Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50622
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡豐羽
dc.contributor.authorMing-Hung Tsengen
dc.contributor.author曾銘宏zh_TW
dc.date.accessioned2021-06-15T12:49:15Z-
dc.date.available2021-07-26
dc.date.copyright2016-07-26
dc.date.issued2016
dc.date.submitted2016-07-21
dc.identifier.citation[1] Z. D. Popovic, H. Aziz, N.-X. Hu, A.-M. Hor, G. Xu, Synth. Met. 2000, 111–112, 229.
[2] S. T. Lee, Z. Q. Gao, L. S. Hung, Appl. Phys. Lett. 1999, 75, 1404.
[3] J. Shen, D. Wang, E. Langlois, W. A. Barrow, P. J. Green, C. W. Tang, J. Shi, Synth. Met. 2000, 111–112, 233.
[4] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, M. T. Rispens, L. Sanchez, J. C. Hummelen, T. Fromherz, Thin Solid Films 2002, 403–404, 368.
[5] H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, G. Xu, Science 1999, 283, 1900.
[6] S. Cros, R. de Bettignies, S. Berson, S. Bailly, P. Maisse, N. Lemaitre, S. Guillerez, Sol. Energy Mater. Sol. Cells 2011, 95, Supplement 1, S65.
[7] S.-W. Seo, E. Jung, H. Chae, S. M. Cho, Org. Electron. 2012, 13, 2436.
[8] C.-Y. Chang, C.-T. Chou, Y.-J. Lee, M.-J. Chen, F.-Y. Tsai, Org. Electron. 2009, 10, 1300.
[9] Y.-Q. Yang, Y. Duan, P. Chen, F.-B. Sun, Y.-H. Duan, X. Wang, D. Yang, J. Phys. Chem. C 2013, 117, 20308.
[10] R. Ricciari, M. Bertini, E. P. Ferlito, G. Pizzo, G. Anastasi, D. Mello, G. Franco, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2007, 257, 257.
[11] L. M. Do, E. M. Han, Y. Niidome, M. Fujihira, T. Kanno, S. Yoshida, A. Maeda, A. J. Ikushima, J. Appl. Phys. 1994, 76, 5118.
[12] N. Kim, W. J. Potscavage, A. Sundaramoothi, C. Henderson, B. Kippelen, S. Graham, Sol. Energy Mater. Sol. Cells 2012, 101, 140.
[13] P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M.-K. Shi, M. Hall, E. Mast, C. Bonham, W. Bennett, M. B. Sullivan, Displays 2001, 22, 65.
[14] J.-S. Park, H. Chae, H. K. Chung, S. I. Lee, Semicond. Sci. Technol. 2011, 26, 034001.
[15] C. Bishop, Roll-to-Roll Vacuum Deposition of Barrier Coatings, John Wiley & Sons, 2010.
[16] Y. G. Tropsha, N. G. Harvey, J. Phys. Chem. B 1997, 101, 2259.
[17] A. P. Roberts, B. M. Henry, A. P. Sutton, C. R. M. Grovenor, G. A. D. Briggs, T. Miyamoto, M. Kano, Y. Tsukahara, M. Yanaka, J. Membr. Sci. 2002, 208, 75.
[18] A. G. Erlat, B.-C. Wang, R. J. Spontak, Y. Tropsha, K. D. Mar, D. B. Montgomery, E. A. Vogler, J. Mater. Res. 2000, 15, 704.
[19] A. G. Erlat, R. J. Spontak, R. P. Clarke, T. C. Robinson, P. D. Haaland, Y. Tropsha, N. G. Harvey, E. A. Vogler, J. Phys. Chem. B 1999, 103, 6047.
[20] W. Kowalsky, J. Meyer, P. Görrn, F. Bertram, S. Hamwi, T. Winkler, H.-H. Johannes, T. Weimann, P. Hinze, T. Riedl, Adv. Mater. 2009, 21, 1845.
[21] P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner, S. M. George, Appl. Phys. Lett. 2006, 89, 031915.
