請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50210完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 溫政彥 | |
| dc.contributor.author | Chia-Hao Lee | en |
| dc.contributor.author | 李家豪 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:32:39Z | - |
| dc.date.available | 2016-08-24 | |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-02 | |
| dc.identifier.citation | 1. M. Terrones et al., Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today 5, 351 (2010).
2. W. Kratschmer et al., Solid C60: a new form of carbon. Nature 347, 354 (1990). 3. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56 (1991). 4. A. K. Geim, K. S. Novoselov, The rise of graphene. Nature materials 6, 183 (2007). 5. K. S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306, 666 (2004). 6. N. P. Guisinger, M. S. Arnold, Beyond silicon: carbon-based nanotechnology. MRS bulletin 35, 273 (2010). 7. F. Schwierz, Graphene transistors: status, prospects, and problems. Proceedings of the IEEE 101, 1567 (2013). 8. S. Bae et al., Towards industrial applications of graphene electrodes. Physica Scripta 2012, 014024 (2012). 9. W. Wu et al., Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing. Sensors and Actuators B: Chemical 150, 296 (2010). 10. H. Bai, C. Li, G. Shi, Functional composite materials based on chemically converted graphene. Advanced Materials 23, 1089 (2011). 11. L. Malard et al., Raman spectroscopy in graphene. Physics Reports 473, 51 (2009). 12. P. R. Wallace, The band theory of graphite. Physical Review 71, 622 (1947). 13. A. C. Neto et al., The electronic properties of graphene. Reviews of modern physics 81, 109 (2009). 14. J. Hass, W. de Heer, E. Conrad, The growth and morphology of epitaxial multilayer graphene. Journal of Physics: Condensed Matter 20, 323202 (2008). 15. S. Shallcross et al., Electronic structure of turbostratic graphene. Physical Review B 81, 165105 (2010). 16. X. Lu et al., Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10, 269 (1999). 17. X. Liang et al., Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites. Nano letters 9, 467 (2008). 18. W. Gao et al., New insights into the structure and reduction of graphite oxide. Nature chemistry 1, 403 (2009). 19. H. J. Shin et al., Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials 19, 1987 (2009). 20. H. C. Schniepp et al., Functionalized single graphene sheets derived from splitting graphite oxide. The Journal of Physical Chemistry B 110, 8535 (2006). 21. M. J. McAllister et al., Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of materials 19, 4396 (2007). 22. S. Stankovich et al., Graphene-based composite materials. nature 442, 282 (2006). 23. W. S. Hummers Jr, R. E. Offeman, Preparation of graphitic oxide. Journal of the American Chemical Society 80, 1339 (1958). 24. D. Li et al., Processable aqueous dispersions of graphene nanosheets. Nature nanotechnology 3, 101 (2008). 25. C. Berger et al., Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191 (2006). 26. W. A. de Heer et al., Epitaxial graphene. Solid State Communications 143, 92 (2007). 27. S. Zhou et al., Substrate-induced bandgap opening in epitaxial graphene. Nature materials 6, 770 (2007). 28. M. Sprinkle et al., Scalable templated growth of graphene nanoribbons on SiC. Nature Nanotechnology 5, 727 (2010). 29. S. Saadi et al., On the role of metal step-edges in graphene growth. The Journal of Physical Chemistry C 114, 11221 (2010). 30. C. Mattevi, H. Kim, M. Chhowalla, A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry 21, 3324 (2011). 31. Q. Yu et al., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters 93, 113103 (2008). 32. L. Baraton et al., On the mechanisms of precipitation of graphene on nickel thin films. EPL (Europhysics Letters) 96, 46003 (2011). 33. Y. Zhang et al., Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition. The Journal of Physical Chemistry Letters 1, 3101 (2010). 34. X. Li et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312 (2009). 35. X. Li et al., Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano letters 9, 4268 (2009). 36. H. Mehdipour, K. Ostrikov, Kinetics of low-pressure, low-temperature graphene growth: toward single-layer, single-crystalline structure. ACS nano 6, 10276 (2012). 37. X. Liu et al., Segregation growth of graphene on Cu–Ni alloy for precise layer control. The Journal of Physical Chemistry C 115, 11976 (2011). 38. J. Park, K. Landry, J. Perepezko, Kinetic control of silicon carbide/metal reactions. Materials Science and Engineering: A 259, 279 (1999). 39. A. Hähnel, V. Ischenko, J. Woltersdorf, Oriented growth of silicide and carbon in SiC-based sandwich structures with nickel. Materials Chemistry and Physics 110, 303 (2008). 40. R. T. Lee et al., Nickel-silicide: Carbon contact technology for n-channel MOSFETs with silicon–carbon source/drain. IEEE Electron Device Letters 29, 89 (2008). 41. Z.-Y. Juang et al., Synthesis of graphene on silicon carbide substrates at low temperature. Carbon 47, 2026 (2009). 42. E. Escobedo-Cousin et al., Local solid phase growth of few-layer graphene on silicon carbide from nickel silicide supersaturated with carbon. Journal of Applied Physics 113, 114309 (2013). 43. SGTE Alloy Phase Diagrams http://www.factsage.cn/fact/documentation/SGTE/SGTE_Figs.htm 44. G. Ottaviani, K. Tu, J. Mayer, Barrier heights and silicide formation for Ni, Pd, and Pt on silicon. Physical Review B 24, 3354 (1981). 45. H. Iwai, T. Ohguro, S.-i. Ohmi, NiSi salicide technology for scaled CMOS. Microelectronic Engineering 60, 157 (2002). 46. L. J. Chen, Silicide technology for integrated circuits. (Iet, 2004), vol. 5. 47. X. Chen et al., Synthesis and catalytic properties for phenylacetylene hydrogenation of silicide modified nickel catalysts. The Journal of Physical Chemistry C 114, 16525 (2010). 48. C. K. Choi et al., Formation of ultrathin NiSi2 films and heteroepitazial growth of epi-NiSi2/Si (111). Journal of the Korean Physical Society 27, 528 (Oct, 1994). 49. J. E. Baglin, J. M. Poate, Thin Film Interfaces and Interactions: Proceedings. (Electrochemical Society, Dielectrics and Insulation and Electronics Divisions, 1980). 50. B. Julies et al., A study of the NiSi to NiSi2 transition in the Ni–Si binary system. Thin Solid Films 347, 201 (1999). 51. O. Chamirian et al., Thickness scaling issues of Ni silicide. Microelectronic engineering 70, 201 (2003). 52. S. Gaudet, P. Desjardins, C. Lavoie, The thermally-induced reaction of thin Ni films with Si: Effect of the substrate orientation. Journal of Applied Physics 110, 113524 (2011). 53. R. Tung, Growth of ultrathin single‐crystal NiSi2 layers on Si (111). Journal of Vacuum Science & Technology A 5, 1840 (1987). 54. R. Tung, J. Gibson, J. Poate, Formation of Ultrathin Single-Crystal Silicide Films on Si: Surface and Interfacial Stabilization of Si-NiSi2 Epitaxial Structures. Physical review letters 50, 429 (1983). 55. R. Tung, Epitaxial CoSi2 and NiSi2 thin films. Materials chemistry and physics 32, 107 (1992). 56. G. Das et al., Electronic structure and Schottky-barrier heights of (111) NiSi2/Si A-and B-type interfaces. Physical review letters 63, 1168 (1989). 57. H. Von Känel et al., NiSi2 layers grown on Si (111) by MBE and SPE. Journal of Crystal Growth 81, 470 (1987). 58. H. Von Känel et al., On the stability of thin epitaxial NiSi2 layers on Si (111). Superlattices and Microstructures 2, 363 (1986). 59. What Is Emissivity? (EE Tip #133) http://circuitcellar.com/ee-tips/what-is-emissivity-ee-tip-133/ 60. B. Tang, H. Guoxin, H. Gao, Raman spectroscopic characterization of graphene. Applied Spectroscopy Reviews 45, 369 (2010). 61. A. C. Ferrari, D. M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature nanotechnology 8, 235 (2013). 62. Z. Ni et al., Raman spectroscopy and imaging of graphene. Nano Research 1, 273 (2008/10/01, 2008). 63. 閻子峰, 奈米催化技術. (五南圖書出版股份有限公司, 2004). 64. J. Kling, T. W. Hansen, J. B. Wagner, Quantifying the growth of individual graphene layers by in situ environmental transmission electron microscopy. Carbon 99, 261 (2016). 65. J. R. Anderson, M. Boudart, Catalysis: science and technology. (Springer Science & Business Media, 2012), vol. 11. 66. Y. Cao, L. Nyborg, U. Jelvestam, XPS calibration study of thin‐film nickel silicides. Surface and Interface Analysis 41, 471 (2009). 67. X. Wan et al., High-quality large-area graphene from dehydrogenated polycyclic aromatic hydrocarbons. Chemistry of Materials 24, 3906 (2012). 68. K. Banno et al., Transfer-free graphene synthesis on insulating substrates via agglomeration phenomena of catalytic nickel films. Applied Physics Letters 103, 082112 (2013). 69. J. Hofrichter et al., Synthesis of graphene on silicon dioxide by a solid carbon source. Nano letters 10, 36 (2009). 70. J. Kwak et al., Near room-temperature synthesis of transfer-free graphene films. Nature communications 3, 645 (2012). 71. M. Yudasaka et al., Specific conditions for Ni catalyzed carbon nanotube growth by chemical vapor deposition. Applied Physics Letters 67, 2477 (1995). 72. A. Kudelski, Analytical applications of Raman spectroscopy. Talanta 76, 1 (2008). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50210 | - |
| dc.description.abstract | 石墨烯為碳原子以sp2鍵結所構成之六角蜂巢狀結構所組成的二維平面材料,由於其優異的電子性質以及機械性質,使得石墨烯在近年來引起許多研究團隊們的注意。為了將石墨烯應用於各式各樣的電子元件上,具備穩定且能生產出高品質石墨烯的製備方法是非常關鍵的因素。而在眾多製備石墨烯的方法當中,化學氣相沉積法為目前最主流的方式,但仍有些未解決的問題。首先其成長溫度動輒上千度,不利於與目前以矽為主體的半導體製程整合。其次則是目前的化學氣相沉積法需使用催化金屬基板例如銅或鎳,在應用上必須先將石墨烯由金屬基板轉印至介電基板如SiO2等。此轉印過程繁瑣並且容易造成石墨烯薄膜額外的損壞,更限制了大面積應用的可能性。
因此在本研究中,我們試圖以矽化鎳做為新的基板以成長石墨烯。矽化鎳做為半導體製程中的金屬接觸材料已有30年歷史,我們認為如果能於矽化鎳基板上成長出石墨烯,將可省去複雜的轉印步驟,並且加速石墨烯與目前半導體製程的整合。我們建設了超高真空化學氣相沉積系統,分別測試了化學氣相沈積法以及固態過飽和析出法兩種製程,我們利用穿透式電子顯微鏡(TEM)以及掃描式電子顯微鏡(SEM)觀察矽化鎳薄膜的晶體結構與表面形貌,並使用拉曼光譜儀分析矽化鎳基板表面是否有生成石墨烯與其品質。比較了三種矽化鎳結晶相Ni2Si、NiSi、NiSi2各自的催化能力之後,我們發現Ni2Si相具有最佳的催化能力。而將碳源從乙炔換成具多苯環結構的蒄能更加強碳sp2、sp3鍵結的生成。 | zh_TW |
| dc.description.abstract | Graphene is a two-dimensional crystal of carbon atoms packed in a honeycomb structure with the sp2 bonding, and it has been in the focus of intensive researches due to its unique physical properties. For almost ten years, the synthesis of large-area high-quality graphene has been an important issue, but there still remain some problems in the most routinely used chemical vapor deposition (CVD) process. First of all, the high growth temperature in the CVD method is unfavorable for integrating it with the current Si-based semiconductor technology. Secondly, even graphene can be grown on other metal substrates, the application of graphene still requires complicated transfer procedures, in which graphene is easily damaged and degraded.
In this research, we propose to use various nickel silicide thin films on Si (111) wafer as the growth substrate, such as Ni2Si, NiSi and NiSi2. Since nickel silicides have been used as metal contacts in very-large-scale integration (VLSI) technology for more than 30 years, there is a great opportunity to integrate graphene into the technology. In this study, graphene growth is conducted in an ultra-high vacuum CVD (UHVCVD) system. The catalytic abilities of the three silicides are compared in two different growth methods, including the CVD and solid-phase precipitation method. We find that Ni2Si has the best catalytic ability. We also find that coronene with a polycyclic structure can further enhance the formation of C-C sp2 and sp3 bonding for the growth of carbon materials. In this work, we use transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to study the surface morphology and crystal quality of the nickel silicide substrates. We also use Raman spectroscopy to evaluate the quality of graphene. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:32:39Z (GMT). No. of bitstreams: 1 ntu-105-R03527022-1.pdf: 7695877 bytes, checksum: 5341f2c59006720097af038cd267bcdd (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES vii LIST OF TABLES xiii Chapter 1 概述與動機 1 Chapter 2 文獻回顧 3 2.1 石墨烯的基本介紹 3 2.1.1 石墨烯的晶體結構 5 2.1.2 石墨烯的電子性質 6 2.2 石墨烯的製備方法 9 2.2.1 機械剝離法 9 2.2.2 化學溶液合成法 11 2.2.3 碳化矽磊晶成長法 13 2.2.4 化學氣相沉積法 14 2.2.5 固態過飽和析出法 22 2.3 矽化鎳的基本介紹 24 2.3.1 矽化鎳的晶體結構 26 2.4 矽化鎳薄膜的製備方法 27 2.4.1 固態反應成長法 27 2.4.2 分子束磊晶成長法 29 Chapter 3 實驗步驟與研究方法 31 3.1 實驗步驟 31 3.1.1 基板前處理 31 3.1.2 超高真空熱蒸鍍法製備矽化鎳基板 31 3.1.3 化學氣相沉積法成長石墨烯薄膜 35 3.1.4 固態過飽和析出法 36 3.2 薄膜分析與鑑定 37 3.2.1 掃描式電子顯微鏡 37 3.2.2 穿透式電子顯微鏡 37 3.2.3 拉曼光譜儀 38 Chapter 4 結果與討論 41 4.1 化學氣相沉積法製備石墨烯薄膜於矽化鎳基板 41 4.1.1 以超高真空熱蒸鍍法製備矽化鎳薄膜作為成長基板 41 4.1.2 與鎳箔及其它結晶相矽化鎳基板之比較 43 4.1.3 以蒄做為碳源氣體與乙炔之比較 47 4.2 矽化鎳固態過飽和析出法製備石墨烯薄膜 49 4.2.1 熱蒸鍍固態碳源於基板上之表面形貌鑑定與分析 49 4.2.2 C/Ni/Si與Ni/C/Si之層狀結構退火 50 4.2.3 鎳碳共鍍層於不同退火條件之結構分析 53 Chapter 5 結論 56 REFERENCE 57 Appendix A 以濺鍍法製備矽化鎳薄膜 60 A.1 原生氧化層對矽化鎳薄膜的影響 62 A.2 化學清洗與物理拋光對矽化鎳薄膜的影響 65 Appendix B 超薄NiSi2島嶼之製備與石墨烯成長 68 B.1 超薄NiSi2島嶼之熱穩定性測試 68 B.2 超薄NiSi2基板之化學氣相沉積法參數探討 70 APPENDIX REFERENCE 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 超高真空化學氣相沉積 | zh_TW |
| dc.subject | 矽化鎳 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 過飽和析出法 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 矽化鎳 | zh_TW |
| dc.subject | 超高真空化學氣相沉積 | zh_TW |
| dc.subject | 過飽和析出法 | zh_TW |
| dc.subject | coronene | en |
| dc.subject | graphene | en |
| dc.subject | nickel silicides | en |
| dc.subject | ultra-high vacuum chemical vapor deposition | en |
| dc.subject | solid-phase precipitation | en |
| dc.subject | coronene | en |
| dc.subject | graphene | en |
| dc.subject | nickel silicides | en |
| dc.subject | ultra-high vacuum chemical vapor deposition | en |
| dc.subject | solid-phase precipitation | en |
| dc.title | 以矽化鎳基板成長石墨烯之研究 | zh_TW |
| dc.title | The Growth of Graphene on Nickel Silicide Substrates | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 顏鴻威,吳建霆,李紹先,王迪彥 | |
| dc.subject.keyword | 石墨烯,矽化鎳,超高真空化學氣相沉積,過飽和析出法,?, | zh_TW |
| dc.subject.keyword | graphene,nickel silicides,ultra-high vacuum chemical vapor deposition,solid-phase precipitation,coronene, | en |
| dc.relation.page | 73 | |
| dc.identifier.doi | 10.6342/NTU201601844 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-03 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 7.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
