請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50571完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉致為 | |
| dc.contributor.author | Chi-Yung Chiang | en |
| dc.contributor.author | 江奇詠 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:46:44Z | - |
| dc.date.available | 2026-07-22 | |
| dc.date.copyright | 2016-07-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-22 | |
| dc.identifier.citation | [1.1] A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T. L. James, M. Woodhouse, “A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs” Solar Energy Materials & Solar Cells 114 (2013) 110–135
[1.2] D. A. Clugston, P. A. Basore, 'PC1D Version 5: 32-bit solar cell modeling on personal computers' Proc. 26th IEEE Photovoltiac Specialists Conference, Anaheim, pp. 207–210, 1997. [1.3] http://www.synopsys.com/Tools/silicon/tcad/Pages/structure-editor.aspx [1.4] http://www.synopsys.com/Tools/silicon/tcad/device-simulation/Pages/default.aspx [1.5] http://www.synopsys.com/Tools/silicon/tcad/device-simulation/Pages/sentaurus-device.aspx [2.1] J. Zhao, A. Wang and M.A. Green, “24.5% Efficiency Silicon PERT Cells on MCZ Substrates and 24.7% Efficiency PERL Cells on FZ Substrates”, Progress in Photovoltaics, 7, 1999, pp. 471-474. [2.2] J. E. Cotter, J. H. Guo, P. J. Cousins, M. D. Abbott, F. W. Chen, K. C. Fisher, “P-Type Versus n-Type Silicon Wafers: Prospects for High-Efficiency Commercial Silicon Solar Cells” IEEE Trans, Electron Devices 53:1893-1901 (2006). [2.3] N. Wehmeier, A. Nowack, B. Lim, T. Brendemühl, S. K. Schröder, J. Schmidt, R. Brendel, T. Dullweber, “21.0%-efficient screen-printed n-PERT back-junction silicon solar cell with plasma-deposited boron diffusion source” Solar Energy Materials and Solar Cells, 2016 [2.4] J. Chen, “Recent Developments on Silicon Based Solar Cell Technologies and their Industrial Applications “, Energy Efficiency Improvements in Smart Grid Components. [2.5] W. R. Thurber, R. L. Mattis, Y. M. Liu, J. Filliben, “Resistivity-Dopant Density Relationship For Phosphorus-Doped Silicon” Journal of The Electrochemical Society. 1980; 127:1807-1812. [2.6] W. Shockley, W. T. Read, “Statistics of the Recombinations of Holes and Electrons” Physical Review. 1952; 87:835. [2.7] P. Auger, “Sur les rayons B secondaires produits dans un gaz par des rayons X” C.R.A.S 1923; 177:169-171. [2.8] L. Q. Zhu, J. Gong, J. Huang, P. She, M. L. Zeng, L. Li, M. Z. Dai, Q. Wan, “Improving the efficiency of crystalline silicon solar cells by an intersected selective laser doping” Solar Energy Materials and Solar Cells, Volume 95, Issue 12, December 2011, Pages 3347–3351. [2.9] G. Heiser, P. P. Altermat, A. Williams, A. Sproul, M. A. Green, “OPTIMISATION OF REAR CONTACT GEOMETRY OF HIGH-EFFICIENCY SILICON SOLAR CELLS USING THREE DE'AENSIOMAL NUMERICAL MODELLING” European Photovoltaic Solar Energy Conference, At Nice, France, Volume: 13. [3.1]M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Solar cell efficiency tables (version 45), Progress in Photovoltaics: Research and Applications. 2015; 23:1–9. [3.2] P. J. Verlinden, R. M. Swanson, R. A.Crane, “7000 High Efficiency Cells for a Dream” Progress in Photovoltaics: Research and Applications. 1994; 2:143 - 152. [3.3] L. M. Landsberger, W. A. Tiller, “Refractive index, relaxation times and the viscoelastic model in dry-grown SiO2 films on Si” Appl. Phys. Lett. 51, 1416. [3.4] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano, “Development of new a-Si/c-Si heterojunction solar cells: artificial constructed junction-heterojunction with intrinsic thin-layer” Japanese Journal of Applied Physics 1992; 31: 3518-3522. [3.5] S. D. Wolf, A. Descoeudres, Z. C. Holmanl, C. Ballif, “High-efficiency silicon heterojunction solar cells: a review” Green 2012; 2:7-24. [3.6] T. Kinoshita, D. Fujishima, A. Yano, A. Ogane, S. Tohoda, K. Matsuyama, Y. Nakamura, N. Tokuoka, H. Kanno, H. Sakata, “The Approaches for High Efficiency HITTM Solar Cell with Very Thin (<100 μm) Silicon Wafer over 23%” 26th, European Photovoltaic Solar Energy Conference; 871-874 [3.7] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, E. Maruyama, “24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer” IEEE Journal of Photovoltaics (Volume:4, Issue: 1) ;96-99 [3.8] U. K. Das, M. Z. Burrows, M. Lu, S. Bowden and R. W. Birkmire, “Surface passivation and heterojunction cells on Si (100) and (111) wafers using dc and rf plasma deposited Si:H thin films” Appl. Phys. Lett. 92, 063504 [3.9] G. Beaucarne, “Silicon thin-film solar cells” Advances in OptoElectronics, 2007. [3.10] Z. Shu et al., “Experimental and simulated analysis of front versus all-back-contact silicon heterojunction solar cells: effect of interface and doped a-Si:H layer defects” Progress in Photovoltaics: Volume 23, Issue 1, January 2015, Pages 78–93. [4.1] https://www.ise.fraunhofer.de/en/press-and-media/press-releases/press-releases-2015/fraunhofer-ise-achieves-new-world-record-for-both-sides-contacted-silicon-solar-cells [4.2] Y. Tao, V. Upadhyaya, K. Jones, A. Rohatgi, “Tunnel oxide passivated rear contact for large area n-type front junction silicon solar cells providing excellent carrier selectivity” AIMS Materials Science, 3(1): 180-189. [4.3] W. C. Lee, C. M. Hu, “Modeling CMOS tunneling currents through ultrathin gate oxide due to conduction-and valence-band electron and hole tunneling” IEEE Trans Electron Devices 48:1366–1373. [4.4] J. M. Essick, Z. Nobel, Y. M. Li, M. S. Bennett, “Conduction- and valence-band offsets at the hydrogenated amorphous silicon-carbon/crystalline silicon interface via capacitance techniques” Phys Rev B Condens Matter. 15; 54 (7):4885-4890. [4.5] J. P. Kleider, A. S. Gudovskikh, P. R. Cabarrocas, “Determination of the conduction band offset between hydrogenated amorphous silicon and crystalline silicon from surface inversion layer conductance measurements” Appl. Phys. Lett. 92, 162101 (2008) [4.6] M. Rosch, R. Bruggemann, G. H. Bauer, “Influence of interface defects on the current-voltage characteristics of amorphous silicon/crystalline silicon heterojunction solar cells” in Proc. of the 2nd World Conf. on Photovoltaic Solar Energy Conversion, Vienna, Austria, pp. 964–967 (1998). [4.7] B. Brar, G. D. Wilk, A. C. Seabaugh, “Direct extraction of the electron tunneling effective mass in ultrathin SiO2” Applied Physics Letters 69, 2728 (1996). [4.8] H. Steinkemper, F. Feldmann, M. Bivour, M. Hermle, “Numerical Simulation of Carrier-Selective Electron Contacts Featuring Tunnel Oxides” IEEE Journal of photovoltaics, vol. 5, no. 5, September 2015. [4.9] R. K. Chanana, K. McDonald, M. Di Ventra, S. T. Pantelides, L. C. Feldman, G. Y. Chung, C. C. Tin, J. R. Williams and R. A. Weller, “Fowler–Nordheim hole tunneling in p-SiC/SiO2p-SiC/SiO2 structures” Appl. Phys. Lett. 77, 2560 (2000) [4.10] R. K. Chanana, “Determination of hole effective mass in SiO2 and SiC conduction band offset using Fowler–Nordheim tunneling characteristics across metal-oxide-semiconductor structures after applying oxide field corrections” Appl. Phys. 109, 104508 (2011) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50571 | - |
| dc.description.abstract | 在本篇論文中,著重研究n型矽晶圓太陽能電池的光電性質之模擬。透過模擬可以降低優化太陽能電池的研究成本以及提供製程優化的方向。二維的模擬已經發展成熟,但是有些太陽能電池的特性靠著二維是無法被詮釋出來的,三維模擬可以提供更全面的結構建構,光學的反射、電極的排列、部分穿隧的效應等等,在此,我們將利用TCAD模擬軟體進行以三維的太陽能電池模擬為主。
論文第二章中,主要探討鈍化射極背面局部擴散太陽電池(PERL)與鈍化射極背面全部擴散(PERT)的模擬,包括改變電池的結構,藉由改變電池各部分的參雜濃度來優化電池的效率,以及電池的電極幾何,最後我們提出了一種新的蜂巢狀電極排列結構。第三章中,主要探討指叉式背電極太陽能電池(IBC)的模擬,除了表面紋理結構以及參雜濃度優化之外,應用了在第二章中所述的蜂巢狀電極排列結構,同時也包括異質接面結合本質矽薄膜太陽電池(HIT-IBC)的模擬。第四章中,主要探討穿隧氧化層鈍化電極太陽能電池(TOPcon)的模擬,包括多晶矽與非晶矽的背表面場差異,以及穿隧氧化層的效應以及一致性帶來的影響,最後我們提出了一種新的太陽能電池結構,部分穿隧氧化層鈍化指叉式背電極(Partial TOPIBC)太陽能電池,結合指叉式背電極與穿隧氧化層鈍化電極太陽能電池的優點。 | zh_TW |
| dc.description.abstract | In this thesis, we focus on the simulation of n-type wafer-based solar cells. Through modeling and simulation, the performances of new photovoltaic devices can be predicted, and R&D costs can be reduced. Although two dimensional model simulation is well developed, it still fail to interpret some features of solar cells. Instead, three dimensional simulation can provide a more comprehensive structure, including the optical reflectivity, arrangement of electrodes and partial tunneling effect and so on. Therefore, we use technology computer aided design (TCAD) simulation software to carry out three dimensional model based simulation.
In chapter 2, we focus on the simulation of passivated emitter rear locally diffused (PERL) and passivated emitter rear totally diffused (PERT) solar cells, including changes in cell structure, doping concentration, and electrode geometry. At the end of the chapter, we propose a new structure featuring honeycomb arrangement of electrodes. In chapter 3, we focus on the simulation of interdigitated back contact (IBC) solar cells. In addition to optimize the cell performance, we apply the honeycomb structure described in chapter 2 on the IBC cells along with the simulation of heterojunction with intrinsic thin layer IBC (HIT-IBC) solar cells. Finally, in chapter 4, we focus on the simulation of tunnel oxide passivated contact (TOPcon) solar cells, including the difference between n+ polysilicon and n+ amorphous silicon, the effect of tunnel oxide, and tunnel oxide uniformity issue. At the end of chapter 4, we propose a new solar cell structure, partial tunnel oxide passivated interdigitated back contact (Partial TOPIBC) solar cell, combined with the advantages of IBC solar cells and TOPcon solar cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:46:44Z (GMT). No. of bitstreams: 1 ntu-105-R03943147-1.pdf: 2755724 bytes, checksum: 268b5b9a27f5dcdb6d1dcec6964006ec (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Contents
口試委員審定書 # Abbreviations I 摘要 II Abstract III List of Figures VII List of Tables IX Chapter 1 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 2 1.3 Simulation Tool 3 References: 5 Chapter 2 6 Three Dimensional Simulation of PERL and PERT Solar Cells 6 2.1 Introduction 6 2.2 Simulation Structure and Boundary Condition 7 2.3 PERL Cells and PERT Cells 10 2.4 re-PERT Cells 13 2.5 Metal Contact Opening Geometry 22 References: 30 Chapter 3 32 Three Dimensional Simulation of IBC Solar Cells 32 3.1 Introduction 32 3.2 Simulation Structure 33 3.3 Optimization of IBC Solar Cells 35 3.4 HIT-IBC Simulation 44 References 47 Chapter 4 49 Three Dimensional Simulation of TOPcon Solar Cells 49 4.1 Introduction 49 4.2 Simulation Structure 50 4.3 N+ Amorphous Silicon and N+ Polycrystalline Silicon 52 4.4 Tunnel Oxide 58 4.5 P+ Polycrystalline Silicon 63 4.6 Partial Tunnel Oxide 66 References 69 Chapter 5 71 Summary and Future Work 71 5.1 Summary 71 5.2 Future work 72 | |
| dc.language.iso | en | |
| dc.subject | 部分穿隧氧化層 | zh_TW |
| dc.subject | 三維模擬 | zh_TW |
| dc.subject | 鈍化射極背面局部擴散 | zh_TW |
| dc.subject | 全部擴散 | zh_TW |
| dc.subject | 電極幾何 | zh_TW |
| dc.subject | 指叉式背電極 | zh_TW |
| dc.subject | 異質接面 | zh_TW |
| dc.subject | 本質矽薄膜 | zh_TW |
| dc.subject | 穿隧氧化層鈍化電極 | zh_TW |
| dc.subject | 穿隧氧化層 | zh_TW |
| dc.subject | 蜂巢結構 | zh_TW |
| dc.subject | 部分穿隧氧化層 | zh_TW |
| dc.subject | 三維模擬 | zh_TW |
| dc.subject | 鈍化射極背面局部擴散 | zh_TW |
| dc.subject | 全部擴散 | zh_TW |
| dc.subject | 電極幾何 | zh_TW |
| dc.subject | 指叉式背電極 | zh_TW |
| dc.subject | 異質接面 | zh_TW |
| dc.subject | 本質矽薄膜 | zh_TW |
| dc.subject | 穿隧氧化層鈍化電極 | zh_TW |
| dc.subject | 穿隧氧化層 | zh_TW |
| dc.subject | 蜂巢結構 | zh_TW |
| dc.subject | 3D simulation | en |
| dc.subject | IBC | en |
| dc.subject | heterojunction | en |
| dc.subject | intrinsic thin layer | en |
| dc.subject | TOPcon | en |
| dc.subject | tunnel oxide | en |
| dc.subject | honeycomb | en |
| dc.subject | partial tunnel oxide | en |
| dc.subject | PERL | en |
| dc.subject | PERT | en |
| dc.subject | contact geometry | en |
| dc.subject | IBC | en |
| dc.subject | heterojunction | en |
| dc.subject | intrinsic thin layer | en |
| dc.subject | TOPcon | en |
| dc.subject | tunnel oxide | en |
| dc.subject | honeycomb | en |
| dc.subject | partial tunnel oxide | en |
| dc.subject | PERL | en |
| dc.subject | contact geometry | en |
| dc.subject | 3D simulation | en |
| dc.subject | PERT | en |
| dc.title | N型矽晶圓太陽能電池模擬 | zh_TW |
| dc.title | Simulation of N-type Wafer-based Solar cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林中一,林鴻志,張守進,張廖貴術 | |
| dc.subject.keyword | 三維模擬,鈍化射極背面局部擴散,全部擴散,電極幾何,指叉式背電極,異質接面,本質矽薄膜,穿隧氧化層鈍化電極,穿隧氧化層,蜂巢結構,部分穿隧氧化層, | zh_TW |
| dc.subject.keyword | 3D simulation,PERL,PERT,contact geometry,IBC,heterojunction,intrinsic thin layer,TOPcon,tunnel oxide,honeycomb,partial tunnel oxide, | en |
| dc.relation.page | 73 | |
| dc.identifier.doi | 10.6342/NTU201601259 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