[22] R. Paetzold, A. Winnacker, D. Henseler, V. Cesari, K. Heuser, Rev. Sci. Instrum. 2003, 74, 5147.
[23] N. Kim, “Fabrication and characterization of thin-film encapsulation for organic electronics,” 2009.
[24] R. Dunkel, R. Bujas, A. Klein, V. Horndt, Proc. IEEE 2005, 93, 1478.
[25] R. L. Puurunen, J. Appl. Phys. 2005, 97, 121301.
[26] Suntola, Antson, “US Patent 4 058 430 (1977),” .
[27] H. S. Nalwa, Handbook of Thin Film Materials, Academic Press, 2002.
[28] J. Meyer, D. Schneidenbach, T. Winkler, S. Hamwi, T. Weimann, P. Hinze, S. Ammermann, H.-H. Johannes, T. Riedl, W. Kowalsky, Appl. Phys. Lett. 2009, 94, 233305.
[29] P. Görrn, T. Riedl, W. Kowalsky, J. Phys. Chem. C 2009, 113, 11126.
[30] Y. G. Lee, Y.-H. Choi, I. S. Kee, H. S. Shim, Y. Jin, S. Lee, K. H. Koh, S. Lee, Org. Electron. 2009, 10, 1352.
[31] J. R. W. Jr, Multilayer Flexible Packaging: Technology and Applications for the Food, Personal Care, and Over-the-Counter Pharmaceutical Industries, William Andrew, 2009.
[32] G. P. Crawford, Flexible Flat Panel Displays, John Wiley & Sons, Chichester, 2005.
[33] T. W. Kim, M. Yan, A. G. Erlat, P. A. McConnelee, M. Pellow, J. Deluca, T. P. Feist, A. R. Duggal, M. Schaepkens, J. Vac. Sci. Technol. A 2005, 23, 971.
[34] Y. Du, S. M. George, J. Phys. Chem. C 2007, 111, 8509.
[35] N. M. Adamczyk, A. A. Dameron, S. M. George, Langmuir 2008, 24, 2081.
[36] Y. H. Chang, M. L. Huang, P. Chang, C. A. Lin, Y. J. Chu, B. R. Chen, C. L. Hsu, J. Kwo, T. W. Pi, M. Hong, Microelectron. Eng. 2011, 88, 440.
[37] S. M. George, B. Yoon, A. A. Dameron, Acc. Chem. Res. 2009, 42, 498.
[38] S. Ishchuk, D. H. Taffa, O. Hazut, N. Kaynan, R. Yerushalmi, ACS Nano 2012, 6, 7263.
[39] S. Ishchuk, D. H. Taffa, O. Hazut, N. Kaynan, R. Yerushalmi, ACS Nano 2012, 6, 7263.
[40] T. Kasai, T. Higashihara, M. Ueda, J. Polym. Sci. Part Polym. Chem. 2013, 51, 1956.
[41] M. Leskelä, M. Ritala, O. Nilsen, MRS Bull. 2011, 36, 877.
[42] A. A. Dameron, D. Seghete, B. B. Burton, S. D. Davidson, A. S. Cavanagh, J. A. Bertrand, S. M. George, Chem. Mater. 2008, 20, 3315.
[43] D. Choudhury, S. K. Sarkar, Chem. Vap. Depos. 2014, 1521.
[44] F. Güder, Y. Yang, M. Krüger, G. B. Stevens, M. Zacharias, ACS Appl. Mater. Interfaces 2010, 2, 3473.
[45] A. Sood, P. Sundberg, M. Karppinen, Dalton Trans. 2013, 42, 3869.
[46] J. Liu, B. Yoon, E. Kuhlmann, M. Tian, J. Zhu, S. M. George, Y.-C. Lee, R. Yang, Nano Lett. 2013, 1530.
[47] M. Park, S. Oh, H. Kim, D. Jung, D. Choi, J.-S. Park, Thin Solid Films 2013, 546, 153.
[48] D. J. Lipomi, B. C.-K. Tee, M. Vosgueritchian, Z. Bao, Adv. Mater. 2011, 23, 1771.
[49] M. S. White, M. Kaltenbrunner, E. D. Głowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D. A. M. Egbe, M. C. Miron, Z. Major, M. C. Scharber, T. Sekitani, T. Someya, S. Bauer, N. S. Sariciftci, Nat. Photonics 2013, 7, 811.
[50] M. L. Hammock, A. Chortos, B. C.-K. Tee, J. B.-H. Tok, Z. Bao, Adv. Mater. 2013, 25, 5997.
[51] S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, Adv. Mater. 2014, 26, 149.
[52] H.-J. Chung, M. S. Sulkin, J.-S. Kim, C. Goudeseune, H.-Y. Chao, J. W. Song, S. Y. Yang, Y.-Y. Hsu, R. Ghaffari, I. R. Efimov, J. A. Rogers, Adv. Healthc. Mater. 2014, 3, 59.
[53] Y. Yu, C. Yan, Z. Zheng, Adv. Mater. 2014, 26, 5508.
[54] B. Sun, Y.-Z. Long, Z.-J. Chen, S.-L. Liu, H.-D. Zhang, J.-C. Zhang, W.-P. Han, J. Mater. Chem. C 2014, 2, 1209.
[55] H. Cheng, Y. Zhang, K.-C. Hwang, J. A. Rogers, Y. Huang, Int. J. Solids Struct. 2014, 51, 3113.
[56] C. Yan, J. Wang, X. Wang, W. Kang, M. Cui, C. Y. Foo, P. S. Lee, Adv. Mater. 2014, 26, 943.
[57] J. A. Fan, W.-H. Yeo, Y. Su, Y. Hattori, W. Lee, S.-Y. Jung, Y. Zhang, Z. Liu, H. Cheng, L. Falgout, M. Bajema, T. Coleman, D. Gregoire, R. J. Larsen, Y. Huang, J. A. Rogers, Nat. Commun. 2014, 5, 3266.
[58] F. Xu, M.-Y. Wu, N. S. Safron, S. S. Roy, R. M. Jacobberger, D. J. Bindl, J.-H. Seo, T.-H. Chang, Z. Ma, M. S. Arnold, Nano Lett. 2014, 14, 682.
[59] M. Park, J. Park, U. Jeong, Nano Today 2014, 9, 244.
[60] X. Huang, Y. Liu, K. Chen, W.-J. Shin, C.-J. Lu, G.-W. Kong, D. Patnaik, S.-H. Lee, J. F. Cortes, J. A. Rogers, Small 2014, 10, 3083.
[61] S. Zhu, Y. Huang, T. Li, Appl. Phys. Lett. 2014, 104, 173103.
[62] D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J. E. Lee, C. Song, S. J. Kim, D. J. Lee, S. W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C. S. Hwang, N. Lu, T. Hyeon, D.-H. Kim, Nat. Nanotechnol. 2014, 9, 397.
[63] S. Savagatrup, A. D. Printz, T. F. O’Connor, A. V. Zaretski, D. J. Lipomi, Chem. Mater. 2014, 26, 3028.
[64] J. W. Boley, E. L. White, G. T.-C. Chiu, R. K. Kramer, Adv. Funct. Mater. 2014, 24, 3501.
[65] S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, M.-Y. Yang, S. H. Ko, Adv. Mater. 2014, n/a.
[66] J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, J. A. Lewis, Adv. Mater. 2014, 26, 6307.
[67] A. Chortos, J. Lim, J. W. F. To, M. Vosgueritchian, T. J. Dusseault, T.-H. Kim, S. Hwang, Z. Bao, Adv. Mater. 2014, 26, 4253.
[68] F. Xiang, S. M. Ward, T. M. Givens, J. C. Grunlan, ACS Macro Lett. 2014, 3, 1055.
[69] K. M. Holder, B. R. Spears, M. E. Huff, M. A. Priolo, E. Harth, J. C. Grunlan, Macromol. Rapid Commun. 2014, 35, 960.
[70] K. B. Shelimov, D. N. Davydov, M. Moskovits, Appl. Phys. Lett. 2000, 77, 1722.
[71] A. S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nat. Mater. 2005, 4, 366.
[72] M. Kemell, M. Ritala, M. Leskelä, E. Ossei-Wusu, J. Carstensen, H. Föll, Microelectron. Eng. 2007, 84, 313.
[73] H.-C. Han, C.-W. Chong, S.-B. Wang, D. Heh, C.-A. Tseng, Y.-F. Huang, S. Chattopadhyay, K.-H. Chen, C.-F. Lin, J.-H. Lee, L.-C. Chen, Nano Lett. 2013, 13, 1422.
[74] P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, G. W. Rubloff, Nat Nano 2009, 4, 292.
[75] C. L. Pint, N. W. Nicholas, S. Xu, Z. Sun, J. M. Tour, H. K. Schmidt, R. G. Gordon, R. H. Hauge, Carbon 2011.
[76] A. Wittstock, J. Biener, M. Bäumer, Phys. Chem. Chem. Phys. 2010, 12, 12919.
[77] A. Wittstock, J. Biener, M. Bäumer, Phys. Chem. Chem. Phys. 2010, 12, 12919.
[78] H. Qiu, Z. Zhang, X. Huang, Y. Qu, ChemPhysChem 2011, 12, 2118.
[79] X. Wang, Z. Qi, C. Zhao, W. Wang, Z. Zhang, J Phys Chem C 2009, 113, 13139.
[80] Z. Qi, C. Zhao, X. Wang, J. Lin, W. Shao, Z. Zhang, X. Bian, J. Phys. Chem. C 2009, 113, 6694.
[81] Y. H. Tan, J. A. Davis, K. Fujikawa, N. V. Ganesh, A. V. Demchenko, K. J. Stine, J. Mater. Chem. 2012, 22, 6733.
[82] W. Liu, S. Zhang, N. Li, S. An, J. Zheng, Int. J. Electrochem. Sci. 2012, 7, 9707.
[83] H. Ji, X. Wang, C. Zhao, C. Zhang, J. Xu, Z. Zhang, CrystEngComm 2011, 13, 2617.
[84] M. M. Biener, J. Biener, A. Wichmann, A. Wittstock, T. F. Baumann, M. Bäumer, A. V. Hamza, Nano Lett. 2011, 11, 3085.
[85] J. Zhang, C. M. Li, Chem. Soc. Rev. 2012.
[86] E. Detsi, Z. Vuković, S. Punzhin, P. M. Bronsveld, P. R. Onck, J. T. M. D. Hosson, CrystEngComm 2012, 14, 5402.
[87] J.-H. Jou, Y.-S. Chiu, C.-P. Wang, R.-Y. Wang, H.-C. Hu, Appl. Phys. Lett. 2006, 88, 193501.
[88] V. Miikkulainen, M. Leskelä, M. Ritala, R. L. Puurunen, J. Appl. Phys. 2013, 113, 021301.
[89] D. M. Hausmann, R. G. Gordon, J. Cryst. Growth 2003, 249, 251.
[90] Y.-Y. Lin, Y.-N. Chang, M.-H. Tseng, C.-C. Wang, F.-Y. Tsai, Nanotechnology 2015, 26, 024005.
[91] T. J. Park, J. H. Kim, J. H. Jang, U. K. Kim, S. Y. Lee, J. Lee, H. S. Jung, C. S. Hwang, Chem. Mater. 2011, 23, 1654.
[92] J. Meyer, H. Schmidt, W. Kowalsky, T. Riedl, A. Kahn, Appl. Phys. Lett. 2010, 96, 243308.
[93] M.-C. Sun, J.-H. Jou, W.-K. Weng, Y.-S. Huang, Thin Solid Films 2005, 491, 260.
[94] M. A. Mohd Sarjidan, S. H. Basri, W. H. Abd Majid, Adv. Mater. Res. 2013, 795, 110.
[95] H. Ham, J. Park, Y. Kim, Org. Electron. 2011, 12, 2174.
[96] J. Durner, M. Stojanovic, E. Urcan, W. Spahl, U. Haertel, R. Hickel, F.-X. Reichl, Dent. Mater. 2011, 27, 573.
[97] G. P. Crawford, Flexible Flat Panel Displays, John Wiley & Sons, 2005.
[98] E. Detsi, E. De Jong, A. Zinchenko, Z. Vuković, I. Vuković, S. Punzhin, K. Loos, G. ten Brinke, H. A. De Raedt, P. R. Onck, J. T. M. De Hosson, Acta Mater. 2011, 59, 7488.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50622-
dc.description.abstract本研究論文使用原子層沈積技術(ALD)與分子層沈積技術(MLD)製備可撓曲性阻氣薄膜,並藉由調控材料表面形貌、改變氧化劑、與添加有機材料來改善與最佳化薄膜之阻氣效果、撓曲度與可拉伸性,且阻氣效果可達OLED封裝需求(10-6 g m-2 day-1)。
本研究發現可藉由調整製程溫度與薄膜厚度來最佳化薄膜之表面形貌,平坦表面形貌之薄膜不僅氣體阻障效果佳,並可改善奈米複合薄膜之氣體滲透率與可撓曲度。 本研究亦使用強氧化劑(雙氧水)來降低阻氣薄膜製程溫度,又由於雙氧水反應性高,因此薄膜雜質少且品質與阻氣效果較佳,並可在低製程溫度下提昇OLED效率且元件封裝壽命與玻璃封裝具有相同效果。本研究亦開發新穎之MLD材料,並與ALD搭配製備有機-無機複合阻氣薄膜,不僅可提昇阻氣效果,並在經撓曲後與拉伸10%後,仍可達OLED封裝要求。
此外,本研究亦使用去合金法製備具有超高表面積多孔洞金屬銀,搭配使用ALD沈積介電層與導電層作為超級電容。與文獻相比,在最佳化去合金與ALD 製程條件後,元件之電容值可達使用相同介電層材料中最高之電容值。
zh_TW
dc.description.abstractIn this dissertation, we used atomic layer deposition (ALD) and molecular deposition technology (MLD) to fabricate flexible and stretchable gas barrier films, and the gas barrier performances were optimized by regulating surface morphology, changing oxidant, adding organic material, and the WVTR of the optimized gas barrier met the requirement for OLED encapsulation (10-6 g m -2 day-1).
We discovered that adjusting deposition temperature and thickness could optimize the surface morphology. The films with smooth morphology had low gas permeation rate, and improved ability of barrier and flexibility and stretchability of nano-laminated films. The hydrogen peroxide (H2O2) was used to reduce deposition temperature. The gas barrier by using H2O2 had higher films quality and gas barrier. The low deposition temperature not only prevented thermal degradation but also improved the performance of OLED. The ALD encapsulated OLED was comparable with that encapsulated using a thin glass cover. Finally, we optimized the process of dealloying and ALD process. Compared with other supercapacitor with same dielectric material, the supercapacitors by using nanoporous silver had the highest capacitance.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:49:15Z (GMT). No. of bitstreams: 1
ntu-105-D99527015-1.pdf: 5324269 bytes, checksum: 15e896b4c3eefda2902b1e9af82b7ae5 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents摘要 I
ABSTRACT II
致謝………………………………………………...…………………………………………III
TABLE OF CONTENTS……………………………………………………………………IV
INDEX OF FIGURES……………………………………………………………………....VII
INDEX OF TABLES…………………...…………………………………………………...XII
CHAPTER 1
INTRODUCTION 1
1.1 Reliability of Soft Electronics 1
1.2 Overview of encapsulation technologies 4
1.3 Overview of supercapacitors 8
1.4 Objectives and Organization of Dissertation 9
CHAPTER 2
BACKGROUND AND LITERATURE REVIEW ON THIN-FILM ENCAPSULATION AND SUPERCAPACITORS 10
2.1 Introduction 10
2.2 Basic Principle of Permeation 10
2.3 The Permeation Mechanism of Water Vapor and Gas 14
2.4 Barrier Performance Measurements 17
2.5 Thin-Film Barrier Technology 23
2.5.1 Single Layer Thin-Film Encapsulation 23
2.5.2 Multilayer Thin-Film Encapsulation 28
2.5.3 Stretchable Thin-Film Encapsulation 33
CHAPTER 3
EXPERIMENTAL METHODS 40
3.1. Thin-Film Fabrication 40
3.1.1. Atomic layer deposition (ALD) 40
3.1.2. Molecular layer deposition (MLD) 43
3.1.3. Nanoporous silver substrate 45
3.2. Thin film characteristics analysis 46
3.2.1. Scanning Emission Microscope (SEM) 46
3.2.2. Quarts Crystal Microbalance (QCM) 46
3.2.3. Elemental Composition Analysis 46
3.2.4. Atomic Force Microscope (AFM) 47
3.3. Barrier Performance Investigation 47
3.4. Device fabrication 50
3.4.1 Organic Light Emitting Diodes Fabrication and Measurement 50
3.4.2 Supercapacitors Fabrication 52
CHAPTER 4
RESULTS AND DISCUSSIONS 54
4.1 The Morphological and Structural Influence on Gas Barrier Performance….……………………………………………………………………….….54
4.2 The Improvement of Gas Barrier Properties at Low Deposition Temperature by Using Hydrogen Peroxide as Oxidant…………………………………………………….……….60
4.2.1 Barrier properties versus deposition temperature for Al2O3, HfO2, and ZnO 61
4.2.2 Nano-laminated Barrier Films of Al2O3/HfO2 (AHO) and Al2O3/ZnO (AZO) 65
4.2.3 Demonstration of OLED Encapsulation 66
4.2.4 The Flexibility of ALD Nano-laminated Gas Barriers 74
4.3 Organic-inorganic Multilayer Gas Barrier by Using ALD and MLD…………………77
4.3.1 Preparation of Polyamide by Molecular Layer Deposition………………………..77
4.3.2 Combination of Atomic Layer Deposition and Molecular Layer Deposition……..85
4.3.3 Gas Barrier Performance of MLD-ALD Multilayers……………………………...86
4.3.4 Stretchable Gas Barriers Prepared by Atomic Layer Deposition………………….90
4.3.4.1 The Structure Effect of HfO2/ PA32 on Their Flexibility and Stretchability…….....…..…..…..…..…..…..…..…..…..…..…..…..…..…..…..…..91
4.4 Fabrication, Optimization and Measurement of Supercapacitors by Using Nanoporous Silver and ALD...........................................................................................................................98
4.4.1 The Fabrication of Nanoporous Ag Structure...........................................................98
4.4.2 The Estimation of Surface Area of Substrate and Capacitance..............................103
4.4.3 The Optimization of Process for Improving Capacitance of Supercapacitor.........104
CHAPTER 5
Conclusions and Future works.................................................................................................109
REFERENCE 110
Appendix................................................................................................................................111
dc.language.isoen
dc.title以原子層法製備之奈米複合薄膜於應用於可撓可拉伸阻氣,介電層,與導電層之研究zh_TW
dc.titleAtomic Layer Deposition of Nano-laminated Films for use as Flexible and Stretchable Gas Barrier, Dielectrics, and Conductorsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee周卓煇,薛景中,呂志鵬,曹正熙
dc.subject.keyword原子層沉積,薄膜封裝,可撓曲封裝,可拉伸封裝,超級電容,zh_TW
dc.subject.keywordatomic layer deposition,thin-film encapsulation,flexible encapsulation,stretchable encapsulation,supercapacitor,en
dc.relation.page116
dc.identifier.doi10.6342/NTU201601163
dc.rights.note有償授權
dc.date.accepted2016-07-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
5.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved