請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50404完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊雅惠 | |
| dc.contributor.author | Yih-Mei Liou | en |
| dc.contributor.author | 劉羿梅 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:39:22Z | - |
| dc.date.available | 2021-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-28 | |
| dc.identifier.citation | 1. Wenzel, S.E., Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med, 2012. 18(5): p. 716-25.
2. Sullivan, S.D., et al., Extent, patterns, and burden of uncontrolled disease in severe or difficult-to-treat asthma. Allergy, 2007. 62(2): p. 126-33. 3. Brooks, C., N. Pearce, and J. Douwes, The hygiene hypothesis in allergy and asthma: an update. Curr Opin Allergy Clin Immunol, 2013. 13(1): p. 70-7. 4. Liu, A.H., Revisiting the hygiene hypothesis for allergy and asthma. J Allergy Clin Immunol, 2015. 136(4): p. 860-5. 5. Robinson, D.S., et al., Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med, 1992. 326(5): p. 298-304. 6. Soroosh, P. and T.A. Doherty, Th9 and allergic disease. Immunology, 2009. 127(4): p. 450-8. 7. Erpenbeck, V.J., et al., Segmental allergen challenge in patients with atopic asthma leads to increased IL-9 expression in bronchoalveolar lavage fluid lymphocytes. J Allergy Clin Immunol, 2003. 111(6): p. 1319-27. 8. He, R., et al., Epicutaneous antigen exposure induces a Th17 response that drives airway inflammation after inhalation challenge. Proc Natl Acad Sci U S A, 2007. 104(40): p. 15817-22. 9. Raundhal, M., et al., High IFN-γ and low SLPI mark severe asthma in mice and humans. The Journal of Clinical Investigation, 2015. 125(8): p. 3037-3050. 10. Strickland, D.H., et al., Reversal of airway hyperresponsiveness by induction of airway mucosal CD4+CD25+ regulatory T cells. J Exp Med, 2006. 203(12): p. 2649-60. 11. Akbari, O., et al., Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med, 2003. 9(5): p. 582-8. 12. Spinozzi, F., et al., Increased Allergen-Specific, Steroid-Sensitive γδ T Cells in Bronchoalveolar Lavage Fluid from Patients with Asthma. Annals of Internal Medicine, 1996. 124(2): p. 223-228. 13. Abbas, A.K., K.M. Murphy, and A. Sher, Functional diversity of helper T lymphocytes. Nature, 1996. 383(6603): p. 787-93. 14. Qu, N., et al., Pivotal roles of T-helper 17-related cytokines, IL-17, IL-22, and IL-23, in inflammatory diseases. Clin Dev Immunol, 2013. 2013: p. 968549. 15. Wynn, T.A., Type 2 cytokines: mechanisms and therapeutic strategies. Nat Rev Immunol, 2015. 15(5): p. 271-82. 16. Coffman, R.L., Immunology. The origin of TH2 responses. Science, 2010. 328(5982): p. 1116-7. 17. Georas, S.N., et al., T-helper cell type-2 regulation in allergic disease. Eur Respir J, 2005. 26(6): p. 1119-37. 18. Woodruff, P.G., et al., T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med, 2009. 180(5): p. 388-95. 19. De Monchy, J.G., et al., Bronchoalveolar eosinophilia during allergen-induced late asthmatic reactions. Am Rev Respir Dis, 1985. 131(3): p. 373-6. 20. Gould, H.J. and B.J. Sutton, IgE in allergy and asthma today. Nat Rev Immunol, 2008. 8(3): p. 205-17. 21. Bartemes, K.R., et al., IL-33-responsive lineage- CD25+ CD44(hi) lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J Immunol, 2012. 188(3): p. 1503-13. 22. Barlow, J.L., et al., Innate IL-13–producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. Journal of Allergy and Clinical Immunology. 129(1): p. 191-198.e4. 23. Lambrecht, B.N. and H. Hammad, The immunology of asthma. Nat Immunol, 2015. 16(1): p. 45-56. 24. Anderson, G.P., Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet, 2008. 372(9643): p. 1107-19. 25. Barnes, P.J., K.F. Chung, and C.P. Page, Inflammatory mediators of asthma: an update. Pharmacol Rev, 1998. 50(4): p. 515-96. 26. Holgate, S.T. and R. Polosa, Treatment strategies for allergy and asthma. Nat Rev Immunol, 2008. 8(3): p. 218-30. 27. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-7. 28. Ilic, N., et al., Manufacture of clinical grade human placenta-derived multipotent mesenchymal stromal cells. Methods Mol Biol, 2011. 698: p. 89-106. 29. Javazon, E.H., K.J. Beggs, and A.W. Flake, Mesenchymal stem cells: paradoxes of passaging. Exp Hematol, 2004. 32(5): p. 414-25. 30. Rasmusson, I., Immune modulation by mesenchymal stem cells. Exp Cell Res, 2006. 312(12): p. 2169-79. 31. Shi, Y., et al., Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res, 2010. 20(5): p. 510-8. 32. Dominici, M., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006. 8(4): p. 315-7. 33. Nauta, A.J. and W.E. Fibbe, Immunomodulatory properties of mesenchymal stromal cells. Blood, 2007. 110(10): p. 3499-506. 34. Aggarwal, S. and M.F. Pittenger, Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 2005. 105(4): p. 1815-22. 35. Yi, T. and S.U. Song, Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch Pharm Res, 2012. 35(2): p. 213-21. 36. Tse, W.T., et al., Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation, 2003. 75(3): p. 389-97. 37. Matysiak, M., et al., Immunoregulatory function of bone marrow mesenchymal stem cells in EAE depends on their differentiation state and secretion of PGE2. J Neuroimmunol, 2011. 233(1-2): p. 106-11. 38. Lee, R.H., et al., TSG-6 as a biomarker to predict efficacy of human mesenchymal stem/progenitor cells (hMSCs) in modulating sterile inflammation in vivo. Proceedings of the National Academy of Sciences, 2014. 111(47): p. 16766-16771. 39. Jiang, X.X., et al., Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood, 2005. 105(10): p. 4120-6. 40. Spaggiari, G.M., et al., MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood, 2009. 113(26): p. 6576-83. 41. English, K., F.P. Barry, and B.P. Mahon, Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol Lett, 2008. 115(1): p. 50-8. 42. Kim, J. and P. Hematti, Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol, 2009. 37(12): p. 1445-53. 43. Maggini, J., et al., Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One, 2010. 5(2): p. e9252. 44. Poggi, A., et al., Interaction between Human NK Cells and Bone Marrow Stromal Cells Induces NK Cell Triggering: Role of NKp30 and NKG2D Receptors. The Journal of Immunology, 2005. 175(10): p. 6352-6360. 45. Sotiropoulou, P.A., et al., Interactions Between Human Mesenchymal Stem Cells and Natural Killer Cells. STEM CELLS, 2006. 24(1): p. 74-85. 46. Spaggiari, G.M., et al., Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood, 2008. 111(3): p. 1327-33. 47. Corcione, A., et al., Human mesenchymal stem cells modulate B-cell functions. Blood, 2006. 107(1): p. 367-72. 48. Krampera, M., et al., Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood, 2003. 101(9): p. 3722-9. 49. Glennie, S., et al., Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 2005. 105(7): p. 2821-7. 50. Augello, A., et al., Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol, 2005. 35(5): p. 1482-90. 51. Maccario, R., et al., Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica, 2005. 90(4): p. 516-25. 52. Di Ianni, M., et al., Mesenchymal cells recruit and regulate T regulatory cells. Exp Hematol, 2008. 36(3): p. 309-18. 53. Bernardo, M.E. and W.E. Fibbe, Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell, 2013. 13(4): p. 392-402. 54. Plumas, J., et al., Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia, 2005. 19(9): p. 1597-604. 55. Ben-Ami, E., A. Miller, and S. Berrih-Aknin, T cells from autoimmune patients display reduced sensitivity to immunoregulation by mesenchymal stem cells: role of IL-2. Autoimmun Rev, 2014. 13(2): p. 187-96. 56. Luz-Crawford, P., et al., Mesenchymal stem cells repress Th17 molecular program through the PD-1 pathway. PLoS One, 2012. 7(9): p. e45272. 57. Liu, X., et al., Mesenchymal stem cells inhibit Th17 cells differentiation via IFN-gamma-mediated SOCS3 activation. Immunol Res, 2015. 61(3): p. 219-29. 58. Madec, A.M., et al., Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia, 2009. 52(7): p. 1391-9. 59. Krampera, M., et al., Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells, 2006. 24(2): p. 386-98. 60. Groh, M.E., et al., Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol, 2005. 33(8): p. 928-34. 61. Xu, G., et al., The role of IL-6 in inhibition of lymphocyte apoptosis by mesenchymal stem cells. Biochem Biophys Res Commun, 2007. 361(3): p. 745-50. 62. Zhang, W., et al., Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev, 2004. 13(3): p. 263-71. 63. Ryan, J.M., et al., Interferon-γ does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clinical and Experimental Immunology, 2007. 149(2): p. 353-363. 64. Croitoru-Lamoury, J., et al., Interferon-gamma regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2,3 dioxygenase (IDO). PLoS One, 2011. 6(2): p. e14698. 65. Krampera, M., Mesenchymal stromal cell /`licensing/': a multistep process. Leukemia, 2011. 25(9): p. 1408-1414. 66. Duijvestein, M., et al., Pretreatment with interferon-gamma enhances the therapeutic activity of mesenchymal stromal cells in animal models of colitis. Stem Cells, 2011. 29(10): p. 1549-58. 67. Hinden, L., et al., Ex Vivo Induced Regulatory Human/Murine Mesenchymal Stem Cells as Immune Modulators. Stem Cells, 2015. 33(7): p. 2256-67. 68. Mojsilovic, S., et al., Interleukin-17 and its implication in the regulation of differentiation and function of hematopoietic and mesenchymal stem cells. Mediators Inflamm, 2015. 2015: p. 470458. 69. Kurte, M.n., et al., IL17RA knockout mesenchymal stem cells lose their immunosuppressive capacity and exerts deleterious effects on EAE mice. Frontiers in Immunology. 70. Sivanathan, K.N., et al., Interleukin-17A-Induced Human Mesenchymal Stem Cells Are Superior Modulators of Immunological Function. Stem Cells, 2015. 33(9): p. 2850-63. 71. Orlic, D., et al., Bone marrow cells regenerate infarcted myocardium. Nature, 2001. 410(6829): p. 701-5. 72. Gojo, S., et al., In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res, 2003. 288(1): p. 51-9. 73. Hofstetter, C.P., et al., Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A, 2002. 99(4): p. 2199-204. 74. Mahmood, A., et al., Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery, 2003. 53(3): p. 697-702; discussion 702-3. 75. Ortiz, L.A., et al., Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A, 2003. 100(14): p. 8407-11. 76. Liechty, K.W., et al., Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med, 2000. 6(11): p. 1282-6. 77. Bartholomew, A., et al., Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol, 2002. 30(1): p. 42-8. 78. Zappia, E., et al., Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 2005. 106(5): p. 1755-61. 79. Le Blanc, K., et al., Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet, 2008. 371(9624): p. 1579-86. 80. Connick, P., et al., Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol, 2012. 11(2): p. 150-6. 81. Duijvestein, M., et al., Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn's disease: results of a phase I study. Gut, 2010. 59(12): p. 1662-9. 82. Bai, L., et al., Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia, 2009. 57(11): p. 1192-203. 83. Bonfield, T.L., et al., Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. Am J Physiol Lung Cell Mol Physiol, 2010. 299(6): p. L760-70. 84. Goodwin, M., et al., Bone marrow-derived mesenchymal stromal cells inhibit Th2-mediated allergic airways inflammation in mice. Stem Cells, 2011. 29(7): p. 1137-48. 85. Riley, J.L., PD-1 signaling in primary T cells. Immunol Rev, 2009. 229(1): p. 114-25. 86. Djouad, F., et al., Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells, 2007. 25(8): p. 2025-32. 87. Kapoor, S., et al., Tolerance-like mediated suppression by mesenchymal stem cells in patients with dust mite allergy-induced asthma. J Allergy Clin Immunol, 2012. 129(4): p. 1094-101. 88. Caplan, A.I., Mesenchymal stem cells. J Orthop Res, 1991. 9(5): p. 641-50. 89. Bianco, P., P.G. Robey, and P.J. Simmons, Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell, 2008. 2(4): p. 313-9. 90. Francois, M., et al., Mesenchymal stromal cells cross-present soluble exogenous antigens as part of their antigen-presenting cell properties. Blood, 2009. 114(13): p. 2632-8. 91. Fu, Q.L., et al., Mesenchymal stem cells derived from human induced pluripotent stem cells modulate T-cell phenotypes in allergic rhinitis. Allergy, 2012. 67(10): p. 1215-22. 92. Desai, M.B., et al., Pollen-induced antigen presentation by mesenchymal stem cells and T cells from allergic rhinitis. Clin Transl Immunology, 2013. 2(10): p. e7. 93. Castillo, M., et al., The immune properties of mesenchymal stem cells. Int J Biomed Sci, 2007. 3(2): p. 76-80. 94. Chan, J.L., et al., Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood, 2006. 107(12): p. 4817-24. 95. Schwartz, R.H., T cell anergy. Annu Rev Immunol, 2003. 21: p. 305-34. 96. Riella, L.V., et al., Role of the PD-1 pathway in the immune response. Am J Transplant, 2012. 12(10): p. 2575-87. 97. Chemnitz, J.M., et al., SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol, 2004. 173(2): p. 945-54. 98. Gu, Y.Z., et al., Different roles of PD-L1 and FasL in immunomodulation mediated by human placenta-derived mesenchymal stem cells. Hum Immunol, 2013. 74(3): p. 267-76. 99. Ouyang, W., et al., Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol, 2011. 29: p. 71-109. 100. Choi, J.J., et al., Mesenchymal stem cells overexpressing interleukin-10 attenuate collagen-induced arthritis in mice. Clin Exp Immunol, 2008. 153(2): p. 269-76. 101. Krampera, M., Mesenchymal stromal cell 'licensing': a multistep process. Leukemia, 2011. 25(9): p. 1408-14. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50404 | - |
| dc.description.abstract | 過敏性氣喘係因第二型輔助性T細胞的調控失調而造成。而間葉幹細胞除了細胞再生的能力之外同時具有免疫調控的能力而被視作一具有潛力的免疫治療。目前將間葉幹細胞應用在由OVA引起的氣喘小鼠動物模式上已有療效,但未有明確證據指出間葉幹細胞是否能直接抑制第二型輔助性T細胞的免疫反應以及間葉幹細胞對過敏性疾病病人的免疫的影響還並不是很清楚。首先我們利用培養的小鼠第二型輔助性T細胞和間葉幹細胞共同培養後發現小鼠第二型輔助性T細胞分泌細胞激素的功能有明顯的降低。接著將間葉幹細胞應用在過敏性氣喘的病患上以探討間葉幹細胞對於過敏疾病的影響。分析從過敏性氣喘病人血液樣本中分離出來的周邊血單核球細胞跟間葉幹細胞共同培養後的結果,發現其中T細胞的增生以及活化都受到抑制,同時由第二型輔助性T細胞分泌的細胞激素也有明顯的減低。而單一阻斷任一由間葉幹細胞產生的免疫抑制相關分子並不影響免疫抑制的結果,因此推斷參與間葉幹細胞進行免疫抑制應同時由多種分子調控。因此我們的實驗證實間葉幹細胞可以減低第二型輔助性T細胞的反應並且抑制過敏性氣喘病人的免疫反應。 | zh_TW |
| dc.description.abstract | Allergic asthma is an airway inflammation mediated by imbalanced type II helper T cell (Th2) immune response. Mesenchymal stem cell (MSC) is nowadays thought to be a potential immunotherapy. MSCs have been shown to suppress allergic asthma in ovalbumin immunized murine model. However, there is no clear evidence that MSCs can suppress Th2 cells directly and the effect of MSCs on allergic disease remains unclear. We cultured mouse Th2 cells to investigate the direct interaction between MSCs and Th2 cells. The result showed MSCs can efficiently suppress the cytokine production ability of Th2 cells. We applied MSCs to patients with allergic asthma to study the effect of MSCs on Th2 related disease. Utilizing peripheral blood mononuclear cells (PBMCs) isolated from asthma patients, we analyzed T cell proliferation and function after cocultured with MSCs and found that MSCs suppressed proliferation and Th2 cytokine production of T cells form asthma patients. This suppression phenotype might depend on multiple factors since blockade of single factor didn’t alter the suppressive effect of MSCs. In conclusion, MSCs is able to suppress the function of Th2 cells and also reduce T cell response in Th2 mediated disease. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:39:22Z (GMT). No. of bitstreams: 1 ntu-105-R03424009-1.pdf: 3078983 bytes, checksum: 02fa683153cfa459aed5f1358d80b0ed (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文摘要 iv
Abstract v Chapter 1 Introduction 1 1.1 Asthma 2 1.1.1 Immunology of asthma 2 1.1.2 CD4 T cell immune response 3 1.1.3 Type II immune response and allergy 3 1.1.4 Allergic asthma mediated by Th2 cells 4 1.1.5 Non-allergic asthma 5 1.1.6 Therapy for asthma 5 1.2 Mesenchymal stem cells (MSCs) 7 1.2.1 The immune regulation of MSCs 8 1.2.2 The interaction between MSCs and T cells 9 1.2.3 MSCs’ effect on helper T cells 9 1.2.4 Environmental effect on MSCs 10 1.2.5 The therapeutic role of MSCs 10 1.2.6 Placenta choriodecidual-membrane derived mesenchymal stem cells (pcMSCs) 12 1.3 MSCs and airway inflammation 13 Specific aim 14 Chapter 2 Materials and methods 15 2.1 Human peripheral blood mononuclear cells (PBMCs) separation 16 2.2 In vitro culture of PBMCs 16 2.3 Flow analysis 17 2.4 Cytokine measurement by Enzyme linked immunosorbent assay (ELISA) 17 2.5 Type 2 helper T cell (Th2) culture 17 2.6 Intracellular staining 18 2.7 RNA isolation 19 2.8 Detection of immunosuppressive gene by quantitative real-time polymerase chain reaction (qPCR) 19 2.9 Annexin V apoptosis assay 20 2.10 Transwell assay 20 2.11 Statistical analysis 20 Chapter 3 Results 22 3.1 pcMSCs are as effective as the common used bone marrow MSCs 23 3.2 pcMSCs suppress the function of Th2 cells 23 3.3 pcMSCs suppress T cell response from asthma patients 24 3.4 The cytokine production of T cells were suppressed by pcMSCs 24 3.5 CD4+ T cell immune response is reduced by pcMSCs 25 3.6 The suppression ability of Th2 response is equal between pcMSCs and bmMSCs 25 3.7 The immunosuppression of pcMSCs may not induce cell apoptosis 26 3.8 PD-1/PD-L1 signal may be enhanced during cocultuvation 26 3.9 The role of cell to cell contact is indeterminate 27 3.10 The immunosuppressive cytokine IL-10 is secreted by pcMSCs but may not be necessary for suppressing T cell function 27 3.11 pcMSCs may not be sensitive to the stimulation of Th2 cytokine IL-4 28 Chapter 4 Discussion 29 Chapter 5 Figures 37 Fig. 1 Examining the immunosuppressive function of pcMSCs 38 Fig. 2 Function of Th2 cells was suppressed by pcMSCs 39 Fig. 3 Immune responses of reactive T cell after cocultured with pcMSCs 40 Fig. 4 Suppression of cytokine production by pcMSCs 41 Fig. 5 Suppression of CD4+ T cell response by pcMSCs 42 Fig. 6 Comparison of the effects of pcMSCs and bmMSCs on IL-5 production 43 Fig. 7 Expression of Annexin V on T cell cocultured with pcMSCs 44 Fig. 8 PD-1 expression of T cells and PD-L1 expression of pcMSCs 45 Fig. 9 Suppressive function of pcMSCs when losing cell to cell contact 46 Fig. 10 The role of IL-10 in immunosuppression of pcMSCs 47 Fig. 11 IL-4’s effect on pcMSCs 48 Fig. 12 Conclusion 49 Reference 50 | |
| dc.language.iso | en | |
| dc.subject | 間葉幹細胞 | zh_TW |
| dc.subject | 過敏性氣喘 | zh_TW |
| dc.subject | 第二型輔助性T細胞 | zh_TW |
| dc.subject | 過敏性氣喘 | zh_TW |
| dc.subject | 間葉幹細胞 | zh_TW |
| dc.subject | 第二型輔助性T細胞 | zh_TW |
| dc.subject | Th2 cells | en |
| dc.subject | Th2 cells | en |
| dc.subject | allergic asthma | en |
| dc.subject | mesenchymal stem cells (MSCs) | en |
| dc.subject | allergic asthma | en |
| dc.subject | mesenchymal stem cells (MSCs) | en |
| dc.title | 探討mesenchymal stem cells對Th2細胞及過敏性疾病的調控 | zh_TW |
| dc.title | Study on the regulatory role of mesenchymal stem cells on Th2 cells and allergic diseases | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林泰元,周秀慧,陶秘華 | |
| dc.subject.keyword | 過敏性氣喘,間葉幹細胞,第二型輔助性T細胞, | zh_TW |
| dc.subject.keyword | allergic asthma,mesenchymal stem cells (MSCs),Th2 cells, | en |
| dc.relation.page | 59 | |
| dc.identifier.doi | 10.6342/NTU201601577 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-28 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
