Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4987
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂廷璋
dc.contributor.authorEnelyn Bornasal Kingen
dc.contributor.author龔仁玲zh_TW
dc.date.accessioned2021-05-15T17:50:45Z-
dc.date.available2019-09-03
dc.date.available2021-05-15T17:50:45Z-
dc.date.copyright2014-09-03
dc.date.issued2014
dc.date.submitted2014-08-19
dc.identifier.citationRice : chemistry and technology / edited by Bienvenido O. Juliano. American Association of Cereal Chemists: St. Paul, Minn., USA, 1985.
AACC, Approved methods of the American Association of Cereal Chemists. AACC: St. Paul, Minn., 2000.
BeMiller, J. N.; Whistler, R. L., Starch : chemistry and technology. Academic: London, 2009.
Bhattacharya, K. R., Theories of rice ageing: relation to individual constituents. In Rice quality: A guide to rice properties and analysis, Elsevier: 2011.
Cauvain, S. P.; Young, L. S., Bakery food manufacture and quality : water control and effects. Wiley-Blackwell: Ames, Iowa, 2008.
Cauvain, S. P.; Young, L. S., The ICC handbook of cereals, flour, dough & product testing : methods and applications. DEStech Pub: Lancaster, PA, 2009.
Chrastil, J., Protein starch interactions in rice grains - Influence of storage on oryzenin and starch. J. Agric. Food. Chem. 1990, 38, 1804-1809.
Chrastil, J.; Zarins, Z., Changes in peptide subunit composition of albumins, globulins, prolamins, and oryzenin in maturing rice grains. J. Agric. Food. Chem. 1994, 42, 2152-2155.
Cozzolino, D.; Roumeliotis, S.; Eglinton, J., Relationships between Swelling Power, Water Solubility and Near-Infrared Spectra in Whole Grain Barley: A Feasibility Study. Food Bioprocess Technol 2013, 6, 2732-2738.
Dapčević Hadnađev, T.; Pojić, M.; Hadnađev, M.; Torbica, A., The Role of Empirical Rheology in Flour Quality Control,. In Wide Spectra of Quality Control, Akyar, I., Ed. InTech: 2011.
Desikachar, H. S. R., Changes leading to improved culinary properties of rice on storage. Cereal Chem. 1956, 33, 324-328.
Desikachar, H. S. R.; Subrahmanyan, V., The relative effects of enzymatic and physical changes during storage on the culinary properties of rice. Cereal Chem. 1960, 37, 1-8.
Geng, Z.; Zhang, P.; Yao, J.; Yang, D.; Ma, H.; Rayas-Duarte, P., Physicochemical and Rheological Properties of Chinese Soft Wheat Flours and Their Relationships with Cookie-Making Quality. Cereal Chem. 2012, 89, 237-241.
Gujska, E.; D.-Reinhard, W.; Khan, K., Physicochemical Properties of Field Pea, Pinto and Navy Bean Starches. J. Food Sci. 1994, 59, 634-636.
Hamaker, B. R.; Griffin, V. K., Effect of disulfide bond-containing protein on rice starch gelatinization and pasting. Cereal chemistry (USA) 1993.
Haros, M.; Rosell, C. M.; Benedito, C., Improvement of flour quality through carbohydrases treatment during wheat tempering. J. Agric. Food. Chem. 2002, 50, 4126-4130.
Hasjim, J.; Li, E.; Dhital, S., Milling of rice grains: The roles of starch structures in the solubility and swelling properties of rice flour. Starch - Starke 2012, n/a-n/a.
Hoseney, R. C., Principles of cereal science and technology. American Association of Cereal Chemists: St. Paul, Minn., USA, 1986.
Houston, D. F., Rice : chemistry and technology. American Association of Cereal Chemists: St. Paul, 1972.
IRRI Rice basics. http://irri.org/index.php?option=com_k2&view=item&layout=item&id=9081&lang=en (September 3, 2013),
IRRI Rice Production and Processing. http://irri.org/index.php?option=com_k2&view=item&layout=item&id=9151&lang=en (September 3, 2013),
IRRI Determining the Chemical Characteristics of Milled Rice. http://www.knowledgebank.irri.org/grainQuality/default.htm (September 27, 2013),
Juliano, B.; Tuano, A.; Monteroso, D.; Aoki, N.; Mestres, C.; Duldulao, J.; Bergonio, K., Replacement of acetate with ammonium buffer to determine apparent amylose content of milled rice. Cereal Foods World 2012, 57, 14-19.
Kaletunc, G.; Breslauer, K., Characterization of cereals and flours : properties, analysis, and applications. Marcel Dekker: New York, 2003.
Kansas State University, Wheat and Flour Testing Methods: A Guide to Understanding Wheat and Flour Quality, Version 2. In Kansas State University Agricultural Experiment Station and Cooperative Extension Service: 2008.
Kweon, M.; Slade, L.; Levine, H., Solvent Retention Capacity (SRC) Testing of Wheat Flour: Principles and value in predicting flour functionality in different wheat-based food processes and in wheat breeding-A review. Cereal Chem. 2011, 88, 537-552.
Li, J.-Y.; Yeh, A.-I., Relationships between thermal, rheological characteristics and swelling power for various starches. J. Food Eng. 2001, 50, 141-148.
Maclean, J. L.; Institute, I. R. R.; Dawe, D. C.; Hettel, G. P., Rice Almanac: Source Book for the Most Important Economic Activity on Earth. CABI Pub.: 2002.
Martin, M.; Fitzgerald, M. A., Proteins in rice grains influence cooking properties. Journal of Cereal Science 2002, 36, 285-294.
McCleary, B. V.; McNally, M.; Monaghan, D.; Mugford, D. C., Measurement of α-amylase activity in white wheat flour, milled malt, and microbial enzyme preparations, using the Ceralpha assay: collaborative study. J. AOAC Int. 2002, 85, 1096-1102.
Mohamed, S.; Hamid, N. A., Effects of ingredients on the characteristics of rice cakes. J. Sci. Food Agric. 1998, 76, 464-468.
Molina, J.; Sikora, M.; Garud, N.; Flowers, J. M.; Rubinstein, S.; Reynolds, A.; Huang, P.; Jackson, S.; Schaal, B. A.; Bustamante, C. D.; Boyko, A. R.; Purugganan, M. D., Molecular evidence for a single evolutionary origin of domesticated rice. Proceedings of the National Academy of Sciences of the United States of America 2011, 108, 8351-8356.
Nishita, K. D.; Bean, M. M., Grinding Methods - Their Impact on rice flour properties. Cereal Chem. 1982, 59, 46-49.
Noomhorm, A.; Kongseree, N.; Apintanapong, M., Effect of aging on the quality of glutinous rice crackers. Cereal Chem. 1997, 74, 12-15.
Santos, M. M.; Riis, P., Optimized McCleary method for measurement of total β‐amylase in barley and its applicability. Journal of the Institute of Brewing 1996, 102, 271-275.
Seguchi, M., Effect of wheat flour aging on starch-granule surface proteins. Cereal Chem. 1993, 70, 362-362.
Shinke, R.; Nishira, H.; Mugibayashi, N., Types of amylases in rice grains. Agricultural and biological chemistry 1973.
Sun, J.; Hou, C.; Zhang, S., Effect of protein on the rheological properties of rice flour. Journal of food processing and preservation 2008, 32, 987-1001.
Takeda, Y.; Hizukuri, S.; Juliano, B. O., Purification and structure of amylose from rice starch. Carbohydr. Res. 1986, 148, 299-308.
Teo, C.; Abd Karim, A.; Cheah, P.; Norziah, M.; Seow, C., On the roles of protein and starch in the aging of non-waxy rice flour. Food Chem. 2000, 69, 229-236.
Tester, R. F.; Morrison, W. R., Swelling and gelatinization of cereal starches. Effects of amylopectin, amylose and lipids. Cereal Chem. 1990, 67, 551-557.
Wattinee, K.; Sanguansri, C., Effect of rice storage on pasting properties, swelling and granular morphology of rice flour. As. J. Food Ag.-Ind. 2012, 5, 315-321.
Williams, P. P., Yu; Poulson, Vicki, New Applications for Rice flour. Leeton, Australia, 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4987-
dc.description.abstract米穀粉於食品加工領域的應用與日俱增,故須發展針對米穀粉品質檢測之參數指標。本研究之目的為建立分辦米穀粉特性之方法,藉此了解米穀粉之性質並作為米穀粉加工應用之參考。於本研究中,精白米預先被磨成粉後,測定基本組成、粒徑分佈、糊化性質、膨潤力、溶解度、滯留溶劑能力(solvent retention capacity)、破損澱粉、直鏈澱粉含量、α及β澱粉酶之活性及攪拌性質。最終以米穀粉做烘焙產品米麵包。研究結果顯示,蛋白質品質與破損澱粉為影響米穀粉攪拌性質之主要因子。添加1.5%之羥丙基甲基纖維素(hydroxypropylmethylcellulose, HPMC)至米穀粉中使能其在 farinograph檢測中達到500 FU之標準。Farinograph之指標受到滯留乳酸及碳酸鈉之能力影響,而兩者又分別與蛋白質品質與破損澱粉有關。吸水率(water absorption)和攪拌耐受指標(mixing tolerance index)與滯留乳酸和碳酸鈉(r>0.9, p<0.001)之能力呈正相關,然而擴展時間(development time)和攪拌彈性時間(stability time)與滯留乳酸(r< -0.9, p< 0.001)之能力呈負相關。
米穀粉之烘焙產品結果顯示滯留溶劑能力(solvent retention capacity), 破損澱粉, 直鏈澱粉含量皆影響米麵包之性質. 其中影像米麵包體積的重要因素藉為破損澱粉及滯留溶劑能力(solvent retention capacity)的五碳聚醣(pentosan)。米麵包之高度、比體積及體積指標皆與滯留蔗糖之能力成正相關(r> 0.8, p<0.05),然而體積指標與滯留碳酸鈉之能力成負相關(r< -0.8, p<0.05).。本研究所使用之方法能分析米穀粉之特性並作為品工業中米穀粉品質管制之指標。
zh_TW
dc.description.abstractIncreased use of rice flour in the food industry has necessitated it to have a set of testing methods that will reveal rice flour characteristics to indicate rice flour quality. Therefore, the objective of this study is to develop differentiating testing methods in rice flour that will help in understanding rice flour properties and that will serve as guidelines in rice flour processing properties. In this study, milled rice were ground to flour, and flour specifications such as proximate composition, particle size distribution, pasting properties, swelling power and solubility, solvent retention capacities, starch damage, amylose content, alpha-amylase and beta-amylase activity, mixing characteristics were determined. Lastly, a bake test was also conducted. Seven commercial including fresh and aged rice samples were selected for testing. Protein quality and starch damage are observed to be the main determining factors in rice flour mixing characteristics. The addition of 1.5% hydroxypropylmethylcellulose to rice flour made it possible for rice flour mixing characteristics to reach a consistency of 500 FU and be studied in a farinograph. Farinograph parameters were greatly influenced by solvent retention capacities of lactic acid and sodium carbonate which are associated with protein quality and starch damage respectively. Water absorption and mixing tolerance index were statistical (r>0.9, p<0.001) positively correlated with lactic acid solvent retention capacity and sodium carbonate solvent retention capacity, while development time and stability time were statistical (r< -0.9, p< 0.001) negatively correlated with lactic acid solvent retention capacity and sodium carbonate solvent retention capacity.
Lastly, results for bake test indicated that solvent retention capacity, starch damage and amylose contentaffect rice bread properties. Pentosans and starch damage are key factors that influenced rice bread volume. Height, specific volume and volume index were statistical (r> 0.8, p<0.05) positively correlated with sucrose solvent retention capacity while volume index were negatively correlated with sodium carbonate solvent retention capacity(r< -0.8, p<0.05). Therefore, the methods used in this study reveal characteristic rice flour properties and could serve as guidelines in rice flour quality control in the food industry.
en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:50:45Z (GMT). No. of bitstreams: 1
ntu-103-R01641043-1.pdf: 3082296 bytes, checksum: 1fa02c7f394d20424357061720248c31 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要 I
Abstract II
List of Figures VI
List of Tables IX
1. Introduction 1
2. Literature Review 3
2.1. Rice 3
2.1.1. Origin 3
2.1.2. Production 3
2.1.3. Composition 5
2.1.3.1. Starch 5
2.1.3.2. Protein 5
2.1.4. Nutrient comparison of rice and other cereals 5
2.1.5. Rice flour Specifications 6
2.1.5.1. Starch 6
2.1.5.2. Amylose content 6
2.1.5.3. Gelatinization and Pasting Properties 6
2.1.5.4. Batter Viscosity 7
2.1.5.5. Gel consistency 7
2.1.5.6. Alpha-amylase 8
2.1.5.7. Particle size 8
2.1.5.8. Water absorption 8
2.1.6. Utilization 9
2.1.6.1. Milled rice 9
2.1.6.2. Rice bran 9
2.1.6.3. Hulls and husks 9
2.1.6.4. Rice polish 10
2.1.6.5. Rice oil 10
2.1.6.6. Rice flour 10
2.1.6.7. Rice starch 11
2.2. Wheat 12
2.2.1. Wheat flour specification testing methods 12
2.2.1.1. Protein 12
2.2.1.2. Starch 21
2.2.1.3. Enzyme Activity 22
3. Materials and Methods 23
3.1. Samples 24
3.2. Grinding of rice grains 24
3.3. Rice flour specification methods 25
3.3.1. Proximate analysis 25
3.3.2. Particle Size Distribution 25
3.3.3. Pasting properties 25
3.3.4. Swelling Power and Solubility Index 26
3.3.5. Solvent Retention Capacity Profile 26
3.3.6. Starch damage 27
3.3.7. Amylose content 27
3.3.8. Alpha-amylase and Beta-amylaseactivities 28
3.3.9. Mixing characteristics 28
3.3.10. Bake test 29
4. Experimental Design 31
5. Results and Discussion 32
5.1. Proximate Composition 32
5.2. Particle Size Distribution 33
5.3. Pasting Properties 35
5.4. Swelling Power and Solubility Index 38
5.5. Solvent Retention Capacity Profile 41
5.6. Starch damage 43
5.7. Amylose content 45
5.8. Alpha-amylase and Beta-amylase activities 46
5.9. Mixing Characteristic 49
5.10. Bake test 57
6. Conclusion 63
7. References 66
Appendix 71
dc.language.isoen
dc.title分辨米穀粉品質特性之方法zh_TW
dc.titleThe methods to differentiate rice flour characteristicsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林政樺,賴喜美,張永和,盧 訓
dc.subject.keyword米穀粉,farinograph,滯留溶劑能力,五碳聚醣,米麵包,zh_TW
dc.subject.keywordRice flour,farinograph,solvent retention capacity,pentosan,gluten free bread,rice bread,en
dc.relation.page82
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf3.01 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved