Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5078
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃良雄
dc.contributor.authorYun Changen
dc.contributor.author張雲zh_TW
dc.date.accessioned2021-05-15T17:51:38Z-
dc.date.available2019-08-21
dc.date.available2021-05-15T17:51:38Z-
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-15
dc.identifier.citation1. Acheson, D. J., Elementary fluid dynamics (Clarendon, Oxford, 1990, 243-245).
2. Batchelor, G. K., An introduction to fluid dynamics (University, Cambridge, 1967,
228).
3. Brinkman, H. C., “A calculation of the viscous force exerted by a flowing fluid on
a dense swarm of particles.” Appl. Sci. Res. A1, 27-34 (1947).
4. Brinkman, H. C., “On the permeability of media consisting of closely packed
porous particles.” Appl. Sci. Res. A1, 81-86 (1948).
5. Brinkman, H. C., “Problems of fluid flow through swarms of particles and through
macromolecules in solution.” Research 2, 190-194 (1949).
6. Biot, M. A., “General theory of three dimensional consolidation,” J. Applied Phys.
12, 155-164 (1941).
7. Biot, M. A., “Mechanics of Deformation and Acoustic Propagation in Porous
Media,” J. Applied Phys. 33, 1482-1498 (1962).
8. British Standards Institution, BSI British Standards: Code of practice for
earthworks (London, BSI, 2009, 7).
9. Beavers, G. S. and Joseph, D. D., “Boundary conditions at a naturally permeable
wall,” J. Fluid Mech. 30, 197-207 (1967).
10. Chen, T. W., Huang, L. H., and Song, C. H., “Dynamics response of poroelastic
bed to nonlinear water waves.” J. Eng. Mech. 123(10), 1041-1049 (1997).
11. Deresiewicz, H. and Skalak, R., “On uniqueness in dynamic poroelasticity.” Bull.
Seismological Soc. Of Am. 53, 783-788 (1963).
12. Foda, M. A., “On the extrication of large objects from the ocean bottom (the
breakout phenomenon),” J. Fluid Mech. 117, 211-231 (1982).
13. Huang, L. H. and Chiang, I. L., “A reinvestigation of laminar channel flow
passing over porous bed,” J. Chinese Ins. Eng. 20, 435-441 (1997).
14. Hsieh, P. C., Dai, H. H., and Huang, L. H., “Laminar water wave and current
passing over porous bed.” J. Eng. Mech. 129(6), 655-664 (2003).
15. Hsu, H. J., Huang, L. H., and Hsieh, P. C., “A re-investigation of the low Reynolds
number uniform flow past a porous spherical shell,” Int. J. Numer. Anal. Meth.
Geometh. 28, 1427-1439 (2004).
16. Jones, I. P., “Low Reynolds number flow past a porous spherical shell,” Proc.
Camb. Phil. Soc. 73, 231-238 (1973).
17. Kaviany M., Principles of Heat Transfer in porous media (Springer-Verlag, New
York, 1991, 31).
18. Liu, C. L., “Ocean sediment holding strength against breakout of embedded
objects,” U.S. Naval Civ. Engng Lab. Tech. Rep. R635 (1969).
19. Liu, L. F., Davis, M. H., and Downing, S., “Wave-induced boundary layer flows
above and in a permeable bed.” J. Fluid Mech. 325, 195-218 (1996).
20. Landau, L. D. and Lifshitz, E. M., Fluid mechanics (Pergamon, London, 1959,
70-71).
21. Mei, C. C. and Foda, M. A., “Wave-induced responses in a fluid-filled poroelastic
solid with a free surface – a boundary layer theory.” Geophys. J. R. Astr. Soc. 66,
597-631 (1981).
22. Mei, C. C., Yeung, R. W., and Liu, K. F, “Lifting of a large object from a porous
seabed,” J. Fluid Mech. 152, 203-215 (1985).
23. Panton, R. L., Incompressible flow (Wiley, Hoboken N.J., 2005, 613-623).
24. Scheidegger, A. E., The physics of flow through porous media (Toronto, 1974, 75).
25. Selvadurai, A.P.S, Partial differential equations in mechanics 2 (Springer, Berlin,
New York, 2000, 339-345).
26. Simons, D. A., “Boundary-layer analysis of propagating mode II creacks in porous
elastic media,” J. Mech. Phys. Solids 25, 99-115 (1977).
27. Song, C. H. and Huang, L. H., “Laminar poroelastic media flow,” J. Eng. Mech.
126(4), 358-366 (2000).
28. Wang, C. Y., “Flow over a surface with parallel grooves,” Phys. Fluids 15,
1114-1121 (2003).
29. White, F. M, Viscous fluid flow (New York, McGraw-Hill, 2006, 155-161).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5078-
dc.description.abstract拉起問題為將沉沒於水中且靜置於底床之物體,由底床垂直拉起之問題。此
問題於海岸或水利工程中有許多應用,如水工構造物之移除、海底沈船打撈、潛
水艇操作等。實際經驗中,拉起之力量甚大,且耗時良久,直到某個轉捩點此力
量才會突然鬆懈,而能將物體順利拉起,此特徵也因此被稱為突破現象。若能認
識突破現象之物理機制,對於拉起物體之過程必然有益。
本研究利用史托氏流(Stokes flow) 描述縫隙中之流體,研究由不透水、不變形底床拉起物體之問題。此外,本研究還利用史托氏流描述縫隙中之流體,利
用Song and Huang (2000) 提出之層流多孔彈性理論於多孔介質,分別研究由
透水、不變形底床拉起物體之問題,以及透水、變形底床拉起物體之問題。史托
氏流完整呈現水平及垂直方向之動量方程式,Song and Huang 之層流多孔彈性
理論能反應出孔隙流之黏滯性,且其理論之邊界條件能保有流體之速度及應力連
續。
本研究第一階段求得二維、於不透水底床拉起物體之精確解。此解揭示了黏
附近似之壓力誤差,也驗證流場之流線與速度不受其大刀闊斧之近似所影響,是
不錯的近似方法。
本研究第二階段求得二維、於透水但不變形底床拉起物體之解,並利用Mei
(1985)研究中之實驗驗證其合理性。此解呈現出許多於透水但不變形底床拉起物
體之物理機制,首要是拉起力量之改變以及突破現象,即研究拉起問題之初衷,
此外還有如流體之流線、壓力、剪力、渦度、黏滯性應等,完整呈現出此問題之
物理機制。此外,這些物理機制顯示出Mei 所採用之黏附近似、達西定律、以及滑移邊界條件(Beavers and Joseph (1967))很可能不適用於有孔隙之拉起問
題。
本研究最終求得二維、於透水可變形底床拉起物體之解。求解過程中,多孔
介質之流體與固體之動量方程可拆開分別求解,孔隙流體之解和由透水但不變形
底床拉起物體之解相同,也因此有同樣的建議。孔隙固體之解可呈現孔隙固體之
變形函數、變形量、有效應力等物理機制,揭示拉起過程中孔隙固體受影響之深
度可達拉起物體長度之半,以及孔隙固體有效應力只和孔隙壓力之分布有關。
zh_TW
dc.description.abstractLift-up problem is a process during which an object immersed in fluid is initially extricated from a bed (Fig. 2-1). In ocean and offshore engineering, it has many applications such as removing hydraulic structures, salvaging sunken ships, and operating submarines. Based on field experience (Liu (1969)), the lifting force is considerably large and the operation time is extremely long. It is a process that slowly increases the gap between the object and the bed until a turning point when the object
is abruptly unfastened. This is called breakout phenomenon. Because of it and the lifting force, it is helpful to ocean and offshore engineering if the mechanics of the problem can be understood.
This study applies Stokes flow to the gap, investigating a lift-up problem with a rigid impermeable bed. Also, this study applies Stokes flow to the gap and Song and Huang’s (2000) laminar poroelasticity theory to the porous medium, analyzing problems with a rigid porous bed and a hard poroelastic bed, respectively. Stokes flow can react to the horizontal and vertical velocities, Song and Huang’s (2000) laminar poroelasticity theory can respond to the viscous effect of pore flow, and the complete boundary conditions can react to the continuity of velocity and stress.
The first stage of this study provides the exact solution to the two-dimensional lift-up problem with a rigid impermeable bed. The exact solution reveals the tiny error
of the pressure in adhesion approximation (Acheson (1990)), and verifies that the tiny error does not influence the kinematics of the flow and the dynamic force acting on
the object.
The second stage of this study proposes a more general solution to the two-dimensional lift-up problem with a rigid porous bed. The solution has been verified by Mei’s (1985) experiments, and reveals many mechanics of the problem.
The dynamic force acting on the object and the breakout phenomenon are displayed, and other mechanics are demonstrated. In fact, they are the mechanics that cannot be
presented by Mei’s (1985) approach, and suggest that adhesion approximation (Acheson (1990)), Darcy’s law, and Beavers and Joseph’s (1967) partial-slip flow might not be suitable to problems with porous beds.
This study finally offers the solution to the two-dimensional lift-up problem with a hard poroelastic bed. The fluid and solid parts in the porous medium can be decoupled. The mechanics of the fluid is exactly the same as those in the problem with a rigid porous bed. Deformation lines, deformations and effective stresses of the solid in a hard poroelastic bed are revealed. The porous medium can be influenced to the depth of L , half the length of the object, and the solid effective stresses are only
influenced by the pressure distribution in the porous medium.
en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:51:38Z (GMT). No. of bitstreams: 1
ntu-103-R01521303-1.pdf: 1908170 bytes, checksum: 9f7400c365270c1ca0014597edb16571 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsCONTENTS
Abstract ii
Notation vii
Contents x
List of Figures xiii
List of Tables xvii
Chapter 1. Introduction 1
Chapter 2. A Two-dimensional Lift-up Problem with a Rigid Impermeable Bed 6
2.1 Introduction 6
2.2 The exact solution 7
2.2.1 Governing equations 8
2.2.2 Boundary conditions 9
2.2.3 Solutions 10
2.3 Adhesion approximation 10
2.3.1 Order of magnitude analysis and leading order equations 11
2.3.2 Boundary conditions 12
2.3.3 Solutions to adhesion approximation 12
2.4 Discussion 13
2.5 Conclusions 15
Chapter 3. A Two-dimensional Lift-up Problem with a Rigid Porous Bed 17
3.1 Introduction 17
3.2 Mathematical formulation 20
3.2.1 Governing equations 21
3.2.2 Boundary conditions 23
3.2.3 Solutions 25
3.3 Discussion 26
3.3.1 Verification of the solutions 26
3.3.2 Mechanics in the lift-up problem 28
3.4 Conclusions 32
Chapter 4. A Two-dimensional Lift-up Problem with a Hard Poroelastic Bed 35
4.1 Introduction 35
4.2 Mathematical formulation 39
4.2.1 Governing equations 39
4.2.2 Boundary conditions 43
4.2.3 Solutions 46
4.3 Discussion 47
4.4 Conclusions 50
Chapter 5. Concluding Remarks 53
Figures 56
Tables 75
Appendices 78
A1 Coefficients to the solutions in Chapter 2 78
A2 Coefficients to the solutions in Chapter 3 79
A3 Coefficients to the solutions in Chapter 4 81
Biblipgraphy 83
dc.language.isoen
dc.subject布林克曼流zh_TW
dc.subject垂直拉起zh_TW
dc.subject突破現象zh_TW
dc.subject史托氏流zh_TW
dc.subject層流多孔彈性理論zh_TW
dc.subject多孔介質zh_TW
dc.subjectLaminar Poroelasticityen
dc.subjectBreakout phenomenonen
dc.subjectPorous mediumen
dc.subjectStokes flowen
dc.subjectBrinkman equationen
dc.subjectLift-up problemen
dc.title垂向拉起沉沒長方形塊之解析研究zh_TW
dc.titleAnalytical solutions to the vertical lifting of a submerged
rectangular block
en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊錦釧,張國強,徐浩仁
dc.subject.keyword垂直拉起,突破現象,史托氏流,布林克曼流,多孔介質,層流多孔彈性理論,zh_TW
dc.subject.keywordLift-up problem,Breakout phenomenon,Stokes flow,Brinkman equation,Porous medium,Laminar Poroelasticity,en
dc.relation.page86
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf1.86 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved