂破壞,在硬銲條件1080°C持溫10分鐘時有最大剪力強度296±25 MPa;316L不鏽鋼基材接合後,銲道介面出現固態反應所形成的擴散層,溫度升高至1080°C後,破斷面韌性特徵大幅增加,在硬銲條件1100℃持溫10分鐘時有最大剪力強度397±51 MPa。 | zh_TW |
| dc.description.abstract | In this research, Cu-6Sn filler metal is applied in the vacuum brazing of three substrates, Nickel-based alloy (Inconel 600), Iron-Nickel-based alloy (Incoloy 800) and Ferrous alloy (316L Stainless steel) respectively. The corrosion resistance and the mechanical properties of Cu-6Sn filler metals are much superior to those of the copper foils often utilized in traditional brazing. The reduction of melting temperature due to the addition of tin decreases the brazing temperature, which achieves economizing on heat energy as well. Brazing was performed by controlling parameters such as brazing temperature and holding time. The microstructure of brazed joints and the distribution of precipitates were observed by SEM after vacuum brazing, followed by the EPMA quantitative chemical analysis. Furthermore, selected brazed specimens were conducted in shear test. The relationship between microstructure and shear strength were discussed by means of the images of fractured surface and cross section. The experimental results show as follows. For IN-600/Cu6Sn/IN-600 brazed joint, the interface of brazing area contains Cr3C2 carbide precipitates. Its fractograph is dominated by ductile dimple fracture with sliding marks. The specimen brazed at 1080°C for 10 minutes demonstrates the best shear strength of 353±21 MPa. For IN-800/Cu6Sn/IN-800 brazed joint, there are no precipitates formed in brazing area. Grain boundary penetration of molten filler metals in IN-800 substrate is observed as a result of the insolubility between copper and iron. The specimen brazed at 1080°C for 10 minutes demonstrates the best shear strength of 296±25 MPa. For 316L/Cu6Sn/316L brazed joint, diffusion layers are formed by solid state diffusion at 316L/Cu6Sn interface. The characteristics of dimple are much evident in fractured surface as brazing temperature rises above 1080°C. The specimen brazed at 1100°C for 10 minutes demonstrates the best shear strength of 296±25 MPa. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:01:49Z (GMT). No. of bitstreams: 1 ntu-105-R03527025-1.pdf: 8306342 bytes, checksum: 44f31698221a97797dc58914f6a687c8 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 摘 要 I
Abstract III 目錄 V 表目錄 VII 圖目錄 IX 第一章 前言 1 第二章 文獻回顧 3 2-1實驗材料簡介 3 2-1-1 Inconel 600合金 3 2-1-2 Incoloy 800合金 3 2-1-3 316L不鏽鋼 3 2-1-4 Cu-6Sn合金 4 2-2 冶金接合方式 4 2-2-1 銲接性 5 2-3硬銲製程介紹 7 2-3-1硬銲接合優點 9 2-3-2真空硬銲 10 2-4影響硬銲接合強度因素 11 2-5硬銲熱處理爐 14 第三章 實驗方法與步驟 21 3-1 試片前處理 21 3-2 高溫真空硬銲 21 3-3 SEM顯微組織分析 22 3-4 剪力試驗 22 3-5 EPMA WDS定量分析 22 第四章 使用Cu-6Sn填料硬銲接合IN-600合金 29 4-1 IN-600/Cu-6Sn/IN-600 硬銲接合銲道分析 29 4-1-1 IN-600/Cu-6Sn/IN-600 硬銲於1030℃ 29 4-1-2 IN-600/Cu-6Sn/IN-600 硬銲於1050℃ 30 4-1-3 IN-600/Cu-6Sn/IN-600 試片於1080℃ 30 4-1-4 IN-600/Cu-6Sn/IN-600 試片於1100℃ 30 4-1-5 IN-600/Cu-6Sn/IN-600成分擴散深度分析 31 4-2 IN-600/Cu-6Sn/IN-600試片銲點剪力試驗 32 第五章 使用Cu-6Sn填料硬銲接合IN-800合金 49 5-1 IN-800/Cu-6Sn/IN-800 硬銲接合銲道分析 49 5-1-1 IN-800/Cu-6Sn/IN-800 硬銲於1030℃ 49 5-1-2 IN-800/Cu-6Sn/IN-800 硬銲於1050℃ 50 5-1-3 IN-800/Cu-6Sn/IN-800 硬銲於1080℃ 50 5-1-4 IN-800/Cu-6Sn/IN-800 硬銲於1100℃ 50 5-1-5 IN-800/Cu-6Sn/IN-800成分擴散深度分析 51 5-2 IN-800/Cu-6Sn/IN-800試片銲點剪力試驗 52 第六章 使用Cu-6Sn填料硬銲接合316L不鏽鋼 67 6-1 316L/Cu-6Sn/316L 硬銲接合銲道分析 67 6-1-1 316L/Cu-6Sn/316L 硬銲於1030℃ 67 6-1-2 316L/Cu-6Sn/316L 硬銲於1050℃ 68 6-1-3 316L/Cu-6Sn/316L 硬銲於1080℃ 68 6-1-4 316L/Cu-6Sn/316L 硬銲於1100℃ 68 6-1-5 316L/Cu-6Sn/316L 硬銲於1120℃ 69 6-1-6 316L /Cu-6Sn/316L成分擴散深度分析 69 6-2 316L/Cu-6Sn/316L試片銲點剪力試驗 70 第七章 結論 89 7-1 IN-600合金與Cu-6Sn填料硬銲接合製程 89 7-2 IN-800合金與Cu-6Sn填料硬銲接合製程 89 7-3 316L不鏽鋼與Cu-6Sn填料硬銲接合製程 90 參考文獻 93 | |
| dc.language.iso | zh-TW | |
| dc.subject | Cu-6Sn填料 | zh_TW |
| dc.subject | 剪力強度 | zh_TW |
| dc.subject | 顯微結構 | zh_TW |
| dc.subject | 鎳鐵基合金 | zh_TW |
| dc.subject | 鎳基合金 | zh_TW |
| dc.subject | Cu-6Sn填料 | zh_TW |
| dc.subject | 剪力強度 | zh_TW |
| dc.subject | 顯微結構 | zh_TW |
| dc.subject | 鎳鐵基合金 | zh_TW |
| dc.subject | 鎳基合金 | zh_TW |
| dc.subject | Shear Strength | en |
| dc.subject | Cu-6Sn filler | en |
| dc.subject | Ni-based alloy | en |
| dc.subject | Ni/Fe-based alloy | en |
| dc.subject | Microstructure | en |
| dc.subject | Shear Strength | en |
| dc.subject | Cu-6Sn filler | en |
| dc.subject | Ni-based alloy | en |
| dc.subject | Ni/Fe-based alloy | en |
| dc.subject | Microstructure | en |
| dc.title | 使用Cu-6Sn填料真空硬銲三種基材之研究 | zh_TW |
| dc.title | The Study of Vacuum Brazing Three Substrates Using the Cu-6Sn Filler | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡履文(Leu-Wen Tsay),郭東昊(Dong-Hau Kuo) | |
| dc.subject.keyword | Cu-6Sn填料,鎳基合金,鎳鐵基合金,顯微結構,剪力強度, | zh_TW |
| dc.subject.keyword | Cu-6Sn filler,Ni-based alloy,Ni/Fe-based alloy,Microstructure,Shear Strength, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU201600680 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 8.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
