請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50571| 標題: | N型矽晶圓太陽能電池模擬 Simulation of N-type Wafer-based Solar cells |
| 作者: | Chi-Yung Chiang 江奇詠 |
| 指導教授: | 劉致為 |
| 關鍵字: | 三維模擬,鈍化射極背面局部擴散,全部擴散,電極幾何,指叉式背電極,異質接面,本質矽薄膜,穿隧氧化層鈍化電極,穿隧氧化層,蜂巢結構,部分穿隧氧化層, 3D simulation,PERL,PERT,contact geometry,IBC,heterojunction,intrinsic thin layer,TOPcon,tunnel oxide,honeycomb,partial tunnel oxide, |
| 出版年 : | 2016 |
| 學位: | 碩士 |
| 摘要: | 在本篇論文中,著重研究n型矽晶圓太陽能電池的光電性質之模擬。透過模擬可以降低優化太陽能電池的研究成本以及提供製程優化的方向。二維的模擬已經發展成熟,但是有些太陽能電池的特性靠著二維是無法被詮釋出來的,三維模擬可以提供更全面的結構建構,光學的反射、電極的排列、部分穿隧的效應等等,在此,我們將利用TCAD模擬軟體進行以三維的太陽能電池模擬為主。
論文第二章中,主要探討鈍化射極背面局部擴散太陽電池(PERL)與鈍化射極背面全部擴散(PERT)的模擬,包括改變電池的結構,藉由改變電池各部分的參雜濃度來優化電池的效率,以及電池的電極幾何,最後我們提出了一種新的蜂巢狀電極排列結構。第三章中,主要探討指叉式背電極太陽能電池(IBC)的模擬,除了表面紋理結構以及參雜濃度優化之外,應用了在第二章中所述的蜂巢狀電極排列結構,同時也包括異質接面結合本質矽薄膜太陽電池(HIT-IBC)的模擬。第四章中,主要探討穿隧氧化層鈍化電極太陽能電池(TOPcon)的模擬,包括多晶矽與非晶矽的背表面場差異,以及穿隧氧化層的效應以及一致性帶來的影響,最後我們提出了一種新的太陽能電池結構,部分穿隧氧化層鈍化指叉式背電極(Partial TOPIBC)太陽能電池,結合指叉式背電極與穿隧氧化層鈍化電極太陽能電池的優點。 In this thesis, we focus on the simulation of n-type wafer-based solar cells. Through modeling and simulation, the performances of new photovoltaic devices can be predicted, and R&D costs can be reduced. Although two dimensional model simulation is well developed, it still fail to interpret some features of solar cells. Instead, three dimensional simulation can provide a more comprehensive structure, including the optical reflectivity, arrangement of electrodes and partial tunneling effect and so on. Therefore, we use technology computer aided design (TCAD) simulation software to carry out three dimensional model based simulation. In chapter 2, we focus on the simulation of passivated emitter rear locally diffused (PERL) and passivated emitter rear totally diffused (PERT) solar cells, including changes in cell structure, doping concentration, and electrode geometry. At the end of the chapter, we propose a new structure featuring honeycomb arrangement of electrodes. In chapter 3, we focus on the simulation of interdigitated back contact (IBC) solar cells. In addition to optimize the cell performance, we apply the honeycomb structure described in chapter 2 on the IBC cells along with the simulation of heterojunction with intrinsic thin layer IBC (HIT-IBC) solar cells. Finally, in chapter 4, we focus on the simulation of tunnel oxide passivated contact (TOPcon) solar cells, including the difference between n+ polysilicon and n+ amorphous silicon, the effect of tunnel oxide, and tunnel oxide uniformity issue. At the end of chapter 4, we propose a new solar cell structure, partial tunnel oxide passivated interdigitated back contact (Partial TOPIBC) solar cell, combined with the advantages of IBC solar cells and TOPcon solar cells. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50571 |
| DOI: | 10.6342/NTU201601259 |
| 全文授權: | 有償授權 |
| 顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
