Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50384
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝宗霖(Tzong-Lin Jay Shieh)
dc.contributor.authorYu-Wei Luen
dc.contributor.author呂育瑋zh_TW
dc.date.accessioned2021-06-15T12:38:35Z-
dc.date.available2019-08-02
dc.date.copyright2016-08-02
dc.date.issued2016
dc.date.submitted2016-07-28
dc.identifier.citation1. Wang, J., Li, H. P. & Stevens, R. Hafnia and hafnia-toughened ceramics. J. Mater. Sci. 27, 5397–5430 (1992).
2. Hannink, R. H. J., Kelly, P. M. & Muddle, B. C. Transformation toughening in zirconia-containing ceramics. J. Am. Ceram. Soc. 83, 461–487 (2000).
3. Robertson, J. High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69, 327 (2006).
4. Graeve, O. A. in Ceramic and Glass Materials 169–197 (Springer, 2008).
5. Ho, S.-M. On the structural chemistry of zirconium oxide. Mater. Sci. Eng. 54, 23–29 (1982).
6. Materlik, R., Künneth, C. & Kersch, A. The origin of ferroelectricity in Hf1−xZrxO2: A computational investigation and a surface energy model. J. Appl. Phys. 117, 134109 (2015).
7. Li, P., Chen, I.-W. & Penner-Hahn, J. E. X-ray-absorption studies of zirconia polymorphs. I. Characteristic local structures. Phys. Rev. B 48, 10063–10073 (1993).
8. Teufer, G. The crystal structure of tetragonal ZrO2. Acta Crystallogr. 15, 1187–1187 (1962).
9. Ikeda, T. Antiferroelectric phase in the system PbTiO3-PbZrO3-LaFeO3. Jpn. J. Appl. Phys. 3, 493 (1964).
10. Winterer, M. Reverse Monte Carlo analysis of extended x-ray absorption fine structure spectra of monoclinic and amorphous zirconia. J. Appl. Phys. 88, 5635–5644 (2000).
11. Lange, F. F. Transformation toughening. J. Mater. Sci. 17, 225–234 (1982).
12. Lange, F. F. Transformation toughening. J. Mater. Sci. 17, 240–246 (1982).
13. Lange, F. F. Transformation toughening. J. Mater. Sci. 17, 255–263 (1982).
14. Scott, H. G. Phase relationships in the zirconia-yttria system. J. Mater. Sci. 10, 1527–1535 (1975).
15. Li, P., Chen, I.-W. & Penner-Hahn, J. E. Effect of dopants on zirconia stabilization-An X-ray absorption study: I, Trivalent dopants. J. Am. Ceram. Soc. 77, 118–128 (1994).
16. Li, P., Chen, I.-W. & Penner-Hahn, J. E. Effect of dopants on zirconia stabilization-An X-ray absorption study: II, Tetravalent dopants. J. Am. Ceram. Soc. 77, 1281–1288 (1994).
17. Li, P., Chen, I.-W. & Penner-Hahn, J. E. Effect of dopants on zirconia stabilization-An X-ray absorption study: III, Charge-compensating dopants. J. Am. Ceram. Soc. 77, 1289–1295 (1994).
18. Garvie, R. C. The occurrence of metastable tetragonal zirconia as a crystallite size effect. J. Phys. Chem. 69, 1238–1243 (1965).
19. Garvie, R. C. & Goss, M. F. Intrinsic size dependence of the phase transformation temperature in zirconia microcrystals. J. Mater. Sci. 21, 1253–1257 (1986).
20. Djurado, E., Bouvier, P. & Lucazeau, G. Crystallite size effect on the tetragonal-monoclinic transition of undoped nanocrystalline zirconia studied by XRD and Raman Spectrometry. J. Solid State Chem. 149, 399–407 (2000).
21. Wu, N.-L., Wu, T.-F. & Rusakova, I. A. Thermodynamic stability of tetragonal zirconia nanocrystallites. J. Mater. Res. 16, 666–669 (2001).
22. Suresh, A., Mayo, M. J. & Porter, W. D. Thermodynamics of the tetragonal-to-monoclinic phase transformation in fine and nanocrystalline yttria-stabilized zirconia powders. J. Mater. Res. 18, 2912–2921 (2003).
23. Kasatkin, I., Girgdies, F., Ressler, T., Caruso, R. A., Schattka, J. H., Urban, J. & Weiss K. HRTEM observation of the monoclinic-to-tetragonal (m-t) phase transition in nanocrystalline ZrO2. J. Mater. Sci. 39, 2151–2157 (2004).
24. Pitcher, M. W. et al. Energy crossovers in nanocrystalline zirconia. J. Am. Ceram. Soc. 88, 160–167 (2004).
25. Navrotsky, A. Thermochemical insights into refractory ceramic materials based on oxides with large tetravalent cations. J. Mater. Chem. 15, 1883 (2005).
26. McHale, J. M., Auroux, A., Perrotta, A. J. & Navrotsky, A. Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas. Science 277, 788–791 (1997).
27. Ranade, M. R., Navrostky, A., Zhang, H. Z., Banfield, J. F., Elder, S. H., Zaban, A., Borse, P. H., Kulkarni, S. K., Doran, G. S. and Whitfield, H. J. Energetics of nanocrystalline TiO2. Proc. Natl. Acad. Sci. U. S. A. 99, 6476–6481 (2002).
28. Dewhurst, J. K. & Lowther, J. E. Relative stability, structure, and elastic properties of several phases of pure zirconia. Phys. Rev. B 57, 741 (1998).
29. Lowther, J. E., Dewhurst, J. K., Leger, J. M. & Haines, J. Relative stability of ZrO2 and HfO2 structural phases. Phys. Rev. B 60, 14485 (1999).
30. Liu, L.-G. New high pressure phases of ZrO2 and HfO2. J. Phys. Chem. Solids 41, 331–334 (1980).
31. Block, S., Jornada, J. D. & Piermarini, G. J. Pressure-temperature phase diagram of zirconia. J. Am. Ceram. Soc. 68, 497–499 (1985).
32. Heuer, A. H., Lanteri, V., Farmer, S. C., Chaim, R., Lee, R.-R., Kibbel, B. W. & Dickerson, R. M., On the orthorhombic phase in ZrO2-based alloys. J. Mater. Sci. 24, 124–132 (1989).
33. Arashi, H., Yagi, T., Akimoto, S. & Kudoh, Y. New high-pressure phase of ZrO2 above 35 GPa. Phys. Rev. B 41, 4309–4313 (1990).
34. Howard, C. J., Kisi, E. H., Roberts, R. B. & Hill, R. J. Neutron diffraction studies of phase transformations between tetragonal and orthorhombic zirconia in magnesia-partially-stabilized zirconia. J. Am. Ceram. Soc. 73, 2828–2833 (1990).
35. Ohtaka, O., Yamanaka, T., Kume, S., Hara, N., Asano, H. & Izumi, F. Structural analysis of orthorhombic ZrO2 by high resolution neutron powder diffraction. Proc. Jpn. Acad. Ser B Phys. Biol. Sci. 66, 193–196 (1990).
36. Howard, C. J., Kisi, E. H. & Ohtaka, O. Crystal structures of two orthorhombic zirconias. J. Am. Ceram. Soc. 74, 2321–2323 (1991).
37. Leger, J. M., Tomaszewski, P. E., Atouf, A. & Pereira, A. S. Pressure-induced structural phase transitions in zirconia under high pressure. Phys. Rev. B 47, 14075–14083 (1993).
38. Ohtaka, O., Yamanaka, T. & Yagi, T. New high-pressure and -temperature phase of ZrO2 above 1000 °¬C at 20 GPa. Phys. Rev. B 49, 9295–9298 (1994).
39. Haines, J., Léger, J. M. & Atouf, A. Crystal structure and equation of state of cotunnite-type zirconia. J. Am. Ceram. Soc. 78, 445–448 (1995).
40. Kisi, E. H. Influence of hydrostatic pressure on the t→o transformation in Mg-PSZ studied by in situ neutron diffraction. J. Am. Ceram. Soc. 81, 741–745 (1998).
41. Bouvier, P., Djurado, E., Lucazeau, G. & Le Bihan, T. High-pressure structural evolution of undoped tetragonal nanocrystalline zirconia. Phys. Rev. B 62, 8731–8737 (2000).
42. Öztürk, H. & Durandurdu, M. High-pressure phases of ZrO2: An ab initio constant-pressure study. Phys. Rev. B 79, 134111 (2009).
43. Al-Khatatbeh, Y., Lee, K. K. M. & Kiefer, B. Phase relations and hardness trends of ZrO2 phases at high pressure. Phys. Rev. B 81, 214102 (2010).
44. Little, E. J. & Jones, M. M. A complete table of electronegativities. J. Chem. Educ. 37, 231 (1960).
45. Shannon, R. t & Prewitt, C. T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. B 25, 925–946 (1969).
46. Garvie, R. C. & Chan, S.-K. Stability limits in the monoclinic-tetragonal transformations of zirconia. Phys. BC 150, 203–211 (1988).
47. Lee, C.-K., Cho, E., Lee, H.-S., Hwang, C. S. & Han, S. First-principles study on doping and phase stability of HfO2. Phys. Rev. B 78, 12102 (2008).
48. Kita, K., Kyuno, K. & Toriumi, A. Permittivity increase of yttrium-doped HfO2 through structural phase transformation. Appl. Phys. Lett. 86, 102906 (2005).
49. Pucci, A., Clavel, G., Willinger, M.-G., Zitoun, D. & Pinna, N. Transition metal-doped ZrO2 and HfO2 nanocrystals. J. Phys. Chem. C 113, 12048–12058 (2009).
50. Bohra, F., Jiang, B. & Zuo, J.-M. Textured crystallization of ultrathin hafnium oxide films on silicon substrate. Appl. Phys. Lett. 90, 161917 (2007).
51. Lysaght, P. S., Woicik, J. C., Sahiner, M. A., Lee, B.-H. & Jammy, R. Characterizing crystalline polymorph transitions in HfO2 by extended x-ray absorption fine-structure spectroscopy. Appl. Phys. Lett. 91, 122910 (2007).
52. Hoppe, E. E., Aita, C. R. & Gajdardziska-Josifovska, M. Initial phases in sputter deposited HfO2–Al2O3 nanolaminate films. Appl. Phys. Lett. 91, 203105 (2007).
53. Lu, C.-H., Raitano, J. M., Khalid, S., Zhang, L. & Chan, S.-W. Cubic phase stabilization in nanoparticles of hafnia-zirconia oxides: Particle-size and annealing environment effects. J. Appl. Phys. 103, 124303 (2008).
54. 54. Rauwel, P., Rauwel, E., Persson, C., Sunding, M. F. & Galeckas, A. One step synthesis of pure cubic and monoclinic HfO2 nanoparticles: Correlating the structure to the electronic properties of the two polymorphs. J. Appl. Phys. 112, 104107 (2012).
55. Leger, J. M., Atouf, A., Tomaszewski, P. E. & Pereira, A. S. Pressure-induced phase transitions and volume changes in HfO2 up to 50 GPa. Phys. Rev. B 48, 93–98 (1993).
56. Ohtaka, O., Yamanaka, T., Kume, S., Hara, N., Asano, H. & Izumi, F. Structural analysis of orthorhombic hafnia by neutron powder diffraction. J. Am. Ceram. Soc. 78, 233–237 (1995).
57. Ohtaka, O., Fukui, H., Kunisada, T., Fujisawa, T., Funakoshi, K., Utsumi, W., Irifune, T., Kuroda, K. & Kikegawa, T. Phase relations and volume changes of hafnia under high pressure and high temperature. J. Am. Ceram. Soc. 84, 1369–1373 (2001).
58. Kang, J., Lee, E.-C. & Chang, K. J. First-principles study of the structural phase transformation of hafnia under pressure. Phys. Rev. B 68, 54106 (2003).
59. Jaffe, J. E., Bachorz, R. A. & Gutowski, M. Low-temperature polymorphs of ZrO2 and HfO2: A density-functional theory study. Phys. Rev. B 72, 144107 (2005).
60. Caravaca, M. A. & Casali, R. A. Ab initio localized basis set study of structural parameters and elastic properties of HfO2 polymorphs. J. Phys. Condens. Matter 17, 5795 (2005).
61. Al-Khatatbeh, Y., Lee, K. K. M. & Kiefer, B. Phase diagram up to 105 GPa and mechanical strength of HfO2. Phys. Rev. B 82, 144106 (2010).
62. Haertling, G. H. Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 82, 797–818 (1999).
63. Y. M. Chiang, D. P. Bernie III & W.D. Kingery. Physical Ceramics : Principles for Ceramics Science and Engineering. (John Wiley & Sons Inc., 1997).
64. Rabe, K. M. in Functional Metal Oxides (eds. Ogale, S. B., Venkatesan, T. V. & Blamire, M. ) 221–244 (Wiley-VCH Verlag GmbH & Co. KGaA, 2013).
65. Jaffe, B., Cook, W. R. & Jaffe, H. L. Piezoelectric Ceramics. (Academic Press, 1971).
66. Shrout, T. R. & Zhang, S. J. Lead-free piezoelectric ceramics: Alternatives for PZT? J. Electroceramics 19, 113–126 (2007).
67. Kay, H. F. & Vousden, P. Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties. Lond. Edinb. Dublin Philos. Mag. J. Sci. 40, 1019–1040 (1949).
68. Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T. & Nakamura, M. Lead-free piezoceramics. Nature 432, 84–87 (2004).
69. Rödel, J., Jo, W., Seifert, K. T. P., Anton, E.-M., Granzow, T. & Damjanovic, D. Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009).
70. Böscke, T. S., Müller, J., Bräuhaus, D., Schröder, U. & Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011).
71. Böscke, T. S., Teichert, St., Bräuhaus, D., Müller, J., Schröder, U., Böttger, U. & Mikolajick, T. Phase transitions in ferroelectric silicon doped hafnium oxide. Appl. Phys. Lett. 99, 112904 (2011).
72. Marshall, D. B., Jarnes, M. R. & Porter, J. R. Structural and mechanical property changes in toughened magnesia-partially-stabilized zirconia at low temperatures. J. Am. Ceram. Soc. 72, 218–227 (1989).
73. Müller, J., Schröder, U., Böscke, T. S., Müller, I. Böttger, U. Wilde, L., Sundqvist, J., Lemberger, M., Kücher, P., Mikolajick, T. & Frey, L. Ferroelectricity in yttrium-doped hafnium oxide. J. Appl. Phys. 110, 114113 (2011).
74. Mueller, S., Mueller, J., Singh, A., Riedel, S., Sundqvist, J., Schroeder, U. & Mikolajick, T. Incipient Ferroelectricity in Al-doped HfO2 thin films. Adv. Funct. Mater. 22, 2412–2417 (2012).
75. Mueller, S., Adelmann C., Singh, A., Van Elshocht, S., Schroeder, U. & Mikolajick, T. Ferroelectricity in Gd-doped HfO2 thin films. ECS J. Solid State Sci. Technol. 1, N123–N126 (2012).
76. Schenk, T., Mueller, S., Schroeder, U., Materlik, R., Kersch, A., Popovici, M., Adelmann C., Van Elshocht, S. & Mikolajick, T. Strontium doped hafnium oxide thin films: Wide process window for ferroelectric memories. in Solid-State Device Research Conference (ESSDERC), 2013 Proceedings of the European 260–263 (2013).
77. Müller, J., Böscke, T. S., Müller, S., Yurchuk, E., Polakowski, P., Paul, J., Martin, D., Schenk, T., Khullar, K., Kersch, A., Weinreich, W., Riedel, S., Seidel, K., Kumar, A., Arruda, T. M., Kalinin, S. V., Schlösser, T., Boschke, R., Van Bentum, R., Schroeder, U. & Mikolajick, T. Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories. in Electron Devices Meeting (IEDM), 2013 IEEE International 10.8.1-10.8.4 (2013).
78. Schroeder, U., Yurchuk, E., Müller, J., Martin, D., Schenk, T., Polakowski, P., Adelmann C., Popovici, M. I., Kalinin, S. V., & Mikolajick, T. Impact of different dopants on the switching properties of ferroelectric hafniumoxide. Jpn. J. Appl. Phys. 53, 08LE02 (2014).
79. Müller, J., Böscke, T. S., Schröder, U., Mueller, S., Bräuhaus, D., Böttger, U., Frey, L., Mikolajick, T. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 12, 4318–4323 (2012).
80. Park, M. H., Kim, H. J., Kim, Y. J., Lee, W., Moon, T. & Hwang, C. S. Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Appl. Phys. Lett. 102, 242905 (2013).
81. Park, M. H., Kim, H. J., Kim, Y. J., Moon, T. & Hwang, C. S. The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity. Appl. Phys. Lett. 104, 72901 (2014).
82. Park, M. H., Kim, H. J., Kim, Y. J., Lee, W., Kim, H. K. & Hwang, C. S. Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes. Appl. Phys. Lett. 102, 112914 (2013).
83. Shimizu, T., Yokouchi, T., Oikawa, T., Shiraishi, T., Kiguchi, T., Akama, A., Konno, T. J., Gruverman, A. & Funakubo, H. Contribution of oxygen vacancies to the ferroelectric behavior of Hf0.5Zr0.5O2 thin films. Appl. Phys. Lett. 106, 112904 (2015).
84. Lomenzo, P. D., Zhao, P., Takmeel, Q., Moghaddam, S., Nelson, M., Fancher, C. M., Grimley, E. D., Sang, X., LeBeau, J. M. & Jones, J. L. Ferroelectric phenomena in Si-doped HfO2 thin films with TiN and Ir electrodes. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 32, 03D123 (2014).
85. Kim, H. J., Park, M. H., Lee, Y. H., Jeon, W., Gwon, T., Moon, T., Kim, K. D. & Hwang, C. S. Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer. Appl. Phys. Lett. 105, 192903 (2014).
86. Polakowski, P. & Müller, J. Ferroelectricity in undoped hafnium oxide. Appl. Phys. Lett. 106, 232905 (2015).
87. Huan, T. D., Sharma, V., Rossetti, G. A. & Ramprasad, R. Pathways towards ferroelectricity in hafnia. Phys. Rev. B 90, (2014).
88. Fancher, C. M., Zhao, L., Nelson, M., Bai, L., Shen, G. & Jones, J. L. Pressure-induced structures of Si-doped HfO2. J. Appl. Phys. 117, 234102 (2015).
89. Ylivaara, O. M. E. Liu, X., Kilpi, L., Lyytinen, J., Schneider, D., Laitinen, M., Julin, J., Ali, S., Sintnen, S., Berdova, M., Haimi, E., Sajavaara, T., Ronkainen, H., Lipsanen, H., Koskinen, J., Hannula, S.-P. & Puurenen, R. L. Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion. Thin Solid Films 552, 124–135 (2014).
90. Reyes-Lillo, S. E., Garrity, K. F. & Rabe, K. M. Antiferroelectricity in thin-film ZrO2 from first principles. Phys. Rev. B 90, 140103 (2014).
91. Suntola, T. & Antson, J. Method for producing compound thin films. (1977).
92. George, S. M. Atomic layer deposition: An overview. Chem. Rev. 110, 111–131 (2010).
93. Shin, W. C., Ryu, S. O., You, I. K., Yoon, S. M., Cho, S. M., Lee, N. Y., Kim, K. D., Yu, B. G., Lee, W. J., Choi, K. J. & Yoon, S. G. Low voltage switching characteristics of 60 nm thick SrBi2Ta2O9 thin films deposited by plasma-enhanced ALD. Electrochem. Solid-State Lett. 7, F31–F34 (2004).
94. Vehkamäki, M., Hatanpää, T., Kemell, M., Ritala, M. & Leskelä, M. Atomic layer deposition of ferroelectric bismuth titanate Bi4Ti3O12 thin films. Chem. Mater. 18, 3883–3888 (2006).
95. Hwang, G. W., Lee, H. J., Lee, K. & Hwang, C. S. Atomic layer deposition and electrical properties of PbTiO3 thin films using metallorganic precursors and H2O. J. Electrochem. Soc. 154, G69–G76 (2007).
96. Zhang, F., Perng, Y.-C., Choi, J. H., Wu, T., Chung, T.-K., Carman, G. P., Locke, C., Thomas, S., Saddow, S. E. & Chang, J. P. Atomic layer deposition of Pb(Zr,Ti)Ox on 4H-SiC for metal-ferroelectric-insulator-semiconductor diodes. J. Appl. Phys. 109, 124109 (2011).
97. Golovin, Y. I. Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: A Review. Phys. Solid State 50, 2205–2236 (2008).
98. Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).
99. Li, X. & Bhushan, B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11–36 (2002).
100. D. Nix, W. Elastic and plastic properties of thin films on substrates: nanoindentation techniques. Mater. Sci. Eng. A 234–236, 37–44 (1997).
101. Fischer-Cripps, A. C. Critical review of analysis and interpretation of nanoindentation test data. Surf. Coat. Technol. 200, 4153–4165 (2006).
102. Suresh, S. & Giannakopoulos, A. E. A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 46, 5755–5767 (1998).
103. Atar, E., Sarioglu, C., Demirler, U., Sabri Kayali, E. & Cimenoglu, H. Residual stress estimation of ceramic thin films by X-ray diffraction and indentation techniques. Scr. Mater. 48, 1331–1336 (2003).
104. Oliver, W. C. & Pharr, G. M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004).
105. Wang, Q., Ozaki, K., Ishikawa, H., Nakano, S. & Ogiso, H. Indentation method to measure the residual stress induced by ion implantation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 242, 88–92 (2006).
106. Keutenedjian Mady, C. E., Rodriguez, S. A., Gómez, A. G. & Souza, R. M. Numerical analysis of different methods to calculate residual stresses in thin films based on instrumented indentation data. J. Mater. Res. 27, 1732–1741 (2012).
107. Tsui, T. Y., Oliver, W. C. & Pharr, G. M. Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy. J. Mater. Res. 11, 752–759 (1996).
108. Bolshakov, A., Oliver, W. C. & Pharr, G. M. Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations. J. Mater. Res. 11, 760–768 (1996).
109. Puurunen, R. L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 97, 121301 (2005).
110. Zuo, J. M. & Mabon, J. C. Web-based Electron Microscopy Application Software: Web-EMAPS. Microsc Microanal 10Suppl 2 (2004).
111. TF Analyzer 2000 FE-Module User Manual.
112. TI 950 TriboIndenter User Manual.
113. Hausmann, D. M. & Gordon, R. G. Surface morphology and crystallinity control in the atomic layer deposition (ALD) of hafnium and zirconium oxide thin films. J. Cryst. Growth 249, 251–261 (2003).
114. Weinreich, W., Wilde, L., Müller, J., Sundqvist, J., Erben, E., Heitmann, J., Lemberger, M. & Bauer, A. J. Structural properties of as deposited and annealed ZrO2 influenced by atomic layer deposition, substrate, and doping. J. Vac. Sci. Technol. Vac. Surf. Films 31, 01A119 (2013).
115. Cheng, S.-Y. Shieh, J., Lu, H.-Y., Shen, C.-Y., Tang, Y.-C. & Ho, N.-J. Structure analysis of bismuth sodium titanate-based A-site relaxor ferroelectrics by electron diffraction. J. Eur. Ceram. Soc. 33, 2141–2153 (2013).
116. Patterson, A. L. The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939).
117. Martin, D., Müller, J., Schenk, T., Arruda, T. M., Kumar, A., Strelcov, E., Yurchuk, E., Müller, S., Pohl, D., Schroeder, U., Kalinin, S. V., & Mikolajick, T. Ferroelectricity in Si-doped HfO2 revealed: A binary lead-free ferroelectric. Adv. Mater. 26, 8198–8202 (2014).
118. Park, M. H., Lee, Y. H., Kim, H. J., Kim, Y. J., Moon, T., Kim, K. D., Müller, J., Kersch, A., Schroeder, U., Mikolajik, T. & Hwang, C. S. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 27, 1811–1831 (2015).
119. Doerner, M. F. & Nix, W. D. Stresses and deformation processes in thin films on substrates. Crit. Rev. Solid State Mater. Sci. 14, 225–268 (1988).
120. Nix, W. D. & Clemens, B. M. Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films. J. Mater. Res. 14, 3467–3473 (1999).
121. Schuh, C. A. Nanoindentation studies of materials. Mater. Today 9, 32–40 (2006).
122. Wang, Q., Ishikawa, H., Nakano, S., Ogiso, H. & Akedo, J. Curvature-based residual stress measurement for ion-implanted stainless-steel sheet. Vacuum 75, 225–229 (2004).
123. Krautheim, G., Hecht, T., Jakschik, S., Schröder, U. & Zahn, W. Mechanical stress in ALD-Al2O3 films. Appl. Surf. Sci. 252, 200–204 (2005).
124. Tripp, M. K., Stampfer, C., Miller, D. C., Helbling, T., Herrmann, C. F., Hierold, C., Gall, K., George, S. M. & Bright, V. M. The mechanical properties of atomic layer deposited alumina for use in micro- and nano-electromechanical systems. Sens. Actuators Phys. 130–131, 419–429 (2006).
125. Kwon, S.-H., Kwon, O.-K., Kim, J.-H., Jeong, S.-J., Kim, S.-W. & Kang, S.-W. Improvement of the morphological stability by stacking RuO2 on Ru thin films with atomic layer deposition. J. Electrochem. Soc. 154, H773–H777 (2007).
126. Spaepen, F. Interfaces and stresses in thin films. Acta Mater. 48, 31–42 (2000).
127. Yamada, A., Sang, B. & Konagai, M. Atomic layer deposition of ZnO transparent conducting oxides. Appl. Surf. Sci. 112, 216–222 (1997).
128. Lim, J. & Lee, C. Effects of substrate temperature on the microstructure and photoluminescence properties of ZnO thin films prepared by atomic layer deposition. Thin Solid Films 515, 3335–3338 (2007).
129. Pung, S.-Y., Choy, K.-L., Hou, X. & Shan, C. Preferential growth of ZnO thin films by the atomic layer deposition technique. Nanotechnology 19, 435609 (2008).
130. Groner, M. D., Elam, J. W., Fabreguette, F. H. & George, S. M. Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates. Thin Solid Films 413, 186–197 (2002).
131. Groner, M. D., Fabreguette, F. H., Elam, J. W. & George, S. M. Low-Temperature Al2O3 Atomic Layer Deposition. Chem. Mater. 16, 639–645 (2004).
132. Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J. & Morkoç, M. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 41301 (2005).
133. Köç, P., Tekmen, S., Baltakesmez, A., Tüzemen, S., Meral, K. & Onganer, Y. Stimulated electroluminescence emission from n-ZnO/p-GaAs:Zn heterojunctions fabricated by electro-deposition. AIP Adv. 3, 122107 (2013).
134. Gossenberger, F., Roman, T., Forster-Tonigold, K. & Groß, A. Change of the work function of platinum electrodes induced by halide adsorption. Beilstein J. Nanotechnol. 5, 152–161 (2014).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50384-
dc.description.abstract二氧化鉿陶瓷系統薄膜在從2011年開始的研究中被認為具有鐵電性,因此被視為是一種嶄新且有潛力的無鉛鐵電材料。從最開始含有元素摻雜的二氧化鉿系統、二氧化鋯-二氧化鉿陶瓷固溶體系統,直到最近的不含摻雜元素的純二氧化鉿系統,都已經有文獻指出鐵電性的存在。一般而言,二氧化鉿具有三個結晶相,分別為單斜晶相、正方晶相和立方晶相;這三個二氧化鉿結晶相皆為中心對稱,因此從結晶學上此三種結晶相皆不可能為鐵電性的來源。因此,文獻中指出,應是另一種非中心對稱的斜方晶相造成二氧化鉿擁有鐵電性。此種斜方晶相的生成是來自於所使用的氮化鈦電極對於氧化物薄膜的限制所造成的影響,因此有一系列的文章持續的對二氧化鉿陶瓷系統薄膜做更進一步的開發。然而,根據參考的二氧化鋯相圖,此種結晶相必須在高溫且一定的壓力下才能穩定存在;因此,對於二氧化鉿陶瓷薄膜實際形成斜方晶相的機制尚不完備。
本研究中試著結合X光繞射儀、電子顯微鏡、鐵電分析儀、以及元素分析的結果,試著去解釋二氧化鉿、二氧化鋯以及其雙層堆疊薄膜系統的鐵電表現,提出鐵電性來源可能機制,期望使二氧化鉿及二氧化鋯薄膜的鐵電表現在未來能夠有系統地做進一步的研究以及發展。
zh_TW
dc.description.abstractRecently, HfO2-based system was reported to have ferroelectricity. Doped-HfO2, binary Hf1-xZrxO2 and undoped-HfO2 film on TiN electrode have ferroelectricity in particular experimental condition. The high-pressure orthorhombic phase having noncntrosymmetric Pbc21 space group, which is induced by encapsulation of TiN electrode, has been claimed as the origin of ferroelectricity in HfO2. Although simple application based on ferroelectric HfO2-based system has been made, the mechanism forming ferroelectric HfO2 is not fully understood.
In the present study, ferroelectric characteristics of ZrO2, HfO2, and bilayer ZrO2/HfO2 film fabricated by ALD on Pt/Ti/SiO2/Si substrate has been measured and determined in this study. The mechanism by which ZrO2 and HfO2 form a ferroelectric phase and the factors influencing the phase transition are explained by combining the results of structural information, characteristic hysteresis loop, chemical analysis and phase diagram. With knowing the mechanism forming ferroelectric HfO2 and antiferroelectric ZrO2, it is believed that the two material systems have potential to be used as new lead-free ferroelectric material in near future.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:38:35Z (GMT). No. of bitstreams: 1
ntu-105-F99527003-1.pdf: 7850394 bytes, checksum: 9e182dfa6523310b89b43ba8e53620a8 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 I
中文摘要 III
ABSTRACT IV
CONTENTS V
LIST OF FIGURES IX
LIST OF TABLES XVIII
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 The Outline of Dissertation 2
Chapter 2 Literature Review 4
2.1 Crystal Structure of ZrO2 4
2.2 Crystal Structure of HfO2 13
2.3 Ferroelectricity of Materials 18
2.3.1 Fundamental Theories of Ferroelectricity 18
2.3.2 Ferroelectric Ceramics 23
2.3.3 Ferroelectricity in HfO2-based system 27
2.3.4 Antiferroelectricity in ZrO2-based System 32
2.4 Atomic Layer Deposition Process 33
2.5 Nanoindentation 37
2.5.1 Fundamental Theory 37
2.5.2 Estimating Residual Stress 40
Chapter 3 Experimental Procedure 46
3.1 Oxide films Grown by ALD 46
3.2 Characterization of Properties 51
3.2.1 Microstructure and Crystalline Phase Analysis 51
3.2.2 Chemical Analysis 53
3.2.3 Ferroelectric Measurements 54
3.2.4 Nanoindentation 56
Chapter 4 Results and Discussion 57
4.1 ZrO2 and HfO2 Film 57
4.1.1 GIXRD Analysis 57
4.1.2 Ferroelectric Measurements 61
4.1.3 TEM Analysis 63
4.1.4 Grain Size Measurement 68
4.1.5 Discussion 78
4.2 Bilayer Oxide Film 79
4.2.1 GIXRD Analysis 79
4.2.2 Ferroelectricity Measurements 81
4.2.3 TEM Analysis 84
4.2.4 Chemical Analysis 88
4.2.5 Discussion 92
4.3 Bilayer Oxide Film with Different Thickness 98
4.3.1 GIXRD Analysis 98
4.3.1 Ferroelectricic Measurement 100
4.3.2 TEM Analysis 100
4.3.3 Discussion 104
4.4 Nanoindentaion 106
4.4.1 Pure oxide 106
4.4.2 Discussion 115
4.5 Bilayer Structure with Other Materials 120
4.5.1 ZnO/HfO2 Bilayer Film 120
4.5.2 ZnO/HfO2 Bilayer Film after Etching 130
4.5.3 Al2O3/HfO2 Bilayer Film 136
4.5.4 Discussion 138
4.6 Summary of Fundamental Concepts 140
Chapter 5 Conclusion 143
Chapter 6 Future Work 146
References 149
dc.language.isoen
dc.subject二氧化鉿zh_TW
dc.subjectTEMzh_TW
dc.subject雙層薄膜zh_TW
dc.subject鐵電性zh_TW
dc.subject二氧化鋯zh_TW
dc.subject二氧化鉿zh_TW
dc.subjectTEMzh_TW
dc.subject雙層薄膜zh_TW
dc.subject鐵電性zh_TW
dc.subject二氧化鋯zh_TW
dc.subjectTEMen
dc.subjectHafniaen
dc.subjectZirconiaen
dc.subjectFerroelectricityen
dc.subjectBilayer thin filmsen
dc.subjectTEMen
dc.subjectHafniaen
dc.subjectZirconiaen
dc.subjectFerroelectricityen
dc.subjectBilayer thin filmsen
dc.title二氧化鋯與二氧化鉿奈米雙層薄膜之鐵電性研究zh_TW
dc.titleFerroelectricity of Nanometer-thick Bilayer Thin Films of Zirconia and Hafniaen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.coadvisor蔡豐羽(Feng-Yu Tsai)
dc.contributor.oralexamcommittee陳敏璋(Miin-Jang Chen),朱英豪(Ying-Hao Chu),施劭儒(Shao-Ju Shih)
dc.subject.keyword二氧化鉿,二氧化鋯,鐵電性,雙層薄膜,TEM,zh_TW
dc.subject.keywordHafnia,Zirconia,Ferroelectricity,Bilayer thin films,TEM,en
dc.relation.page168
dc.identifier.doi10.6342/NTU201601510
dc.rights.note有償授權
dc.date.accepted2016-07-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
7.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved