Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50177
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor溫政彥(Cheng-Yen Wen 溫政彥)
dc.contributor.authorYu-Hao Chanen
dc.contributor.author詹祐豪zh_TW
dc.date.accessioned2021-06-15T12:31:42Z-
dc.date.available2016-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-08-03
dc.identifier.citation[1] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, 'Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,' Nature Nanotech., vol. 7, pp. 699-712, 2012.
[2] A. B. Kaul, 'Two-dimensional layered materials: Structure, properties, and prospects for device applications,' J. Mater. Res., vol. 29, pp. 348-361, 2014.
[3] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, 'Single-layer MoS2 transistors,' Nature Nanotech., vol. 6, pp. 147-150, 2011.
[4] T. F. Jaramillo, K. P. J?rgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, 'Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts,' Science. vol. 317, pp. 100-102, 2007.
[5] M. R. Islam, N. Kang, U. Bhanu, H. P. Paudel, M. Erementchouk, L. Tetard, M. N. Leuenberger, and S. I. Khondaker, 'Tuning the electrical property via defect engineering of single layer MoS 2 by oxygen plasma,' Nanoscale. vol. 6, pp. 10033-10039, 2014.
[6] M. Yang, S. Ko, J. S. Im, and B. G. Choi, 'Free-standing molybdenum disulfide/graphene composite paper as a binder-and carbon-free anode for lithium-ion batteries,' J. Power Sources. vol. 288, pp. 76-81, 2015.
[7] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, 'Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,' ACS nano. vol. 8, pp. 1102-1120, 2014.
[8] H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, and H. Zhang, 'Fabrication of Single‐and Multilayer MoS2 Film‐Based Field‐Effect Transistors for Sensing NO at Room Temperature,' small. vol. 8, pp. 63-67, 2012.
[9] F. K. Perkins, A. L. Friedman, E. Cobas, P. Campbell, G. Jernigan, and B. T. Jonker, 'Chemical vapor sensing with monolayer MoS2,' Nano Lett., vol. 13, pp. 668-673, 2013.
[10] H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M. L. Chin, L.-J. Li, M. Dubey, J. Kong, and T. Palacios, 'Integrated circuits based on bilayer MoS2 transistors,' Nano Lett., vol. 12, pp. 4674-4680, 2012.
[11] Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, and H. Zhang, 'Single‐Layer Semiconducting Nanosheets: High‐yield preparation and device fabrication,' Angew. Chem. Int. Ed., vol. 50, pp. 11093-11097, 2011.
[12] T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, and B. Liu, 'Valley-selective circular dichroism of monolayer molybdenum disulphide,' Nature communications. vol. 3, pp. 887, 2012.
[13] I. Song, C. Park, and H. C. Choi, 'Synthesis and properties of molybdenum disulphide: from bulk to atomic layers,' RSC Advances. vol. 5, pp. 7495-7514, 2015.
[14] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, 'The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,' Nature chemistry. vol. 5, pp. 263-275, 2013.
[15] X. Huang, Z. Zeng, and H. Zhang, 'Metal dichalcogenide nanosheets: preparation, properties and applications,' Chem. Soc. Rev., vol. 42, pp. 1934-1946, 2013.
[16] Q. Ji, Y. Zhang, Y. Zhang, and Z. Liu, 'Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline,' Chem. Soc. Rev., vol., pp., 2015.
[17] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, 'Emerging photoluminescence in monolayer MoS2,' Nano Lett., vol. 10, pp. 1271-1275, 2010.
[18] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, 'Atomically thin MoS 2: a new direct-gap semiconductor,' Phys. Rev. Lett., vol. 105, pp. 136805, 2010.
[19] B. Radisavljevic and A. Kis, 'Mobility engineering and a metal–insulator transition in monolayer MoS2,' Nature materials. vol. 12, pp. 815-820, 2013.
[20] A. Tuxen, J. Kibsgaard, H. G?bel, E. Lægsgaard, H. Tops?e, J. V. Lauritsen, and F. Besenbacher, 'Size threshold in the dibenzothiophene adsorption on MoS2 nanoclusters,' ACS nano. vol. 4, pp. 4677-4682, 2010.
[21] S. Bertolazzi, J. Brivio, and A. Kis, 'Stretching and breaking of ultrathin MoS2,' ACS nano. vol. 5, pp. 9703-9709, 2011.
[22] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, and R. J. Smith, 'Two-dimensional nanosheets produced by liquid exfoliation of layered materials,' Science. vol. 331, pp. 568-571, 2011.
[23] P. Joensen, R. Frindt, and S. R. Morrison, 'Single-layer MoS 2,' Mater. Res. Bull., vol. 21, pp. 457-461, 1986.
[24] S. Wu, C. Huang, G. Aivazian, J. S. Ross, D. H. Cobden, and X. Xu, 'Vapor–solid growth of high optical quality MoS2 monolayers with near-unity valley polarization,' Acs Nano. vol. 7, pp. 2768-2772, 2013.
[25] D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazic, M. Gibertini, N. Marzari, O. L. Sanchez, Y.-C. Kung, D. Krasnozhon, and M.-W. Chen, 'Large-area epitaxial monolayer MoS2,' ACS nano. vol. 9, pp. 4611-4620, 2015.
[26] A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G.-H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, 'Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,' Nature materials. vol. 12, pp. 554-561, 2013.
[27] Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P.-H. Tan, and M. Kan, 'Epitaxial monolayer MoS2 on mica with novel photoluminescence,' Nano Lett., vol. 13, pp. 3870-3877, 2013.
[28] Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, and L. J. Li, 'Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition,' Adv. Mater., vol. 24, pp. 2320-2325, 2012.
[29] Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, and L. Cao, 'Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films,' Scientific reports. vol. 3, pp., 2013.
[30] Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, 'Large‐area vapor‐phase growth and characterization of MoS2 atomic layers on a SiO2 substrate,' Small. vol. 8, pp. 966-971, 2012.
[31] Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.-T. Liang, C.-W. Chu, and L.-J. Li, 'Wafer-scale MoS 2 thin layers prepared by MoO 3 sulfurization,' Nanoscale. vol. 4, pp. 6637-6641, 2012.
[32] X. Wang, H. Feng, Y. Wu, and L. Jiao, 'Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition,' J. Am. Chem. Soc., vol. 135, pp. 5304-5307, 2013.
[33] X. Ling, Y.-H. Lee, Y. Lin, W. Fang, L. Yu, M. S. Dresselhaus, and J. Kong, 'Role of the seeding promoter in MoS2 growth by chemical vapor deposition,' Nano Lett., vol. 14, pp. 464-472, 2014.
[34] Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, and D. Wei, 'Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,' Nature materials. vol. 10, pp. 443-449, 2011.
[35] P. R. ten Wolde and D. Frenkel, 'Enhancement of protein crystal nucleation by critical density fluctuations,' Science. vol. 277, pp. 1975-1978, 1997.
[36] J. Jeon, S. K. Jang, S. M. Jeon, G. Yoo, J.-H. Park, and S. Lee, 'Controlling Grain Size and Continuous Layer Growth in Two-Dimensional MoS 2 Films for Nanoelectronic Device Application,' Nanotechnology, IEEE Transactions on. vol. 14, pp. 238-242, 2015.
[37] X. Chen, Y. Lu, L. Tang, Y. Wu, B. Cho, X. Xu, J. Dong, and W. Song, 'Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition,' J. Appl. Phys., vol. 97, pp. 014913, 2005.
[38] J. Lee, N. Lee, Y. Lansac, and Y. H. Jang, 'Charge inhomogeneity of graphene on SiO 2: dispersion-corrected density functional theory study on the effect of reactive surface sites,' RSC Advances. vol. 4, pp. 37236-37243, 2014.
[39] S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram, 'The optical visibility of graphene: interference colors of ultrathin graphite on SiO2,' Nano Lett., vol. 7, pp. 2707-2710, 2007.
[40] Z. Ni, H. Wang, J. Kasim, H. Fan, T. Yu, Y. Wu, Y. Feng, and Z. Shen, 'Graphene thickness determination using reflection and contrast spectroscopy,' Nano Lett., vol. 7, pp. 2758-2763, 2007.
[41] M. Benameur, B. Radisavljevic, J. Heron, S. Sahoo, H. Berger, and A. Kis, 'Visibility of dichalcogenide nanolayers,' Nanotechnology. vol. 22, pp. 125706, 2011.
[42] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, 'Anomalous lattice vibrations of single-and few-layer MoS2,' ACS nano. vol. 4, pp. 2695-2700, 2010.
[43] J. Verble, T. Wietling, and P. Reed, 'Rigid-layer lattice vibrations and van der waals bonding in hexagonal MoS 2,' Solid State Commun., vol. 11, pp. 941-944, 1972.
[44] A. Bagnall, W. Liang, E. Marseglia, and B. Welber, 'Raman studies of MoS 2 at high pressure,' Physica B+ C. vol. 99, pp. 343-346, 1980.
[45] Y. Wang, Z. Ni, Z. Shen, H. Wang, and Y. Wu, 'Interference enhancement of Raman signal of graphene,' arXiv preprint arXiv:0801.4595. vol., pp., 2008.
[46] K. P. Dhakal, D. L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y. H. Lee, and J. Kim, 'Confocal absorption spectral imaging of MoS 2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS 2,' Nanoscale. vol. 6, pp. 13028-13035, 2014.
[47] D. B. Williams and C. B. Carter, in Transmission electron microscopy (Springer, 1996), pp. 3-17.
[48] S. M. Sze, Semiconductor devices: physics and technology. (John Wiley & Sons, 2008).
[49] A. S. Grove, Physics and technology of semiconductor devices. (Wiley, 1967).
[50] H. Schlichting, (McGraw-Hill, New York, 1979).
[51] V. Senthilkumar, L. C. Tam, Y. S. Kim, Y. Sim, M.-J. Seong, and J. I. Jang, 'Direct vapor phase growth process and robust photoluminescence properties of large area MoS2 layers,' Nano Research. vol. 7, pp. 1759-1768, 2014.
[52] K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, 'Tightly bound trions in monolayer MoS2,' Nature materials. vol. 12, pp. 207-211, 2013.
[53] H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, and X. Wang, 'Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding,' ACS nano. vol. 8, pp. 5738-5745, 2014.
[54] W. Bao, X. Cai, D. Kim, K. Sridhara, and M. S. Fuhrer, 'High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects,' Appl. Phys. Lett., vol. 102, pp. 042104, 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50177-
dc.description.abstract二硫化鉬為結構與石墨烯相似的二維材料,六角平面的鉬,上下被硫原子平面夾住形成三角柱結構,雖然結構相似,性質卻是截然不同。二硫化鉬由塊材減薄為單層時,會展現出量子侷限效應,材料能隙由非直接轉換為1.8 eV的直接能隙,使單層二硫化鉬具有良好的發光特性,因而成為眾多科學家的研究目標。起初,單層二硫化鉬能夠用膠帶撕取出來,不過尺寸有限且不能大量輸出單層材料,因此能夠合成大面積薄膜的化學氣相沉積法成為大家熱切運用的製程,並且期待量產於業界。然而,眾所皆知化學氣相反應製程當中,能夠影響薄膜成果的因素相當多,例如溫度、壓力、成長基板與前驅物的距離以及成長基板的擺放方式等實驗參數皆能使薄膜形貌與厚度產生變化。為了明確知道調整的參數對成長結果的影響,首先需要了解二硫化鉬的成長機制,在本論文中,我們以實驗結果推測二硫化鉬薄膜的形成機制是由三氧化鉬蒸氣被初步還原為二氧化鉬蒸氣,接著二氧化鉬蒸氣再與硫一起落在基板上反應形成二硫化鉬分子,經過擴散而成長為連續薄膜。最後,我們在700˚C的溫度之下,將試片直立擺放,成長出3.5×2.2 cm2的雙層二硫化鉬連續薄膜,並且發現此薄膜具有極強的發光效率,約為機械剝離法製備的二硫化鉬單層之發光效率的十三倍。此外,雙層二硫化鉬場效電晶體展現了10 cm2/V-s的載子遷移率以及104的電流開關比,顯示我們成長的薄膜具有作為良好光電元件的材料之潛力。zh_TW
dc.description.abstractMolybdenum disulfide (MoS2) is a two-dimensional hexagonal lattice. In contrast to graphene, which has no bandgap by nature, MoS2 monolayer has a direct bandgap of 1.8 eV due to the quantum confinement effect. It exhibits a high on/off current ratio and strong luminescence. Therefore, MoS2 monolayers have attracted much attention in experimental and theoretical researches for its potential applications in optoelectronic devices, field effect transistors, low power switches, valleytronics, etc. For practical applications, it is of importance to develop a reliable growth process to synthesize large-area, uniform, and continuous MoS2 monolayers. Here we use the chemical vapor deposition method for the growth of MoS2 atomic layers, using the precursors, MoO3 and sulfur and high-purity argon carrier gas, onto the silicon oxide substrates. In this study, we investigate the influences of growth temperature, pressure, substrate positions and the substrate orientation on the morphology and thickness of the MoS¬2 thin films and infer the mechanism of MoS2 growth in our system from the experimental results. Continuous MoS2 bilayers in a size of 3.5×2.2 cm2 can be obtained. They exhibit an on/off ratio of 104, mobility of ~10 cm2/V-s, and high luminescence, which is ~13 times stronger than that of the exfoliated MoS2 monolayers.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:31:42Z (GMT). No. of bitstreams: 1
ntu-105-R03527070-1.pdf: 4162534 bytes, checksum: 05f7b4c127be657b00ae1650aad4e747 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 緒論 1
Chapter 2 文獻回顧 2
2.1 二硫化鉬的基礎物理性質 2
2.1.1 二硫化鉬的晶體結構 3
2.1.2 二硫化鉬的電子性質 5
2.1.3 二硫化鉬的化學性質 6
2.1.4 二硫化鉬的機械性質 7
2.2 二硫化鉬薄膜的製備方法 8
2.2.1 機械剝離法 8
2.2.2 化學剝離法 9
2.2.3 物理氣相沉積法 11
2.2.4 化學氣相沉積法 12
2.2.5 基板效應及成長機制 12
2.2.6 基板前處理效應 17
Chapter 3 實驗方法與分析儀器介紹 21
3.1 實驗方法 21
3.1.1 基板清洗 21
3.1.2 化學氣相沉積系統與製程 22
3.2 薄膜分析與鑑定 22
3.2.1 光學顯微鏡 23
3.2.2 拉曼光譜儀 24
3.2.3 光致螢光光譜儀 27
3.2.4 原子力顯微鏡 28
3.2.5 X光繞射儀 29
3.2.6 歐傑電子能譜儀 30
3.2.7 掃描式電子顯微鏡 31
3.2.8 穿透式電子顯微鏡 32
Chapter 4 結果與討論 33
4.1 二硫化鉬成長的基礎研究 33
4.1.1 攜帶氣體的流率 33
4.1.2 三氧化鉬的加熱溫度之效應 35
4.1.3 試片擺放的幾何關係影響 38
4.1.4 基板與前驅物的距離之效應 42
4.2 二硫化鉬場效電晶體電性量測 50
Chapter 5 結論 53
REFERENCE 54
附錄A 二硫化鉬薄膜成長機制之探討 58
dc.language.isozh-TW
dc.title化學氣相沉積二硫化鉬薄膜zh_TW
dc.titleChemical Vapor Deposition of Molybdenum Disulfide Thin Filmsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李紹先(Shao-Sian Li 李紹先),吳建霆(Chien-Ting Wu 吳建霆),顏鴻威(Hung-Wei Yen 顏鴻威),王迪彥(Di-Yan Wang 王迪?)
dc.subject.keyword二硫化鉬,化學氣相沉積法,發光效率,歐傑電子能譜儀,穿透式電子顯微鏡,拉曼光譜儀,光致螢光光譜儀,zh_TW
dc.subject.keywordmolybdenum disulfide,chemical vapor deposition,auger electron spectroscopy,transmission electron microscopy,raman spectroscopy,photoluminescence,en
dc.relation.page63
dc.identifier.doi10.6342/NTU201601893
dc.rights.note有償授權
dc.date.accepted2016-08-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
4.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved