Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49699
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣丙煌
dc.contributor.authorYu-Ting Huangen
dc.contributor.author黃鈺婷zh_TW
dc.date.accessioned2021-06-15T11:42:44Z-
dc.date.available2021-10-05
dc.date.copyright2016-10-05
dc.date.issued2016
dc.date.submitted2016-08-15
dc.identifier.citationAggarwal, B. B., et al. (2003). Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Research, 23(1A), 363-398.
Ahluwalia, G. S., et al. (1990). Metabolism and action of amino acid analog anti-cancer agents. Pharmacology & Therapeutics, 46(2), 243-271.
Ahrens, T., et al. (2001). Soluble CD44 inhibits melanoma tumor growth by blocking cell surface CD44 binding to hyaluronic acid. Oncogene, 20(26), 3399-3408.
Al-Hajj, M., & Clarke, M. F. (2004). Self-renewal and solid tumor stem cells. Oncogene, 23(43), 7274-7282.
Al-Hajj, M., et al. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences, 100(7), 3983-3988.
Bao, S., et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444(7120), 756-760.
Basak, S. K., et al. (2015). Liposome encapsulated curcumin-difluorinated (CDF) inhibits the growth of cisplatin resistant head and neck cancer stem cells. Oncotarget, 6(21), 18504.
Bates, R. C., et al. (2001). A CD44 survival pathway triggers chemoresistance via lyn kinase and phosphoinositide 3-kinase/Akt in colon carcinoma cells. Cancer Research, 61(13), 5275-5283.
Beachy, P. A., et al. (2004). Tissue repair and stem cell renewal in carcinogenesis. Nature, 432(7015), 324-331.
Bellizzi, A., et al. (2013). Co‐expression of CD133+/CD44+ in human colon cancer and liver metastasis. Journal of Cellular Physiology, 228(2), 408-415.
Ben-Porath, I., et al. (2008). An embryonic stem cell–like gene expression signature in poorly differentiated aggressive human tumors. Nature Genetics, 40(5), 499-507.
Blanpain, C., et al. (2004). Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell, 118(5), 635-648.
Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730-737.
Bourguignon, L. Y., et al. (1998). CD44v~ 3~,~ 8~-~ 1~ 0 Is Involved in Cytoskeleton-Mediated Tumor Cell Migration and Matrix Metalloproteinase (MMP-9) Association in Metastatic Breast Cancer Cells. Journal of Cellular Physiology, 176(1), 206-215.
Buccisano, F., et al. (2004). CD90/Thy‐1 is preferentially expressed on blast cells of high risk acute myeloid leukaemias*. British Journal of Haematology, 125(2), 203-212.
Castor, A., et al. (2005). Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nature Medicine, 11(6), 630-637.
Chaneton, B., & Gottlieb, E. (2012). Rocking cell metabolism: revised functions of the key glycolytic regulator PKM2 in cancer. Trends in Biochemical Sciences, 37(8), 309-316.
Chang, T.-C., et al. (2015). 4-Acetylantroquinonol B inhibits colorectal cancer tumorigenesis and suppresses cancer stem-like phenotype. Toxicology and Applied Pharmacology, 288(2), 258-268.
Chang, T., & Chou, W. (1995). Antrodia cinnamomea sp. nov. on Cinnamomum kanehirai in Taiwan. Mycological Research, 99(6), 756-758.
Chen, C.-C., et al. (2006). Neuroprotective Diterpenes from the Fruiting Body of Antrodia c amphorata. Journal of Natural Products, 69(4), 689-691.
Chen, Y.-C., et al. (2010). Inhibition of tumorigenicity and enhancement of radiochemosensitivity in head and neck squamous cell cancer-derived ALDH1-positive cells by knockdown of Bmi-1. Oral Oncology, 46(3), 158-165.
Chen, Y.-C., et al. (2008). Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PloS One, 3(7), e2637.
Clarke, M. F., et al. (2006). Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Research, 66(19), 9339-9344.
Collins, A. T., et al. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 65(23), 10946-10951.
Cory, A., et al. (1991). Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Communications, 3(7), 207-212.
Cretu, A., & Brooks, P. C. (2007). Impact of the non‐cellular tumor microenvironment on metastasis: Potential therapeutic and imaging opportunities. Journal of Cellular Physiology, 213(2), 391-402.
Dalerba, P., et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences, 104(24), 10158-10163.
Dallas, N. A., et al. (2009). Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer research, 69(5), 1951-1957.
Davis, V. W., et al. (2011). Metabolomics and surgical oncology: Potential role for small molecule biomarkers. Journal of surgical oncology, 103(5), 451-459.
DeBerardinis, R. J., & Cheng, T. (2010). Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene, 29(3), 313-324.
Dick, J. E. (2003). Breast cancer stem cells revealed. Proceedings of the National Academy of Sciences, 100(7), 3547-3549.
Diehn, M., et al. (2009). Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature, 458(7239), 780-783.
Dittfeld, C., et al. (2009). CD133 expression is not selective for tumor-initiating or radioresistant cell populations in the CRC cell lines HCT-116. Radiotherapy and Oncology, 92(3), 353-361.
Donnenberg, V. S., et al. (2010). Localization of CD44 and CD90 positive cells to the invasive front of breast tumors. Cytometry Part B: Clinical Cytometry, 78(5), 287-301.
Duncan, R., & Izzo, L. (2005). Dendrimer biocompatibility and toxicity. Advanced Drug Delivery Reviews, 57(15), 2215-2237.
Dylla, S. J., et al. (2008). Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PloS One, 3(6), e2428.
Fang, J. Y., & Richardson, B. C. (2005). The MAPK signalling pathways and colorectal cancer. The Lancet Oncology, 6(5), 322-327.
Feng, Y., et al. (2012). EGF signalling pathway regulates colon cancer stem cell proliferation and apoptosis. Cell Proliferation, 45(5), 413-419.
Giovannucci, E., et al. (1994). Intake of fat, meat, and fiber in relation to risk of colon cancer in men. Cancer Research, 54(9), 2390-2397.
Greenhough, A., et al. (2009). The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 30(3), 377-386.
Greve, B., et al. (2012). Flow cytometry in cancer stem cell analysis and separation. Cytometry Part A, 81(4), 284-293.
Griffiths, M., et al. (1988). The role of glutamine and glucose analogues in metabolic inhibition of human myeloid leukaemia in vitro. International Journal of Biochemistry, 25(12), 1749-1755.
Harry, I. (1955). Nutrition Needs of Mammali Cells in Tissue Cultu.
Hatcher, H., et al. (2008). Curcumin: from ancient medicine to current clinical trials. Cellular and Molecular Life Sciences, 65(11), 1631-1652.
Hillary, R. A., & Pegg, A. E. (2003). Decarboxylases involved in polyamine biosynthesis and their inactivation by nitric oxide. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1647(1), 161-166.
Ho, T. J., et al. (2013). True ion pick (TIPick): a denoising and peak picking algorithm to extract ion signals from liquid chromatography/mass spectrometry data. Journal of Mass Spectrometry, 48(2), 234-242.
Horst, D., et al. (2009). The cancer stem cell marker CD133 has high prognostic impact but unknown functional relevance for the metastasis of human colon cancer. The Journal of pathology, 219(4), 427-434.
Hou, Y., et al. (2012). The critical role of CD133+ CD44+/high tumor cells in hematogenous metastasis of liver cancers. Cell research, 22(1), 259-272.
Huxley, R. R., et al. (2009). The impact of dietary and lifestyle risk factors on risk of colorectal cancer: a quantitative overview of the epidemiological evidence. International Journal of Cancer, 125(1), 171-180.
Ichihashi, M., et al. (2003). UV-induced skin damage. Toxicology, 189(1), 21-39.
Ito, H., et al. (2005). Polyphenol levels in human urine after intake of six different polyphenol-rich beverages. British Journal of Nutrition, 94(4), 500-509.
Jaiswal, S., et al. (2003). Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias. Proceedings of the National Academy of Sciences, 100(17), 10002-10007.
Kawamoto, H., et al. (2010). Characteristics of CD133+ human colon cancer SW620 cells. Cell transplantation, 19(6-7), 6-7.
Kesharwani, P., et al. (2015). Parenterally administrable nano-micelles of 3, 4-difluorobenzylidene curcumin for treating pancreatic cancer. Colloids and Surfaces B: Biointerfaces, 132, 138-145.
Kesharwani, P., et al. (2015). Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3, 4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids and Surfaces B: Biointerfaces, 136, 413-423.
Kim, C. F. B., et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121(6), 823-835.
Kim, H., et al. (1994). CD44 expression in colorectal adenomas is an early event occurring prior to K-ras and p53 gene mutation. Archives of Biochemistry and Biophysics, 310(2), 504-507.
Knudson Jr, A. G., et al. (1973). Heredity and cancer in man. Progress in Medical Genetics, 9, 113.
Krasinskas, A. M. (2011). EGFR signaling in colorectal carcinoma. Pathology Research International, 2011.
Kunwar, A., et al. (2008). Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochimica et Biophysica Acta (BBA)-General Subjects, 1780(4), 673-679.
Kuo, M.-C., et al. (2008). Immunomodulatory effect of Antrodia camphorata mycelia and culture filtrate. Journal of Ethnopharmacology, 120(2), 196-203.
Kuo, T.-C., et al. (2009). Emodin has cytotoxic and protective effects in rat C6 glioma cells: roles of Mdr1a and nuclear factor κB in cell survival. Journal of Pharmacology and Experimental Therapeutics, 330(3), 736-744.
Lacey, J. M., & Wilmore, D. W. (1990). Is glutamine a conditionally essential amino acid? Nutrition Reviews, 48(8), 297-309.
Lakshman, M., et al. (2004). CD44 negatively regulates apoptosis in murine colonic epithelium via the mitochondrial pathway. Experimental and Molecular Pathology, 76(3), 196-204.
Lapidot, T., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice.
Li, C., et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67(3), 1030-1037.
Lin, L.-I., et al. (1998). Curcumin inhibits SK-Hep-1 hepatocellular carcinoma cell invasion in vitro and suppresses matrix metalloproteinase-9 secretion. Oncology, 55(4), 349-353.
Lin, Y.-W., & Chiang, B.-H. (2011). 4-Acetylantroquinonol B Isolated from Antrodia cinnamomea arrests proliferation of human hepatocellular carcinoma HepG2 cell by affecting p53, p21 and p27 Levels. Journal of Agricultural and Food Chemistry, 59(16), 8625-8631.
Lobo, N. A., et al. (2007). The biology of cancer stem cells. Annual Review of Cell and Developmental Biology, 23, 675-699.
Lu, H., et al. (2002). Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. Journal of Biological Chemistry, 277(26), 23111-23115.
Mantovani, A., et al. (2008). Cancer-related inflammation. Nature, 454(7203), 436-444.
Marzesco, A.-M., et al. (2005). Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. Journal of Cell Science, 118(13), 2849-2858.
Molyneux, G., et al. (2010). < i> BRCA1</i> Basal-like Breast Cancers Originate from Luminal Epithelial Progenitors and Not from Basal Stem Cells. Cell Stem Cell, 7(3), 403-417.
Murphy, J. F., et al. (2005). Engagement of CD44 modulates cyclooxygenase induction, VEGF generation, and proliferation in human vascular endothelial cells. The FASEB journal, 19(3), 446-448.
Näthke, I. (2006). Cytoskeleton out of the cupboard: colon cancer and cytoskeletal changes induced by loss of APC. Nature Reviews Cancer, 6(12), 967-974.
Nasreen, N., et al. (2002). Low molecular weight hyaluronan induces malignant mesothelioma cell (MMC) proliferation and haptotaxis: role of CD44 receptor in MMC proliferation and haptotaxis. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 13(2), 71-78.
Netzker, R., et al. (1997). Role of the stimulatory proteins Sp1 and Sp3 in the regulation of transcription of the rat pyruvate kinase M gene. European Journal of Biochemistry, 245(1), 174-181.
O'Brien, C. A., et al. (2009). Cancer stem cells in solid tumors: an overview. In Seminars in Radiation Oncology, vol. 19 (pp. 71-77): Elsevier.
O'Brien, C. A., et al. (2010). Cancer stem cells and self-renewal. Clinical Cancer Research, 16(12), 3113-3120.
O’Brien, C. A., et al. (2006). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106-110.
O’Brien, C. A., et al. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106-110.
Ohkuma, M., et al. (2008). CD133+ CD44+ population efficiently enriches colon cancer initiating cells. Annals of Surgical Oncology, 15(10), 2927-2933.
Oshimori, N., et al. (2015). TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell, 160(5), 963-976.
Padhye, S., et al. (2009). Fluorocurcumins as cyclooxygenase-2 inhibitor: molecular docking, pharmacokinetics and tissue distribution in mice. Pharmaceutical Research, 26(11), 2438-2445.
Pan, M. H., et al. (2011). Molecular mechanisms for chemoprevention of colorectal cancer by natural dietary compounds. Molecular Nutrition & Food Research, 55(1), 32-45.
Patrawala, L., et al. (2006). Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene, 25(12), 1696-1708.
Peng, S.-T., et al. (2007). CD44 crosslinking-mediated matrix metalloproteinase-9 relocation in breast tumor cells leads to enhanced metastasis. International Journal of Oncology, 31(5), 1119.
Persson, A. I., et al. (2010). Non-stem cell origin for oligodendroglioma. Cancer Cell, 18(6), 669-682.
Peterson, R. M., et al. (2000). Perturbation of hyaluronan interactions by soluble CD44 inhibits growth of murine mammary carcinoma cells in ascites. The American journal of pathology, 156(6), 2159-2167.
Ponz de Leon, M., & Di Gregorio, C. (2001). Pathology of colorectal cancer. Digestive and Liver Disease, 33(4), 372-388.
Rasheed, Z. A., et al. (2011). Concise review: emerging concepts in clinical targeting of cancer stem cells. Stem Cells, 29(6), 883-887.
Ravindran, J., et al. (2009). Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? The AAPS journal, 11(3), 495-510.
Reya, T., et al. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 423(6938), 409-414.
Ricardo, S., et al. (2011). Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. Journal of Clinical Pathology, 64(11), 937-946.
Ricci-Vitiani, L., et al. (2006). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111-115.
Ricci-Vitiani, L., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111-115.
Rich, J. N. (2007). Cancer stem cells in radiation resistance. Cancer Research, 67(19), 8980-8984.
Sanders, M., & Majumdar, A. (2011). Colon cancer stem cells: implications in carcinogenesis. Frontiers in bioscience: a journal and virtual library, 16, 1651.
Sell, S., & Pierce, G. B. (1994). Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Laboratory investigation; a journal of technical methods and pathology, 70(1), 6.
Semenza, G. L. (2000). Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Critical Reviews in Biochemistry and Molecular Biology, 35(2), 71-103.
Sgambato, A., et al. (2001). Resveratrol, a natural phenolic compound, inhibits cell proliferation and prevents oxidative DNA damage. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 496(1), 171-180.
Shapiro, A. L., et al. (1967). Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochemical and Biophysical Research Communications, 28(5), 815.
Shmelkov, S. V., et al. (2008). CD133 expression is not restricted to stem cells, and both CD133+ and CD133–metastatic colon cancer cells initiate tumors. The Journal of clinical investigation, 118(6), 2111.
Singh, S. K., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63(18), 5821-5828.
Singh, S. K., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396-401.
Slattery, M. L., et al. (1997). Dietary sugar and colon cancer. Cancer Epidemiology Biomarkers & Prevention, 6(9), 677-685.
Soltanian, S., & Matin, M. M. (2011). Cancer stem cells and cancer therapy. Tumor Biology, 32(3), 425-440.
Song, T.-Y., & Yen, G.-C. (2002). Antioxidant properties of Antrodia camphorata in submerged culture. Journal of Agricultural and Food Chemistry, 50(11), 3322-3327.
Song, T.-Y., & Yen, G.-C. (2003). Protective effects of fermented filtrate from Antrodia camphorata in submerged culture against CCl4-induced hepatic toxicity in rats. Journal of Agricultural and Food Chemistry, 51(6), 1571-1577.
Spratlin, J. L., et al. (2009). Clinical applications of metabolomics in oncology: a review. Clinical Cancer Research, 15(2), 431-440.
Stryker, S. J., et al. (1987). Natural history of untreated colonic polyps. Gastroenterology, 93(5), 1009-1013.
Su, C.-C., et al. (2006). Curcumin inhibits cell migration of human colon cancer colo 205 cells through the inhibition of nuclear factor kappa B/p65 and down-regulates cyclooxygenase-2 and matrix metalloproteinase-2 expressions. Anticancer Research, 26(2A), 1281-1288.
SU, C.-C., et al. (2006). Curcumin-induced apoptosis of human colon cancer colo 205 cells through the production of ROS, Ca2+ and the activation of caspase-3. Anticancer Research, 26(6B), 4379-4389.
Surh, Y.-J. (2003). Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer, 3(10), 768-780.
Szotek, P. P., et al. (2006). Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proceedings of the National Academy of Sciences, 103(30), 11154-11159.
Taylor, G., et al. (2000). Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell, 102(4), 451-461.
Todaro, M., et al. (2010). Colon cancer stem cells: promise of targeted therapy. Gastroenterology, 138(6), 2151-2162.
Toole, B. P. (2004). Hyaluronan: from extracellular glue to pericellular cue. Nature Reviews: Cancer, 4(7), 528-539.
Towbin, H., et al. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, 76(9), 4350-4354.
van Stijn, A., et al. (2003). Differences between the CD34+ and CD34-blast compartments in apoptosis resistance in acute myeloid leukemia. Haematologica, 88(5), 497-508.
Vander Heiden, M. G., et al. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930), 1029-1033.
Verma, S. P., et al. (1998). The inhibition of the estrogenic effects of pesticides and environmental chemicals by curcumin and isoflavonoids. Environmental Health Perspectives, 106(12), 807.
Vermeulen, L., et al. (2008). Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proceedings of the National Academy of Sciences, 105(36), 13427-13432.
Wang, C., et al. (2012). Evaluation of CD44 and CD133 as cancer stem cell markers for colorectal cancer. Oncology Reports, 28(4), 1301-1308.
Wang, J.-b., et al. (2009). Curcumin induces apoptosis through the mitochondria-mediated apoptotic pathway in HT-29 cells. Journal of Zhejiang University Science B, 10(2), 93-102.
Wang, X., et al. (2006). Curcumin inhibits neurotensin-mediated interleukin-8 production and migration of HCT116 human colon cancer cells. Clinical Cancer Research, 12(18), 5346-5355.
Warburg, O. (1956). On the origin of cancer cells. Science, 123(3191), 309-314.
Watabe, T., & Miyazono, K. (2009). Roles of TGF-β family signaling in stem cell renewal and differentiation. Cell Research, 19(1), 103-115.
Willett, W. C., et al. (1990). Relation of meat, fat, and fiber intake to the risk of colon cancer in a prospective study among women. New England Journal of Medicine, 323(24), 1664-1672.
Willis, N. D., et al. (2008). Colonic and colorectal cancer stem cells: progress in the search for putative biomarkers. Journal of Anatomy, 213(1), 59-65.
Wise, D. R., & Thompson, C. B. (2010). Glutamine addiction: a new therapeutic target in cancer. Trends in Biochemical Sciences, 35(8), 427-433.
Wollowski, I., et al. (2001). Protective role of probiotics and prebiotics in colon cancer. The American Journal of Clinical Nutrition, 73(2), 451s-455s.
Wu, S.-C., et al. (2013). Hyaluronan initiates chondrogenesis mainly via CD44 in human adipose-derived stem cells. Journal of Applied Physiology, 114(11), 1610-1618.
Yan, Y., et al. (2015). Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem cells translational medicine, 4(9), 1033-1043.
Yang, C.-W., et al. (2012). Curcumin induces the apoptosis of human monocytic leukemia THP-1 cells via the activation of JNK/ERK Pathways. BMC Complementary and Alternative Medicine, 12(1), 22.
Yang, Z. F., et al. (2008). Significance of CD90< sup>+</sup> Cancer Stem Cells in Human Liver Cancer. Cancer Cell, 13(2), 153-166.
Yoshida, G., & Saya, H. (2014). The Novel Anti-tumor Therapy Targeting the “Functional” Cancer Stem Cell Markers. Clin Exp Pharmacol, 4(147), 2161-1459.1000.
Yu, Q., & Stamenkovic, I. (1999). Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes & Development, 13(1), 35-48.
Yu, Q., & Stamenkovic, I. (2000). Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes & Development, 14(2), 163-176.
廖, 繼. (2010). 臨床腫瘤學 = Clinical oncology. 臺北市: 合記.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49699-
dc.description.abstract國人十大死因之首為癌症,其中大腸結直腸癌(colorectal cancer, CRC)位居第三,與國人之飲食、生活習慣、遺傳等因素相關。過去研究指出微環境改變和癌症幹細胞存在對癌症發生、轉移與再發具有密不可分之關係。本研究目的為探討植化素與微環境調控對大腸直腸癌癌症幹細胞(colorectal cancer stem cells,CCSCs)發展之影響。實驗建立以CRC病患之正常、瘜肉與癌組織分析CCSCs marker (CD133與CD44)之表現量及代謝體,接續建立CRC初代細胞培養平台,觀察植化素對各CRC初代細胞中CCSCs及代謝體之影響,再者以CRC細胞株HCT-116、HT-29、SW480及SW620細胞株中CCSCs表現分析及微環境因子對CCSCs發展之影響,以CCSCs表現量高低,模擬CRC細胞及瘜肉細胞,針對CCSCs高度表現之HT-29細胞株給予植化素curcumin (Cur)、resveratrol (Res)及4-Acetylantroquinonol B (4AAQB)探討其對細胞存活率、凋亡、CCSCs表現的影響,而CCSCs表現量低之SW480細胞株則給予不同微環境因子如reactive oxygen species (ROS)、epidermal growth factor (EGF)及transforming growth factor (TGF)誘導CCSCs表現。實驗結果發現CRC腺瘤性息肉(N=61)的代謝特徵相較於CRC(N = 57)組織,其磷酸腺苷(Adenosine monophosphate, AMP),adenine,5'- methythioadenosine,3-hydroxybutyric acid ,prostaglandin E2, threonine 和 glutamine具統計上顯著差異(P <0.05)。因CRC初代細胞培養平台建置尚未完成,且以微環境因子誘導CRC細胞株表現CCSCs部分,發現以單一因子無法有效誘導CCSCs表現,因此以CRC細胞株進行研究。結果發現以50 μM curcumin處理48小時確實增加CRC及CCSCs的細胞凋亡,但僅在CD44+細胞具顯著性。在CRC細胞株的代謝特徵的研究,curcumin處理後CD44-細胞中glyceraldehyde和hydroxypropionic acid之含量增加,但以curcumin處理的CRC和CD44+細胞則glutamine含量減少。基於我們的人體組織和癌細胞株的代謝概況比較,我們認為,curcumin-CD44+耦合在細胞膜上可能對glutamine的運輸產生某些阻斷作用,抑制其進入細胞內,因此降低了glutamine在CD44+細胞中的含量以至於誘導細胞凋亡的發生。zh_TW
dc.description.abstractColorectal cancer (CRC) is the three major cause of cancer-related mortality in Taiwan. The risk factors of CRC include age, life style and family history. This study investigated the effect of microenvironment and phytochemicals on the development of colorectal cancer stem cells (CCSCs) and its possible mechanism. We analyzed CRC patient’s normal, adenomatous polyps and tumor tissue for expression of CCSCs (CD133 and CD44) and metabolic profiles. We also tried to establish CRC primary cells for investigating the effect of phytochemicals and microenvironmental factors on the CCSCs and metabolic profiles. In addition, the microenviroments factors including reactive oxygen species (ROS)、epidermal growth factor (EGF)及transforming growth factor (TGF) were used to induce the expression of CCSCs. However, both of the attempt of establishing CRC primary culture and induction of CCSCs by microenvironmental factors failed, we decided to use CRC cell lines (HCT-116, HT-29, SW480 and SW620) model to analyze their expression of CCSCs and metabolic profiles. Comparison of the metabolic profiles of human adenomatous polyp (N=61) and colorectal cancer (CRC) (N=57) tissue found statistically significant differences (p<0.05) in their composition of Adenosine monophosphate (AMP), adenine, 5’-methythioadenosine, 3-hydroxybutyric acid, prostaglandin E2, threonine and glutamine. Our cell culture model study found that curcumin treatment (50 μM for 48 h) did increased apoptosis of CRC cells and CCSCs, but only the CD44+ cells reached statistically significant. Further metabolic profile studies of the CRC, CD44+ and CD44- cells indicated that curcumin treatment increased glyceraldehyde and hydroxypropionic acid in CD44- cells, but decreased glutamine content in both curcumin-treated CRC and CD44+ cells. Based on the comparison of the metabolic profiles of human tissues and cancer cells we suggest that curcumin might couple with CD44 and that curcumin-CD44+ coupling at the cell membrane might have some blocking effect on the transport of glutamine into the cells, thus decreasing the glutamine content in the CD44+ cells and inducing apoptosis.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:42:44Z (GMT). No. of bitstreams: 1
ntu-105-D98641003-1.pdf: 5950771 bytes, checksum: 493d29d84b058e9854924b3baa6418a9 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents謝誌 i
摘要 iii
Abstract v
目錄 I
圖目錄 IV
表目錄 VII
壹、 前言及研究目的 1
研究目的 2
貳、 文獻回顧 3
第一章、 大腸結直腸癌 (Colorectal cancer, CRC) 3
1.1 大腸結直腸癌的風險因子 4
1.2 大腸結直腸癌的分子發病學與致病機轉 9
第二章、 癌症幹細胞 (Cancer stem cell, CSC) 19
2.1 癌症幹細胞的特徵與來源 23
2.2 癌症幹細胞的分離與檢測方法 32
第三章、 癌症細胞微環境 (Microenvironment of cancer cells)
37
3.1 癌症細胞微環境介紹 37
3.2 癌症微環境與腫瘤發展之相關 40
第四章、 植化素 (Phytochemicals) 42
4.1 植化素的簡介 42
4.2 植化素的生理活性與選擇 43
第五章、 代謝體 (Metabolomics) 46
第六章、 腫瘤細胞代謝之改變 49
第七章、 實驗架構 54
7.1 實驗構想 54
7.2 人體大腸結直腸正常組織、大腸結直腸癌瘜肉與大腸結直腸癌組織CCSCs marker表現量及代謝體分析 55
7.3 建立人體大腸結直腸正常組織、大腸結直腸癌瘜肉與大腸結直腸癌組織初代細胞培養平台,觀察植化素對各人體組織初代細胞CCSCs marker表現量及代謝體之影響 56
7.4 人類大腸結直腸癌細胞株HCT-116、HT-29、SW480及SW620癌症幹細胞表現分析 57
7.5 觀察CRC細胞株(A) 高CCSCs marker表現量細胞株及(B)低CCSCs marker表現量細胞株,經微環境因子調控誘導CCSCs marker表現,植化素介入對(A)(B)兩種CRC細胞株之CCSCs marker表現量、細胞存活率、細胞凋亡及細胞株內代謝體之影響 58
參、 材料與方法 60
第一章、 實驗材料與儀器設備 60
1.1 細胞株來源 60
1.2 藥品試劑 60
1.3 儀器設備 63
第二章、 實驗方法 64
2.1 樣品配置 64
2.2 細胞培養 64
2.3 細胞存活率分析 65
2.4 蛋白質萃取與定量 67
2.5 西方墨點法 69
2.6 以流式細胞儀分析癌症幹細胞表現量 73
2.7 以微環境因子誘導癌症幹細胞表現 75
2.8 細胞凋亡(Annexin V/PI double staining) 76
2.9 代謝體分析 77
第三章、 統計分析 78
肆、 結果與討論 79
第一章、 人類大腸結直腸正常組織、大腸結直腸癌瘜肉與大腸直腸癌癌組織CCSCs marker表現及代謝體分析 79
第二章、 建立人體大腸結直腸正常組織、大腸直結腸癌瘜肉組織與大腸結直腸癌組織初代細胞培養平台,觀察植化素對各人體組織初代細胞CCSCs marker表現量及代謝體之影響 85
第三章、 人類大腸結直腸癌細胞株HCT-116、HT-29、SW480及SW620癌症幹細胞表現分析 90
第四章、 植化素介入對HT-29及經微環境調控誘導後SW480兩種CRC細胞株之CCSCs marker表現量、存活率、凋亡及代謝體之影響 97
第五章、 植化素之給予對人類大腸結直腸癌細胞株HT-29細胞凋亡表現之影響 111
伍、 結論 119
陸、 參考文獻 120
柒、 附錄 135
dc.language.isozh-TW
dc.subjectapoptosiszh_TW
dc.subject大腸結直腸癌zh_TW
dc.subject癌症幹細胞zh_TW
dc.subjectglutaminezh_TW
dc.subjectcurcuminzh_TW
dc.subjectglutamineen
dc.subjectcurcuminen
dc.subjectapoptosisen
dc.subjectcancer stem cellen
dc.subjectcolorectal canceren
dc.title探討微環境及植化素對大腸直腸癌癌症幹細胞發展之影響zh_TW
dc.titleEffect of microenvironment and phytochemicals on the development of colorectal cancer stem cellsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee潘敏雄,鍾景光,潘子明,邱瀚模
dc.subject.keyword大腸結直腸癌,癌症幹細胞,apoptosis,curcumin,glutamine,zh_TW
dc.subject.keywordcolorectal cancer,cancer stem cell,apoptosis,curcumin,glutamine,en
dc.relation.page161
dc.identifier.doi10.6342/NTU201602520
dc.rights.note有償授權
dc.date.accepted2016-08-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
5.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved