請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50666完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛人愷 | |
| dc.contributor.author | Chieh Yu | en |
| dc.contributor.author | 于傑 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:51:34Z | - |
| dc.date.available | 2026-07-19 | |
| dc.date.copyright | 2016-08-02 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-20 | |
| dc.identifier.citation | 1. World Wind Energy Association Wwea 2012' World wind energy report 2012.
2. M. Kapsali and J. K. Kaldellis,'Offshore Wind Power Basics' Technological education institute of piraeus 2012. 3. T. R. C. o. Norway,'Offshore Wind Assessment for Norway' 2010. 4. AREVA, 'Tail Wind for Offshore Wind Energy Plants', http://www.areva-wind.com/m5000/technische-daten/. 5. R. I. GmbH,'Nordsee Ost Offshore Wind Farm'. 6. M. Militzer, In Comprehensive Materials Processing, ed. Saleem HashmiGilmar Ferreira BatalhaChester J. Van TyneBekir Yilbas (Elsevier: Oxford, 2014), pp 191-216. 7. C. Ouchi,'Development of Steel Plates by Intensive Use of Tmcp and Direct Quenching Processes' ISIJ International 2001, vol. 41, pp. 542-553. 8. The Effect of Austenite Grain Size and Temperature on the Rate of the Bainite Transformation' Met Sci Heat Treat 1962, vol. 4, pp. 359-360. 9. M. Kubota, K. Ushioda, G. Miyamoto and T. Furuhara,'Analysis of Recrystallization Behavior of Hot-Deformed Austenite Reconstructed from Electron Backscattering Diffraction Orientation Maps of Lath Martensite' Scripta Materialia. 10. M. Ohashi, S. Tsuru and K. Itoh,'Steel Times 1989, vol. 382. 11. K. Okamoto, Y. Yoshie and H. Nakao,'Proc. Of Int. Conf. On Physical Metallurgy of Direct Quenched Steels' 1992, vol. 39. 12. J. R. Davis,'High-Strength Low-Alloy Steels' ASM International 2001. 13. 機械工程手冊.電機工程手冊編輯委員會,'機械工程手冊2鋼材料' 2008. 14. T. Murata, In Uhlig's Corrosion Handbook, (John Wiley & Sons, Inc.: 2011), pp 621-631. 15. D. K. Matlock, G. Krauss and J. G. Speer,'Microstructures and Properties of Direct-Cooled Microalloy Forging Steels' Journal of Materials Processing Technology 2001, vol. 117, pp. 324-328. 16. Z. Sami, S. Tahar and H. Mohamed,'Microstructure and Charpy Impact Properties of Ferrite–Martensite Dual Phase Api X70 Linepipe Steel' Materials Science and Engineering: A 2014, vol. 598, pp. 338-342. 17. J. C. Lippold and D. J. Kotecki: Welding Metallurgy and Weldability of Stainless Steels. (John Wiley, Hoboken, NJ, 2005). 18. S. Kou: Welding Metallurgy. (Wiley-Interscience, Hoboken, N.J., 2003). 19. B. K. Show, R. Veerababu, R. Balamuralikrishnan and G. Malakondaiah,'Effect of Vanadium and Titanium Modification on the Microstructure and Mechanical Properties of a Microalloyed Hsla Steel' Materials Science and Engineering: A 2010, vol. 527, pp. 1595-1604. 20. V. Ollilainen, W. Kasprzak and L. Holappa,'The Effect of Silicon, Vanadium and Nitrogen on the Microstructure and Hardness of Air Cooled Medium Carbon Low Alloy Steels' Journal of Materials Processing Technology 2003, vol. 134, pp. 405-412. 21. J. Fernández, S. Illescas and J. M. Guilemany,'Effect of Microalloying Elements on the Austenitic Grain Growth in a Low Carbon Hsla Steel' Materials Letters 2007, vol. 61, pp. 2389-2392. 22. Z. Wang, X. Mao, Z. Yang, X. Sun, Q. Yong, Z. Li and Y. Weng,'Strain-Induced Precipitation in a Ti Micro-Alloyed Hsla Steel' Materials Science and Engineering: A 2011, vol. 529, pp. 459-467. 23. A. Ghosh, S. Das, S. Chatterjee and P. Ramachandra Rao,'Effect of Cooling Rate on Structure and Properties of an Ultra-Low Carbon Hsla-100 Grade Steel' Materials Characterization 2006, vol. 56, pp. 59-65. 24. B. Hwang and C. G. Lee,'Influence of Thermomechanical Processing and Heat Treatments on Tensile and Charpy Impact Properties of B and Cu Bearing High-Strength Low-Alloy Steels' Materials Science and Engineering: A 2010, vol. 527, pp. 4341-4346. 25. H. J. Jun, K. B. Kang and C. G. Park,'Effects of Cooling Rate and Isothermal Holding on the Precipitation Behavior During Continuous Casting of Nb–Ti Bearing Hsla Steels' Scripta Materialia 2003, vol. 49, pp. 1081-1086. 26. J. Kang, C. Wang and G. D. Wang,'Microstructural Characteristics and Impact Fracture Behavior of a High-Strength Low-Alloy Steel Treated by Intercritical Heat Treatment' Materials Science and Engineering: A 2012, vol. 553, pp. 96-104. 27. K. Kocatepe, M. Cerah and M. Erdogan,'Effect of Martensite Volume Fraction and Its Morphology on the Tensile Properties of Ferritic Ductile Iron with Dual Matrix Structures' Journal of Materials Processing Technology 2006, vol. 178, pp. 44-51. 28. K. Kocatepe, M. Cerah and M. Erdogan,'The Tensile Fracture Behaviour of Intercritically Annealed and Quenched + Tempered Ferritic Ductile Iron with Dual Matrix Structure' Materials & Design 2007, vol. 28, pp. 172-181. 29. M. A. Maleque, Y. M. Poon and H. H. Masjuki,'The Effect of Intercritical Heat Treatment on the Mechanical Properties of Aisi 3115 Steel' Journal of Materials Processing Technology 2004, vol. 153–154, pp. 482-487. 30. P. Movahed, S. Kolahgar, S. P. H. Marashi, M. Pouranvari and N. Parvin,'The Effect of Intercritical Heat Treatment Temperature on the Tensile Properties and Work Hardening Behavior of Ferrite–Martensite Dual Phase Steel Sheets' Materials Science and Engineering: A 2009, vol. 518, pp. 1-6. 31. A. Pandit, A. Murugaiyan, A. S. Podder, A. Haldar, D. Bhattacharjee, S. Chandra and R. K. Ray,'Strain Induced Precipitation of Complex Carbonitrides in Nb–V and Ti–V Microalloyed Steels' Scripta Materialia 2005, vol. 53, pp. 1309-1314. 32. X. Wang, Z.-c. Wang, X.-b. Wang, Y.-r. Wang, J.-q. Gao and X.-l. Zhao,'Effect of Cooling Rate and Deformation on Microstructures and Critical Phase-Transformation Temperature of Boron-Nickel Added Hsla H-Beams' Journal of Iron and Steel Research, International 2012, vol. 19, pp. 62-66. 33. S. B. Singh, In Phase Transformations in Steels, ed. Elena Pereloma and Edmonds David V. (Woodhead Publishing: 2012), pp 385-416. 34. H. K. D. H. Bhadeshia and J. W. Christian,'Bainite in Steels' MTA 1990, vol. 21, pp. 767-797. 35. W. F. Smith: Structure and Properties of Engineering Alloys. (McGraw-Hill, New York, 1993). 36. T. Furuhara, In Phase Transformations in Steels, ed. Elena Pereloma and Edmonds David V. (Woodhead Publishing: 2012), pp 417-435. 37. T. Furuhara, H. Kawata, S. Morito and T. Maki,'Crystallography of Upper Bainite in Fe–Ni–C Alloys' Materials Science and Engineering: A 2006, vol. 431, pp. 228-236. 38. N. Isasti, D. Jorge-Badiola, M. Taheri and P. Uranga,'Microstructural Features Controlling Mechanical Properties in Nb-Mo Microalloyed Steels. Part Ii: Impact Toughness' Metall and Mat Trans A 2014, vol. 45, pp. 4972-4982. 39. P. Mohseni, J. Solberg, M. Karlsen, O. Akselsen and E. Østby,'Cleavage Fracture Initiation at M–a Constituents in Intercritically Coarse-Grained Heat-Affected Zone of a Hsla Steel' Metall and Mat Trans A 2014, vol. 45, pp. 384-394. 40. Y. Li and T. N. Baker,'Effect of Morphology of Martensite–Austenite Phase on Fracture of Weld Heat Affected Zone in Vanadium and Niobium Microalloyed Steels' Materials Science and Technology 2010, vol. 26, pp. 1029-1040. 41. X. L. Wang, X. M. Wang, C. J. Shang and R. D. K. Misra,'Characterization of the Multi-Pass Weld Metal and the Impact of Retained Austenite Obtained through Intercritical Heat Treatment on Low Temperature Toughness' Materials Science and Engineering: A 2016, vol. 649, pp. 282-292. 42. L. Lan, X. Kong, C. Qiu and D. Zhao,'Influence of Microstructural Aspects on Impact Toughness of Multi-Pass Submerged Arc Welded Hsla Steel Joints' Materials & Design 2016, vol. 90, pp. 488-498. 43. X. Li, X. Ma, S. V. Subramanian, C. Shang and R. D. K. Misra,'Influence of Prior Austenite Grain Size on Martensite–Austenite Constituent and Toughness in the Heat Affected Zone of 700 Mpa High Strength Linepipe Steel' Materials Science and Engineering: A 2014, vol. 616, pp. 141-147. 44. A. Lambert-Perlade, A. F. Gourgues and A. Pineau,'Austenite to Bainite Phase Transformation in the Heat-Affected Zone of a High Strength Low Alloy Steel' Acta Materialia 2004, vol. 52, pp. 2337-2348. 45. N. Huda, A. R. H. Midawi, J. Gianetto, R. Lazor and A. P. Gerlich,'Influence of Martensite-Austenite (Ma) on Impact Toughness of X80 Line Pipe Steels' Materials Science and Engineering: A 2016, vol. 662, pp. 481-491. 46. X. Li, Y. Fan, X. Ma, S. V. Subramanian and C. Shang,'Influence of Martensite–Austenite Constituents Formed at Different Intercritical Temperatures on Toughness' Materials & Design 2015, vol. 67, pp. 457-463. 47. A. Lambert-Perlade, A. F. Gourgues, J. Besson, T. Sturel and A. Pineau,'Mechanisms and Modeling of Cleavage Fracture in Simulated Heat-Affected Zone Microstructures of a High-Strength Low Alloy Steel' Metall and Mat Trans A 2004, vol. 35, pp. 1039-1053. 48. Y. M. Kim, S. Y. Shin, H. Lee, B. Hwang, S. Lee and N. J. Kim,'Effects of Molybdenum and Vanadium Addition on Tensile and Charpy Impact Properties of Api X70 Linepipe Steels' Metall and Mat Trans A 2007, vol. 38, pp. 1731-1742. 49. V. Biss and R. L. Cryderman,'Martensite and Retained Austenite in Hot-Rolled, Low-Carbon Bainitic Steels' MMTB 1971, vol. 2, pp. 2267-2276. 50. 劉勁松, 肖寒 and 段小亮,'Simufact在材料成型與控制工程中的應用' 2012. 51. N. Standard,'Material Data Sheets for Structural Steel' Norway Technology 52. B. Wang and J. Lian,'Effect of Microstructure on Low-Temperature Toughness of a Low Carbon Nb–V–Ti Microalloyed Pipeline Steel' Materials Science and Engineering: A 2014, vol. 592, pp. 50-56. 53. C. Hofer, F. Winkelhofer, H. Clemens and S. Primig,'Morphology Change of Retained Austenite During Austempering of Carbide-Free Bainitic Steel' Materials Science and Engineering: A 2016, vol. 664, pp. 236-246. 54. Y. Zhou, T. Jia, X. Zhang, Z. Liu and R. D. K. Misra,'Microstructure and Toughness of the Cghaz of an Offshore Platform Steel' Journal of Materials Processing Technology 2015, vol. 219, pp. 314-320. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50666 | - |
| dc.description.abstract | 超高強度海洋用鋼屬於超高強度低合金鋼 (HSLA),經由TMCP製程可達到降伏強度大於690 MPa之強度,但必須滿足Norsok S690Q之低溫韌性規範,於低溫 (-40 °C) 衝擊測試平均大於100 J,且任一測試試片不得低於70 J。本研究使用四種微合金成分,分別進行兩種軋延量 (OS1及OS2試片為67%,OS3與OS4試片為80%) 之TMCP製程後再經由回火後探討其低溫衝擊韌性,實驗結果顯示軋延量提升有助於改善低溫衝擊韌性。此外,利用表層 (回火麻田散鐵) 與心部 (回火麻田散鐵與變韌鐵) 位置之回火試片進行低溫衝擊試驗,其結果顯示回火麻田散鐵具有較佳之低溫韌性及較低之延性轉脆溫度。由EBSD結晶方位間角度關係圖顯示回火麻田散鐵除了晶界為高角度界面,其晶粒內次結構之界面亦為高角度界面,因此具有較佳之低溫韌性。
80 %軋延量之試片進行沃斯回火熱處理 (430 °C與490 °C) 探討上/下變韌鐵對於低溫衝擊韌性之影響,將可提供銲接之參考。沃斯回火後之衝擊測試結果顯示,下變韌鐵具有較佳之衝擊韌性,而上變韌鐵之韌性不佳。由EBSD結晶方位間角度關係分析得知其韌性不佳之原因為上變韌鐵次結構內低角度之界面數量增加,且冷卻過程中殘留沃斯田鐵不完全變態,形成麻田散鐵與沃斯田鐵共同組成之MA組織。MA組織生成於晶界以及界面間之位置,由於MA組織硬且脆易於裂縫成核裂化韌性,其破斷形貌呈現脆性劈裂破壞。然而,微合金元素中添加Mo及V將促使MA組織生成,由顯微結構分析顯示OS4試片於430 °C沃斯回火已觀察到MA組織,而490 °C沃斯回火MA組織數量明顯增加,導致其衝擊測試結果皆較相同沃斯回火熱處理之OS3試片差。 此外,亦配合實驗使用Simufact模擬TMCP製程中冷卻過程之相變態比例與殘留應力,其依據JMatPro計算之材料冶金性質進行TMCP製程參數之模擬。模擬參數分別為理想狀態與非理想狀態,其差異為上/下方之冷卻速率是否一致,其結果顯示非理想狀態冷卻將導致鋼板Z方向有明顯變形。 | zh_TW |
| dc.description.abstract | Ultra high strength offshore steel is one of high strength low alloy steel (HSLA) which possessed high Y.S (≥ 690 MPa) by TMCP process. According to Norsok S690Q standard, the average of low temperature (-40 °C) impact energy is higher than 100 J and one of other is must higher than 70 J. There are four chemical compositions and two rolled ratio (OS1 & OS2 are 67 %, OS3 & OS4 are 80 %) in this study. The investigation of low temperature impact toughness used tempered offshore steels which were manufactured by TMCP and then carried on temper heat treatment. The result showed that offshore steel with 80 % thickness reduction possessed excellent low temperature impact toughness. In addition, the structure of surface (tempered martensite) and center (tempered martensite and bainite) were studied. It is tempered martensite that revealed good low temperature toughness and lower ductile to brittle transition temperature (DBTT). EBSD crystal orientation map of tempered martensite was examined which showed its grain boundaries and sub-structure were high-angle boundaries.
Two 80 % thickness reduction specimens were conducted by austempered heat treatment (430 °C and 490 °C ) to investigate low temperature impact toughness of upper and lower bainite which could be provided for welding process. The impact energy of austempered treatment showed that the toughness of lower bainite is higher than upper bainite. Because of the increasing amount of lower-angle boundaries and uncompleted transformation of retained austenite which formed MA constituent, toughness of upper bainite was degenerated which was examined by EBSD crystal orientation map. MA constituent located at grain boundaries and interface of sub-structure due to its hard and brittle which degenerated low temperature toughness of upper bainite. Fractagraphy of upper bainite revealed brittle quasi-cleavage. However, it results that adding Mo and V in steel promoted formation of MA constituent. According to microscopic examination, there is MA constituent in OS4 specimen which was carried out 430 °C austempered treatment. After 490 °C austempered treatment, the amount of MA constituent were increased. Due to element effect which promoted formation of MA constituent, the impact toughness of OS4 specimens were lower than OS3 specimens for identical austempered treatment. In addition to experiment, the cooling process of TMCP was simulated by Simufact software. Simufact software which calculated metallurgical properties according to database of JMatPro simulated the ratio of phase and retained stress. The parameters of simulation were divided into ideal state and nonideal state that is the cooling system of top and bottom whether identity or not. The result of simulation showed non-ideal state caused steel deformation by TMCP. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:51:34Z (GMT). No. of bitstreams: 1 ntu-105-D02527001-1.pdf: 10754484 bytes, checksum: 0391043c9075463870c33bad6f8b424a (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文摘要 i
第1章 前言 1 第2章 文獻回顧 2 2-1 熱機控制製程回顧 2 2-2 高強度低合金鋼發展 5 2-3 變韌鐵[33, 34] 7 2-3-1 變韌鐵之回顧 7 2-3-2 變態溫度之影響 10 2-4 MA對於低溫韌性影響 10 2-5 材料計算模擬 12 2-5-1 模擬軟體回顧 12 2-5-2 Simufact模擬軟體[50] 12 第3章 研究方法 14 3-1 實驗設計 14 3-2 實驗規劃 17 3-3 實驗方法 18 3-3-1 實驗流程 18 3-3-2 試片之命名 18 3-3-3 回火熱處理 22 3-3-4 顯微組織觀察 22 3-3-4-1 TEM顯微結構觀察 22 3-3-4-2 SEM之EBSD分析 22 3-3-5 機械性質測試 23 3-3-5-1硬度量測 23 3-3-5-2 衝擊試驗 23 3-3-6 材料計算模擬 23 3-3-6-1 JMatPro冶金性質計算 23 3-3-6-2 JMatPro轉檔Simufact 23 3-3-6-4 Simufact模擬步驟 26 第4章 結果與討論 30 4-1製程淬火之顯微組織觀察及分析 30 4-1-1 金相觀察及硬度測試 30 4-1-2 SEM顯微結構觀察 42 4-2 JMatPro材料性質模擬 52 4-3-1回火溫度選擇 61 4-3-2 回火顯微結構之觀察 63 4-3-3 機械性質測試 63 4-3-4 延性轉脆溫度探討 63 4-3-5 重新淬火/回火分析 68 4-3-6 低溫韌性分析 71 4-4-1 顯微組織觀察 73 4-4-2 衝擊測試與破斷面分析 80 4-4-3 沃斯回火低溫韌性分析 86 4-5 Simufact模擬TMCP之DQ製程 88 4-5-1 Simufact模擬 88 4-5-2 DQ製程理想狀態之模擬 88 4-5-3 DQ製程非理想狀態之模擬 90 第5章 結論 97 參考文獻 98 | |
| dc.language.iso | zh-TW | |
| dc.subject | 麻田散鐵/沃斯田鐵 | zh_TW |
| dc.subject | 海洋用鋼 | zh_TW |
| dc.subject | 高強度低合金鋼 | zh_TW |
| dc.subject | 沃斯回火 | zh_TW |
| dc.subject | EBSD結晶方位角度關係 | zh_TW |
| dc.subject | 高強度低合金鋼 | zh_TW |
| dc.subject | 麻田散鐵/沃斯田鐵 | zh_TW |
| dc.subject | 海洋用鋼 | zh_TW |
| dc.subject | 沃斯回火 | zh_TW |
| dc.subject | EBSD結晶方位角度關係 | zh_TW |
| dc.subject | MA constituent. | en |
| dc.subject | Offshore steel | en |
| dc.subject | HSLA | en |
| dc.subject | Austempered treatment | en |
| dc.subject | EBSD crystal misorientation | en |
| dc.subject | MA constituent. | en |
| dc.subject | Offshore steel | en |
| dc.subject | HSLA | en |
| dc.subject | Austempered treatment | en |
| dc.subject | EBSD crystal misorientation | en |
| dc.title | 超高強度海洋用鋼熱處理性質之研究 | zh_TW |
| dc.title | The effect of heat treatment properties of ultrahigh strength offshore steels | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蔡履文,林新智,郭東昊,林家正 | |
| dc.subject.keyword | 海洋用鋼,高強度低合金鋼,沃斯回火,EBSD結晶方位角度關係,麻田散鐵/沃斯田鐵, | zh_TW |
| dc.subject.keyword | Offshore steel,HSLA,Austempered treatment,EBSD crystal misorientation,MA constituent., | en |
| dc.relation.page | 100 | |
| dc.identifier.doi | 10.6342/NTU201601085 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 10.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
