請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50703
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林金福(King-Fu Lin) | |
dc.contributor.author | Yu-Chuan Lan | en |
dc.contributor.author | 藍鈺荃 | zh_TW |
dc.date.accessioned | 2021-06-15T12:53:33Z | - |
dc.date.available | 2016-07-26 | |
dc.date.copyright | 2016-07-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-07-19 | |
dc.identifier.citation | [1] World in Transition - Towards Sustainable Energy Systems, German Advisory Council on Global Change, 2003, http://www.wbgu.de/wbgu_jg2003_kurz_engl.html
[2] 蔡松雨, 工業材料雜誌 2010;284:100 [3] 郭哲瑋、張仁銓、謝東坡、莊佳智、蔡松雨,工業材料雜誌 2010;284:101-109 [4] W. Hoffmann, 'PV solar electricity industry: Market growth and perspective', Solar Energy Materials & Solar Cells 2006;90: 3285–3311 [5] H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya , 'Dye sensitwased zinc oxide: aqueous electrolyte: platinum photocell', Nature 1976;261:402-403 [6] B. O’regan, M. Grätzel, 'A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films', Nature 1991;353:737 – 740 [7] C.J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, 'Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications', Journal of the American Ceramic Society 1997; 80:3157–3171 [8] 李佳樺, 工業材料雜誌 2011;292:94-99 [9] M. Grätzel, 'Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells', Journal of Photochemwastry and Photobiology A: Chemwastry 2004;164:3-14 [10] 王麗萍、蔡松雨,工業材料雜誌 2010;280:143-153 [11] M. Grätzel, 'Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells', Inorganic Chemwastry 2005 ;44(20):6841-6851 [12] 蔡松雨,工業材料雜誌 2007,241:103-110 [13] M.K. Nazeeruddin, R. Humphry-Baker, P. Lwaska, M. Grätzel, 'Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell', The Journal of Physical Chemwastry B 2003;107:8981-8987. [14] 張仕欣, 工業材料雜誌 2005,225:91-101 [15] S. Ito, N.C. Ha, G. Rothenberger, P. Lwaska, P. Comte, S. Zakeeruddin, P. Pe´chy, M. Nazeeruddin, M. Grätzel, 'High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode', Chemical Communications 2006;38: 4004–4006 [16] 閔庭輝、姬梁文、陳文瑞、陳胤維、邱騰震,科儀新知 2007;5(28):22-30 [17] 葉素敏,工業材料雜誌 2007;248:162-168 [18] 童永樑,工業材料雜誌 2008;255:109-123 [19] S.W. Rhee, W. Kwon, 'Key technological elements in dye-sensitized solar cells (DSC)', Korean Journal of Chemical Engineering 2011;28: 1481-1494 [20] I.A. Courtney, J.R. Dahn, 'Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites', Journal of The Electrochemical Society 1997;144(6):2045-2052 [21] G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, P. Wang, ”High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer”, Chemical Communication 2009; 2198–2200 [22] 李佳樺,工業材料雜誌 2011;292:94-99 [23] A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E. W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, 'Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency', Science 2011;334:629-634 [24] 黃呈加,工業材料雜誌2002,192:96-101 [25] X. Chen, S.S. Mao, 'Titanium dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications', Chemical Reviews 2007; 107:2891-2959 [26] X. Bokhimi, A. Morales, M. Aguilar, J.A. Toledo-Antonio, F. Pedraza, 'Local order in titania polymorphs', International Journal of Hydrogen Energy 2001;26:1279–1287 [27] D. Reyes-Coronado, G. Rodr´ıguez-Gattorno, M.E.-Pesqueira, C. Cab, R. de Coss1, G. Oskam, 'Phase-pure TiO2 nanoparticles: anatase, brookite and rutile', Nanotechnology 2008;19: 145605 [28]A.N. Banerjee, 'The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures', Nanotechnology, Science and Applications 2011;4: 35–65 [29] M. Koelsch, S. Cassaignon, C. Ta Thanh Minh, J.-F. Guillemoles, J.-P. Jolivet, 'Electrochemical comparative study of titania (anatase, brookite and rutile) nanoparticles synthesized in aqueous medium', Thin Solid Films 2004; 451-452:86–92 [30 ] N.-G. Park, G. Schlichthörl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, A.J. Frank, 'Dye-Sensitized TiO2 Solar Cells: Structural and Photoelectrochemical Characterization of Nanocrystalline Electrodes Formed from the Hydrolyswas of TiCl4', The Journal of Physical Chemwastry B 1999;103:3308-3314 [31] K.-J. Jiang, T. Kitamura, H. Yin, Seigo Ito, S. Yanagida, 'Dye-sensitized Solar Cells Using Brookite Nanoparticle TiO2 Films as Electrodes', Chemwastry Letters 2002;31(9):872-873 [32] N.G. Park, J. van de Lagemaat, A.J. Frank, 'Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells', The Journal of Physical Chemwastry B 2000; 104:8989-8994 [33] E.A. Barringer, H.K. Bowen, 'High-Purity Monodwasperse TiO2 Powders by Hydrolyswas of Titanium Tetraethoxide. 2. Aqueous Interfacial Electrochemwastry and Dispersion Stability,' Langmuir 1895; 1:420–428 [34] J.H. Jean , T. A. Ring, 'Nucleation and Growth of Monosized TiO2 Powders from Alcohol Solution', Langmuir 1986;2: 251–255. [35] J.L. Look, C.F. Zukoski, 'Alkoxide-Derived Titania Particles: Use of Electrolytes to Control Size and Agglomeration Levels', Journal of the American Ceramic Society 1992;75(6):1587–1595 [36] J.L. Look ,C.F. Zukoski, 'Colloidal Stability of Titania Precipitate Morphology: Influence of Short-Range Repulsions', Journal of the American Ceramic Society 1995;78 (1):21-32 [37] V.J. Nagpal, R.M. Davwas, J.S. Riffle, 'In Situ Steric Stabilization of Titanium dioxide Particles Synthesized by a Sol–Gel Process', Colloids and Surfaces 1994;87:25–31 [38] Q. Xu, M.J. Gieselmann, M.A. Anderson, 'The Colloid Chemwastry of Ceramic Membranes', Polymeric Materials: Science and Engineering 1989 ;61:889–893 [39] M.A. Anderson, M.J. Gieselmann, Q. Xu, 'Titania and Alumina Ceramic Membranes', Journal of Membrane Science 1988; 39: 243–258 [40] C. Lijzenga, V.T. Zaspalwas, K. Keizer, A.J. Burrgraaf, K.P. Kumar, C.D. Ransjin, 'Nanostructure Characterization of Titania Membranes', Key Engineering Materials1991;61&62:379–382 [41] D. Vorkapic , T. Matsoukas, 'Effect of Temperature and Alcohols in the Preparation of Titania Nanoparticles from Alkoxides', Journal of the American Ceramic Society 1998; 81(11):2815–2820 [42] 蔡松雨,工業材料雜誌2007;241:103-110 [43] G.P. Smestad, 'Education and solar conversion: Demonstrating electron transfer', Solar Energy Materials and Solar Cells 1998;55:157-178 [44] 崔孟晉,工業材料雜誌 2008,257:185-193 [45] L.M. Goncalves , V. de Z. Bermudez , H.A. Ribeiro , A.M. Mendes, 'Dye-sensitized solar cells: A safe bet for the future', Energy & Environmental Science 2008;1: 655-667 [46] S.M. Feldt, E.A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt,'Design of Organic Dyes and Cobalt Polypyridine Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells', Journal of the American Chemical Society 2010; 132:16714–16724 [47] P. Wang, S. M. Zakeeruddin, I. Exnar, M. Grätzel, 'High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte', Chemical Communications 2002;2972-2973. [48 ] N. Mohmeyer , D. Kuang, P. Wang, H.W. Schmidt, S. M. Zakeeruddin, M. Grätzel, 'An efficient organogelator for ionic liquids to prepare stable quasi-solid-state dye-sensitized solar cells', Journal of Materials Chemwastry 2006;16:2978-2983. [49] H. Matsui,K. Okada, T. Kawashima, T. Ezure, N. Tanabe, R. Kawano,M. Watanabe, 'Application of an ionic liquid-based electrolyte to a 100 mm×100 mm sized dye-sensitized solar cell', Journal of Photochemwastry and Photobiology A: Chemwastry 2004;164:129-135. [50] I. Chun, B. Lee, J. He, R.P.H. Chang, M.G. Kanatzidwas, 'All-solid-state dye-sensitized solar cells with high efficiency', Nature 2012;485:486-489 [51] L.M. Goncalves , V.Z. Bermudez , H.A. Ribeiro, A.M. Mendes, 'Dye-sensitized solar cells: A safe bet for the future', Energy & Environmental Science 2008;1: 655-667 [52] T.N. Murakami , M. Gratzel, 'Counter electrodes for DSC: Application of functional materials as catalysts', Inorganica Chimica Acta 2008; 361 :572–580 [53] J. Rostalski, D.Mewassner, 'Monochromatic versus solar efficiencies of organic solar cells', Solar energy materials and solar cells 2000;61:87-95. [54] 陳頤承、郭昭顯、陳俊亨,工業材料雜誌;258:249-256 [55]http://www.wacom-ele.co.jp/products/solar/normal/ [56] B.A. Gregg, F. Pichot, S. Ferrere, C.L. Fields, 'Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces' The Journal of Physical Chemwastry B 2001;105:1422-1429 [57] 文克剛, '可交聯光敏劑與雙成份離子溶液電解質在染敏太陽能電池光電性質之研究',台灣大學高分子科學與工程研究所 碩士論文2010 [58] N. Duffy, L.Peter, R. Rajapakse, K. Wijayantha, 'Investigation of the kinetics of the back reaction of electrons with tri-iodide in dye-sensitized nanocrystalline photovoltaic cells.' The Journal of Physical Chemwastry B 2000,104:8916-8919 [59] 林江珍、林嵩祚,中華民國石油季刊 2005;41(3):47-59 [60] 張文聖、黃建良,工業材料雜誌 2007;243:92-97 [61] P. C. Ma, N.A. Siddiqui, G. Marom, J.K. Kim, 'Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review', Composites Part A: Applied Science and Manufacturing 2010;41:1345-1367 [62] D.S. Bethune, C.H. Klang, M.S. De Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, 'Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls', Nature 1993;363:605–607. [63] S Iijima, ”Helical microtubules of graphitic carbon”,Nature 1991; 354:56–58 [64] J.C.Chang and A. G. MacDiarmid, Synth. Met. 1986, 13, 193. [65] W.S. Huang, B. D. Humphrey and A. G. MacDiarmid, J. Chem. Soc.Faraday Trans. 1986, 82, 2385. [66]K. Nwashio, M. Fujimoto, Journal of Power Sources, 56, 189-192 (1995). [67] K.W.Evelyn Lai, P. D. Beattie, S. Holdcroft*, Synth. met., 84, 87-88(1997). [68] B.Wang, J. Tang, Synth. met., 13, 329-334 (1986). [69] K.Koziel, M. Lapkowski and S. Lefrant, Synth. met., 69, 217-218(1995). [70] P. Rannou, M. Nechtschein*, Synth. met., 84, 755-756 (1997). [71] M. C. Bernard, A. H. Goff, Synth. met., 81, 215-219 (1996). [72] S. Mu*, H. Xue, Sensors and Actuators (31), 155-160 (1996). [73] G. Decher, Science ,Vol. 277 , 29 AUGUST 1997 [74] M.Dürr, A.Yasuda, and G. Nelles, ' On the origin of increased open circuit voltage of dye-sensitized solar cells using 4-tert-butyl pyridine as additive to the electrolyte ' APPLIED PHYSICS LETTERS 89, 061110 , 2006 [75] P. L. Anto, R. J. Anto, H. T.Varghese, C. Y. Panicker, D. Philipe and A. G. Brolof, ' FT-IR, FT-Raman and SERS spectra of anilinium sulfate ' J. Raman Spectrosc. 2009, 40, 1810–1815 [76] Y.Mohd, R.Ibrahim, M.F.Zainal' Electrodeposition and Characterization of Polyaniline Films, 2012 IEEE Symposium on Humanities, Science and Engineering Research [77] D.J.Schmidt, E.M.Pridgen, P. T. Hammond, J. C. Love, ' Layer-by-Layer Assembly of a pH-Responsive and Electrochromic Thin Film ', Journal of ChemicalEducation 87.2 (2010): 208–211 [78] C.H. Hsu, H.Y. Liao, and P.L. Kuo, ' Aniline as a Dwaspersant and Stabilizer for the Preparation of Pt Nanoparticles Deposited on Carbon Nanotubes', J. Phys. Chem. C 2010, 114, 7933–7939 [79] P.L.Kuo , C.H. Hsu , W.T. Li , J.Y.Jhan , W.F.Chen , ' Sea urchin-like mesoporous carbon material grown with carbon nanotubes as a cathode catalyst support for fuel cells', Journal of Power Sources 195 (2010) 7983–7990 [80] J. Vivekanandan, V. Ponnusamy, A. Mahudeswaran and P. S. Vijayanand, ' Synthesis characterization and conductivity study of polyaniline prepared by chemical oxidative and electrochemical methods', Archives of Applied Science Research, 2011, 3 (6):147-153 [81] G. Zhu, L. Pan,* T. Lu, T. Xu and Z. Sun, ' Electrophoretic deposition of reduced graphene-carbon nanotubes composite films as counter electrodes of dye-sensitized solar cells', J. Mater. Chem., 2011, 21, 14869–14875 [82] E. C. Venancio, C. A. R. Costa, S.A.S. Machado, A.J. Motheo*,Electrochemwastry Communications, 3, 229-233 (2001). [83]A. V. Kulikov, Y. L. Kogan, L.S. Fokeeva, Synth. met., 69, 223-224(1995). [84]P. A. Kilmartin and G. A. Wright*, Electrochim. acta., 41 (10),1677-1687 (1996). [85]M. C. Bernard, V. T. Bich*, Synth. met., 101, 811-812 (1999) [86] Chen, J., et al., A flexible carbon counter electrode for dye-sensitized solar cells. Carbon, 2009. 47(11): p. 2704-2708. [87] Ito, S., et al., High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chemical Communications, 2006(38): p. 4004-4006. [88] Kuang, D., et al., Application of Highly Ordered TiO2 Nanotube Arrays in Flexible Dye-Sensitized Solar Cells. ACS Nano, 2008. 2(6): p. 1113-1116. [89] Kang, M.G., et al., A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate. Solar Energy Materials and Solar Cells, 2006. 90(5): p. 574-581. [90] Miroslava Trchová, et al., Pure and Applied Chemwastry. Volume 83, Wassue 10, Pages 1803–1817 [91] Hu, C.-C. and C.-H. Chu, Electrochemical impedance characterization of polyaniline-coated graphite electrodes for electrochemical capacitors — effects of film coverage/thickness and anions. Journal of Electroanalytical Chemwastry, 2001. 503(1–2): p. 105-116. [92] Park, J.H. and O.O. Park, Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes. Journal of Power Sources, 2002. 111(1): p. 185-190. [93] Zhang, K., et al., Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chemwastry of Materials, 2010. 22(4): p. 1392-1401 [94] Hsiao-Li Lin, Processing and Performance of Polyaniline / Multi-walled Carbon Nanotubes / CGraphene Composites as Counter Electrode for Dye-sensitized Solar Cells | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50703 | - |
dc.description.abstract | 本論文使用了三種方法在可撓的石墨基板上合成聚苯胺,其方法分別為---化學沉積法、電化學合成法、化學沉積搭配電化學聚合法。我們使用了掃描式電子顯微鏡、熱重分析法、循環伏安法、四點探針等去檢視此複合材料的性質,也進一步將其作為染料敏化太陽能電池之對電極,製成元件以觀測其表現。
化學沉積方面,我們使用了一個新穎的浸塗方法。搭配不同的浸塗時間,分別為---1.0分鐘、1.5分鐘、2.0分鐘、2.5分鐘、3.0分鐘。化學沉積一層聚苯胺/石墨複合材料以及化學沉積兩層聚苯胺/石墨複合材料兩個群組,將會根據不同時間,合成染料敏化太陽能電池所需要的對電極。以1.5分鐘之化學沉積一層聚苯胺/石墨複合材料作為對電極的染料敏化太陽能電池有最好的表現,其光電轉換率為6.16 ± 0.229 %、短路電流密度為短路電流密度為16.1 ± 0.0777 mA/cm2、開路電壓為0.697 ± 0.0238 V、填充因子為0.571 ± 0.0369。 電化學聚合方面,總共有四個群組,每個群組分別都有五個反應時間,分別為25秒、50秒、˙75秒、100秒、125秒。第一個群組為聚苯胺/石墨複合材料;第二個群組為聚苯胺/奈米碳管/石墨複合材料;第三個群組為聚苯胺/石墨烯/石墨複合材料;第四個群組為聚苯胺/奈米碳管/石墨烯/石墨複合材料。以75秒聚合時間之聚苯胺/奈米碳管/石墨烯/石墨複合材做為對電極之染料敏化太陽能電池有最高的光電轉換率,其值為6.34 ± 0.122 %;其短路電流密度為12.9 ± 0.0570 mA/cm2;開路電壓為0.692 ± 0.0122 V;填充因子為0.674 ± 0.00470。有加入奈米碳管與(或是)石墨烯的聚苯胺/石墨複合材料,在作為對電極時,染料敏化太陽能電池會有較佳之光電轉換率表現。 在化學沉積搭配電化學聚合法方面,總共有四個群組,同上一段所述。聚合方法為先以1.5分鐘化學沉積一層聚苯胺在石墨基材上,接下來的合成方法亦同上一段所述。以50秒之聚苯胺/奈米碳管/石墨複合材料作為對電極者,有最高之光電轉換效率,其值為5.35 ± 0.0981 %;其短路電流密度為13.0 ± 0.0901 mA/cm2;開路電壓為0.694 ± 0.0281 V;填充因子為0.574 ± 0.0185。 從隨聚合時間而下降的染料敏化太陽能電池之Voc值,以及遲滯曲線中電壓下降的觀察,我們可以推測在染料敏化太陽能電池中的聚苯胺可能具有電容效應。電容效應主要源自於聚苯胺的氧化態之改變,來自外電路的電子還原了介於半氧化半還原態的聚苯胺鹽。另外,隨著聚苯胺的聚合時間愈長,其表面的纖維狀結構會愈加複雜並逐漸形成網狀結構,此結構對電解液中的氧化還原對(碘/點三根離子)將造成立體阻隔效應,使得三碘離子的還原速率降低。雖然聚苯胺的網狀結構具有廣大的表面積,但是其孔洞狀的結構反而使得碘/碘三根離子對難以進入到此網狀結構的內部進行氧化還原反應。 電容效應造成一個負向的電壓,隨這聚苯胺的聚合時間愈長,電容效應就越加明顯。在光照之下,以聚苯胺作為對電極之染料敏化太陽能電池的開路電壓和短路電流,會隨著聚苯胺的聚合時間增加而有下降的趨勢。 | zh_TW |
dc.description.abstract | The main idea of this thesis was to fabricate a flexible and low-cost counter electrode for liquid state dye sensitized solar cells. Three methods were applied---chemical deposition, electrochemical polymerization, and chemical-electrochemical polymerization. We used scanning electron microscopy, thermogravimetry analysis, cyclic voltammetry, four-point probe, etc. to characterize of PANi/graphite composite. We also conducted photovoltaic tests, electrochemical impedance spectroscopy, etc. to observe the device performance.
For chemical deposition, we adopted a new dip coating method. Different reaction time was set, which was 1.0, 1.5, 2.0, 2.5, and 3.0 minute. Two groups---1 and 2-layered PANi on Graphite composites---were applied in DSSCs. The DSSC with counter electrode of 1-layered PANi by 1.5 minute has the best performance with power conversion efficiency (PCE) of 6.16 ± 0.229 %, short circuit current density (Jsc) of 16.1 ± 0.0777 mA/cm2, open circuit voltage (Voc) of 0.697 ± 0.0238 V, and fill factor (FF) of 0.571 ± 0.0369. For electrochemical polymerization, there are four groups---PANi, PANi/CNT, PANi/Graphen, and PANi/CNT/Graphene all on graphite substrate---prepared by different reaction time, which was 25, 50, 75, 100, and 125 second. PANi/CNT/Graphene on graphite substrateby 75 second has the highest PCE of 6.34 ± 0.122 %, with Jsc of 12.9 ± 0.0570 mA/cm2, Voc of 0.692 ± 0.0122 V, and FF of 0.674 ± 0.00470. Generally, the DSSCs with CNT or/and Graphene in PANi/Graphite substrate have improved PCE and performance. For chemical-electrochemical polymerization, 1-layered PANi by 1.5 minute was deposited on the counter electrode followed by electrochemical polymerization of PANi with different reaction time as mentioned previously. The DSSCs with PANi followed by PANi/CNT on graphite substrate by 50 second has the highest PCE of 5.35 ± 0.0981 %, with Jsc of 13.0 ± 0.0901 mA/cm2, Voc of 0.694 ± 0.0281 V, and ff of 0.574 ± 0.0185. From the decreasing Voc in I-V curves with reaction time and voltage decrease in hysteresis diagrams, we proposed the possible existence of capacity of PANi in DSSC system, which would impose large impact on the performance of DSSCs. The capacity effect might come from change of oxidation state of PANi. The electrons from external circuit would reduce the protonated emeraldine salt which is at medium oxidation state. Besides, as reaction time for PANi gets longer, the fiber structure interweaves into a network, which imposes steric hindrance for the redox couple (iodide/triiodide) in the electrolyte and thus decrease the reduction rate of triiodide. Although more surface area is created as PANi grows more complexly, the small pores of the network structure prevent redox couples from diffusing into the inside of PANi and undergoing redox reaction. Capacitance effect builds up a reverse potential to the DSSC. Under illumination, Voc and Jsc of DSSCs with PANi as the counter electrode feature a descending tendency with increasing reaction time of PANi. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:53:33Z (GMT). No. of bitstreams: 1 ntu-105-R01527032-1.pdf: 12401663 bytes, checksum: 39da6f3e142e08c5cbdf47b9a6f3e272 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | Acknowledgement i
中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES i LIST OF TABLES x Introduction 1 1.1Equation Chapter 1 Section 1 Preface 1 1.1.1 The Development of Solar Cells 1 1.1.2 The Development of Dye Sensitized Solar Cells (DSSCs) 3 1.1.3 The Development of Dye Sensitized Solar Cells (DSSCs) 4 1.2 Motivation 4 1.3 Research Outline 6 Chapter 2 Literature Review 8 2.1 Introduction to Dye Sensitized Solar Cells (DSSCs) 8 2.1.1 The Working Principles of DSSCs 8 2.1.2 Transparent Substrate 11 2.1.3 Dye 13 2.1.4 Working Electrodes 16 2.1.5 Electrolyte 20 2.1.6 Counter Electrodes 23 2.2 The Measurement of DSSCs 24 2.2.1 Spectroscopy of Sun Light and Solar Simulator 24 2.2.2 Photovoltaic Curve (I-V Curve) 26 2.2.3 Electrochemical Impedance Spectroscopy (EIS) 29 2.2.4 Intensity-modulated Photo-voltage Spectroscopy (IMVS) and Intensity-modulated Photo-current Spectroscopy (IMPS) 32 2.2.5 Voltage Decay and Charge Collection 34 2.3 Introduction to Conducting Polymers 36 2.3.1 Mechanism and Categories of Conducting Polymers 37 2.3.2 Properties of Conducting Polymer---Polyaniline 38 2.3.3 Synthesis of Polyaniline 40 2.3.6 Layer-by-Layer Self-Assembly Thin Film 43 2.4 Introduction to Carbon Nanotubes 45 2.5 Introduction to Graphene 46 2.6 Introduction to Flexible Substrates in Dye Sensitized Solar Cells 48 2.6.1 Utilization of Polyethylene Terephthalate (PET) in DSSCs 48 2.6.2 Utilization of Carbon Materials in DSSCs 49 Chapter 3 Research Methods and Measurement 50 3.1 List of Chemicals 50 3.2 List of Instruments 51 3.3 Fabrication of DSSCs 52 3.3.1 Preparation of Dye 52 3.3.2 Preparation of Liquid Electrolyte 52 3.3.3 Preparation of Titanium Dioxide (TiO2) Solution 53 3.3.4 Preparation of TiO2 Working Electrode 53 3.3.5 Preparation of Flexible Graphite Substrate for Counter Electrode 54 3.3.6 Preparation of Aniline Sulfate Acid Solution 54 3.3.8 Preparation of Aniline Sulfate Acid Solution with Different Weight Percentage of Carbon Nanotube and Graphene 56 3.3.10 Chemical Deposition of PANi on Graphite Substrate followed by Electro-chemical Polymerization 57 3.3.11 Assembly of DSSCs 61 3.4 Characterization of PANi on Flexible Graphite Substrate 61 3.4.1 Characterization of PANi by Fourier Transform Infrared Spectroscopy (FT/IR) 61 3.4.2 Surface Electrical Resistivity of PANi on Flexible Graphite Substrate 61 3.4.3 Weight Loss of PANi by Thermogravimetry Analysis (TGA) 62 3.4.4 Surface Morphology of PANi by Scanning Electron Microscopy (SEM) 62 3.4.5 Cyclic Voltammetry (CV) of PANi 62 3.5 Photovoltaic Properties of DSSCs with PANi on Flexible Graphite Substrate as Counter Electrode 63 3.5.1 Photovoltaic Properties (IV Curve) 63 3.5.2 Electrochemical Impedance Spectroscopy (EIS) 63 3.5.3 Intensity-modulated Photo-voltage Spectroscopy (IMVS) and Intensity-modulated Photo-current Spectroscopy (IMPS) 64 3.5.4 Voltage Decay and Charge Collection 64 Chapter 4 Results and Discussion 65 4.1 Characteristics of Flexible Graphite Substrate 65 4.1.1 Bending of Graphite Substrate 65 4.1.2 Resistivity of Graphite Substrate 65 4.1.3 Thermal Stability of Graphite Substrate 66 4.2 Characteristics of PANi on Flexible Graphite Substrate 67 4.2.1 Characterization of PANi by FTIR 67 4.2.2 Weight Loss of PANi 68 4.2.3 Surface Morphology of PANi 73 4.2.4 Reaction Potential of PANi 85 4.3 Photovoltaic Properties of DSSCs with PANi and its composites on Flexible Graphite Substrate as Counter Electrode 92 4.3.1 Photovoltaic Performance (I-V Curve) 92 4.3.2 Hysteresis of DSSCs with PANi, PANi/CNT/Graphene Composite on Graphite Substrate as the Counter Electrode 111 4.3.3 Electrochemical Impedance Spectroscopy (EIS) 114 Chapter 5 Conclusion 140 REFERENCE 141 | |
dc.language.iso | en | |
dc.title | 聚苯胺複合材料在染料敏化太陽能電池軟質對電極上之應用 | zh_TW |
dc.title | Application of Polyaniline Composites at Flexible Counter Electrode of Dye Sensitized Solar Cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王立義(Lee-Yih Wang),廖文彬(Wen-Bin Liau) | |
dc.subject.keyword | 染料敏化太陽能電池,化學沉積法,電化學聚合法,化學沉積配合電化學聚合法,電容效應, | zh_TW |
dc.subject.keyword | Dye Sensitized Solar Cell,Polyaniline,Flexible Graphite Foil,Chemical Deposition,Electrochemical Polymerization,Chemical-Electro- Chemical Polymerization,Capacitance Effect, | en |
dc.relation.page | 149 | |
dc.identifier.doi | 10.6342/NTU201601038 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-07-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 12.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。