請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49492
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 顏鴻威(Hung-Wei Yen) | |
dc.contributor.author | Yu-Han Huang | en |
dc.contributor.author | 黃郁涵 | zh_TW |
dc.date.accessioned | 2021-06-15T11:31:17Z | - |
dc.date.available | 2021-08-31 | |
dc.date.copyright | 2016-08-31 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-08-16 | |
dc.identifier.citation | [1] O. Bouaziz, H. Zurob, M. Huang, 'Driving Force and Logic of Development of Advanced High Strength Steels for Automotive Applications,' Steel Research International, 84 (2013) 937-947.
[2] B.C. De Cooman, 'Structure–properties relationship in TRIP steels containing carbide-free bainite,' Curr. Opin. Solid State Mater. Sci., 8 (2004) 285-303. [3] O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, 'High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships,' Curr. Opin. Solid State Mater. Sci., 15 (2011) 141-168. [4] C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, D. Raabe, 'An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design,' Annu. Rev. Mater. Res., 45 (2015) 391-431. [5] B.C. De Cooman, K.G. Chin, J.Y. Kim, 'High Mn TWIP Steels for Automotive Applications, New Trends and Developments in Automotive System Engineering,' InTech, (2011) 101-128. [6] J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth 'Carbon partitioning into austenite after martensite transformation,' Acta Mater., 51 (2003) 2611-2622. [7] H.W. Luo, J. Shi, C. Wang, W.Q. Cao, X.J. Sun, H. Dong, 'Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel,' Acta Mater., 59 (2011) 4002-4014. [9] J.H. Ryu, Y.S. Chun, C.S. Lee, H.K.D.H. Bhadeshia, D.W. Suh, 'Effect of deformation on hydrogen trapping and effusion in TRIP-assisted steel,' Acta Mater., 60 (2012) 4085-4092. [10] R.W.K. Honeycombe, 'The plastic deformation of metals, ' Edward Arnold, (1984). [11] J.W. Christian, S. Mahajan, 'Deformation twinning,' Prog. Mater. Sci., 39 (1995) 1-157. [12] P.C.J. Gallagher, 'Influence of Alloying, Temperature, and Related Effects on Stacking Fault Energy,' Metall. Trans., 1 (1970) 2429-& [13] P.J. Ferreira, P. Mullner, ' A thermodynamic model for the stacking-fault energy,' Acta Mater., 46 (1998) 4479-4484 [14] H. Aydin, E. Essadiqi, I.H. Jung, S. Yue, 'Development of 3rd generation AHSS with medium Mn content alloying compositions,' Mater. Sci. Eng. A, 564 (2013) 501-508. [15] Y.K. Lee, C.S. Choi, 'Driving force for γ → ε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system,' Phys. Metall. Mater. Sci., 31 (2000) 355-360 [16] H. Schumann, 'Deformation twinning,' Kristall. Technik., 9 (1974) 1141-1152. [17] H.K.D.H. Bhadeshia, R.W.K. Honeycombe, 'Steels: Microstructure and Properties,' Elsevier, Butterworth–Heinemann, Amsterdam, Boston, (2006) [18] A. Dumay, J.P. Chateau, S. Allain, S. Migot, O. Bouaziz, 'Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel,' Mater. Sci. Eng. A., 483 (2008) 184-187. [19] K.H. Jeong, J.E. Jin, Y.S. Jung, S.G. Kang, Y.K. Lee, 'The effects of Si on the mechanical twinning and strain hardening of Fe–18Mn–0.6C twinning-induced plasticity steel,' Acta Mater., 61 (2013) 3399-3410. [20] L. Li, B.C. De Cooman, P. Wollants, Y.L. He, X.D. Zhou, 'Effect of Aluminum and Silicon on Transformation Induced Plasticity of the TRIP Steel,' Mater. Sci. Tech., 20 (2004) 135-138. [21] D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, J.E. Wittig, 'The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe–Mn–Al–Si steels during tensile deformation,' Acta Mater., 100 (2015) 178-190. [22] G. Frommeyer, U. Brux, P. Neumann, 'Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes,' Prog. ISIJ Int., 43 (2003) 438-446 [23] A. Saeed-Akbari, J. Imlau, U. Prahl, W. Bleck, 'Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels,' Metall. Mater. Trans. A, 40 (2009) 3076-3090. [24] S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, N. Guelton, 'Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys,' Mater. Sci. Eng. A., 387-389 (2008) 158-162. [25] J.R. Patel, M. Cohen, 'Criterion for the action of applied stress in the martensitic transformation,' Acta Metall., 1 (1953) 531-538. [26] H.W. Yen, S.W. Ooi, M. Eizadjou, A. Breen, C. Y. Huang, H.K.D.H. Bhadeshia, S.P. Ringer, 'Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels,' Acta Mater., 82 (2015) 100-114. [27] I. Gutierrez-Urrutia, D. Raabe, 'Grain size effect on strain hardening in twinning-induced plasticity steels,' Scripta Mater., 1 (1953) 531-538. [28] S. Takaki, H. Nakatsu, Y. Yokunaga, 'Effects of Austenite Grain Size on ε Martensitic Transformation in Fe-15mass%Mn Alloy,' Mater. Trans., 34 (1993) 489-495. [29] D.P. Koistinen, R.E. Marburger, 'A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels,' Acta Metall., 7 (1959) 59-60. [30] H.S. Yang, H.K.D.H. Bhadeshia, 'Austenite grain size and the martensite-start temperature,' Scripta Mater., 60 (2009) 493-495. [31] G.B. Olson, M. Cohen, 'A mechanism for the strain-induced nucleation of martensitic transformations,' J. Less-Common Metals, 1 (1953) 531-538. [32] G.B. Olson, M. Cohen, 'A Perspective on Martensitic Nucleation,' Annu. Rev. Mater. Sci., 11 (1981) 1-30. [33] T.H. Lee, H.Y. Ha, J.Y. Kang, J. Moon, C.H. Lee, S.J. Park, 'Criterion for the action of applied stress in the martensitic transformation,' Acta Metall., 61 (2013) 7399-7410. [34] K. Sugimoto, N. Usui, M. Kobayash, S. Hashimoto, 'Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels,' ISIJ Int., 32 (1992) 1311-1318. [35] S.W. Lee, S.J. Lee, B.C. De Cooman, 'Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning,' Scripta Mater., 65 (2011) 225-228. [36] Y. Sakuma, O. Matsumura, H. Takechi, 'Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions,' Metall. Trans. A, 22 (1991) 489-498. [37] I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, 'Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels,' Metall. Trans. A, 35 (2004) 2331-2341. [38] S. Zaefferer, J. Ohlert, W. Bleck, 'A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel,' Acta Mater., 52 (2004) 2765-2778. [39] O. Matsumura, Y. Sakuma, H. Takechi, 'Enhancement of Elongation by Retained Austenite in Intercritical Annealed 0.4C-1.5Si-0.8Mn Steel,' ISIJ Int,, 27 (1987) 570-579. [40] O. Matsumura, Y. Sakuma, H. Takechi, 'TRIP and its kinetics aspects in austempered 0.4C–1.5Si–0.8Mn steel,' Script Metall., 21 (1987) 570-579. [41] O. Matsumura, Y. Sakuma, H. Takechi, 'Retained austenite in 0.4C-Si-1.2Mn steel sheet intercritically heated and austempered,' ISIJ Int,, 32 (1992) 1014-1020. [42] W.C. Jeong, D.K. Matlock, G. Krauss, 'Observation of deformation and transformation behavior of retained austenite in a 0.14C-1.2Si-1.5Mn steel with ferrite-bainite-austenite structure,' Mater. Sci. Eng. A, 165 (1993) 1-8. [43] M. De Meyer, D. Vanderschueren, B.C. De Cooman, 'The Influence of the Substitution of Si by Al on the Properties of Cold Rolled C-Mn-Si TRIP Steels,' ISIJ Int,, 39 (1999) 813-822. [44] S. Zhang, K.O. Findley, 'Quantitative assessment of the effects of microstructure on the stability of retained austenite in TRIP steels,' Acta Mater., 61 (2013) 1895-1903. [45] P.J. Jacques, 'Transformation-induced plasticity for high strength formable steels,' Curr. Opin. Solid State Mater. Sci., 8 (2004) 259-265 [46] D.V. Edmonds, K. Hea, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, J.G. Speer, 'Quenching and partitioning martensite—A novel steel heat treatment,' Mater. Sci. Eng. A, 438-440 (2006) 25-34. [47] A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, E. De Moor, 'Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: A critical assessment,' Acta Mater., 56 (2008) 16-22. [48] S. Zhang, K.O. Findley, 'Quantitative assessment of the effects of microstructure on the stability of retained austenite in TRIP steels,' Acta Mater., 61 (2013) 1895-1903 [49] X.D. Tan, Y.B. Xu, X.L. Yang, D. Wu, 'Microstructure–properties relationship in a one-step quenched and partitioned steel,' Mater. Sci. Eng. A, 589 (2014) 101-111. [50] T. Tsuchiyama, J. Tobata, T. Tao, N. Nakada, S. Takaki, 'Quenching and partitioning treatment of a low-carbon martensitic stainless steel,' Mater. Sci. Eng. A, 532 (2012) 585-592. [51] C. Herrera, D. Ponge, D. Raabe, 'Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability,' Acta Mater., 59 (2011) 4653-4664. [52] H.L. Yi, J.H. Ryu, H.K.D.H. Bhadeshia, H.W. Yen, J.R. Yang, 'Low-alloy duplex, directly quenched transformation-induced plasticity steel,' Scripta Mater., 65 (2011) 604-607. [53] B.C. De Cooman, P. Gibbs, S.W. Lee, D.K. Matlock, 'Transmission electron microscopy analysis of yielding in ultrafine-grained medium Mn transformation-induced plasticity steel,' Metall. Trans. A, 44 (2013) 2563-2572. [54] S. Chatterjee, M. Murugananth, H.K.D.H. Bhadeshia, 'δ TRIP steel,' Mater. Sci. Tech., 23 (2007) 819-827. [55] H.L. Yi, 'Review on δ-Transformation-Induced Plasticity (TRIP) Steels with Low Density: The Concept and Current Progress,' JOM, 66 (2014) 1759-1769. [56] H.L. Yi, P. Chen, H.K.D.H. Bhadeshia, 'Optimizing the Morphology and Stability of Retained Austenite in a δ-TRIP Steel,' Metall. Trans. A, 45 (2014) 1759-1769. [57] H.L. Yi, K.Y. Lee, H.K.D.H. Bhadeshia, 'Mechanical stabilisation of retained austenite in δ-TRIP steel,' Mater. Sci. Eng. A, 528 (2011) 5900-5903. [58] H.L. Yi, 'Spot weldability of TRIP assisted steels with high carbon and aluminium contents,' Sci. Tech. Weld. Join., 17 (2012) 92-98. [59] R.D.K. Misra, B. Ravi Kumar, M. Somani, P. Karjalainen, 'Deformation processes during tensile straining of ultrafine/nanograined structures formed by reversion in metastable austenitic steels,' Scripta Mater., 59 (2008) 79-82. [60] R. Song, D. Ponge, D. Raabe, R. Kaspar, 'Microstructure and crystallographic texture of an ultrafine grained C–Mn steel and their evolution during warm deformation and annealing,' Acta Mater., 53 (2005) 845-858. [61] H. Yajima, M. Tada, K. Kajimoto, 'Extensive Application of TMCP-manufactured High Tensile Steel Plates to Ship Hulls and Offshore Structures,' Mitsubishi Heavy Industries Technical Review, 24 (1987). [62] R. Song, D. Ponge, D. Raabe, J.G. Speer, D.K. Matlock, 'Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels,' Mater. Sci. Eng. A, 441 (2006) 1-17. [63] C.C Koch, 'Optimization of strength and ductility in nanocrystalline and ultrafine grained metals,' Scripta Mater., 49 (2003) 657-662. [64] E Ma, 'Instabilities and ductility of nanocrystalline and ultrafine-grained metals,' Scripta Mater., 49 (2003) 663-668. [65] N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, 'Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing,' Scripta Mater., 47 (2002) 893-899. [66] Y. Okitsu, N. Takata, N. Tsuji, 'Dynamic deformation behavior of ultrafine-grained iron produced by ultrahigh strain deformation and annealing,' Scripta Mater., 64 (2011) 896-899. [67] M.A. Meyers, A. Mishra, D.J. Benson, 'Mechanical properties of nanocrystalline materials,' Progress Mater. Sci., 51 (2006) 427-556. [68] R.D.K. Misra, V.S.A. Challa, P.K.C. Venkatsurya, Y.F. Shen, M.C. Somani, L.P. Karjalainen, 'Interplay between grain structure, deformation mechanisms and austenite stability in phase-reversion-induced nanograined/ultrafine-grained austenitic ferrous alloy,' Acta Mater., 84 (2015) 339-348. [69] S.J. Lee, Y.M. Park, Y.K. Lee, 'Reverse transformation mechanism of martensite to austenite in a metastable austenitic alloy,' Mater. Sci. Eng. A, 515 (2009) 32-37. [70] K. Tomimura, S. Takaki, Y. Tokuna, 'Reversion mechanism from deformation induced martensite to austenite in metastable austenitic stainless steels,' ISIJ Int,, 31 (1991) 1431-1437. [71] Y.K. Lee, H.C. Shin, D.S. Leem, J.Y. Choi, W. Jin, C.S. Choi, 'Reverse transformation mechanism of martensite to austenite and amount of retained austenite after reverse transformation in Fe-3Si-13Cr-7Ni(wt-%) martensitic stainless steel' Mater. Sci. Tech., 19 (2003) 393-398. [72] C.A. Apple, G. Krauss, 'The effect of heating rate on the martensite to austenite transformation in Fe-Ni-C alloys,' Acta Metall., 20 (1972) 849-856. [73] M.C. Somani, P. Juntunen, L.P. Karjalainen, R.D.K. Misra, A. Kyröläinen, 'Enhanced Mechanical Properties through Reversion in Metastable Austenitic Stainless Steels,' Metall. Trans. A, 40 (2009) 729-744. [74] R.R. Keller, R.H. Geiss, 'Transmission EBSD from 10 nm domains in a scanning electron microscope,' J. Microsc., 245 (2012) 245-251. [75] P.W. Trimby, 'Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope,' Ultramicroscopy, 120 (2012) 16-24. [76] P.W. Trimby, Y. Cao, Z.B. Chen, S. Han, K.J. Hemker, J.S. Lian, X.Z. Liao, P. Rottmann, S. Samudrala, J.L. Sun, J.T. Wang, J. Wheeler, J.M. Cairney, 'Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission Kikuchi diffraction in a scanning electron microscope,' Acta Mater., 62 (2014) 69-80. [77] http://nau.edu/cefns/labs/electron-microprobe/glg-510-class-notes/signals/#electron_interaction_volume [78] R.A. Schwarzer, 'Spatial resolution in ACOM - What will come after EBSD,' Microscopy Today, 16 (2008) 34-37. [79] C. Hofer, V. Bliznuk, A. Verdiere, R. Petrov, F. Winkelhofer, H. Clemens, S. Primig, 'Correlative microscopy of a carbide-free bainitic steel,' Micron, 81 (2016) 1-7. [80] H.S. Yang, H.K.D.H. Bhadeshia, 'Uncertainties in dilatometric determination of martensite start temperature,' Mater. Sci. Tech., 23 (2007) 556-560. [81] H.S. Yang, J.H. Jang, H.K.D.H. Bhadeshia, D.W. Suh, 'Critical assessment: Martensite-start temperature for the γ → ε transformation,' Calphad, 36 (2012) 16-22. [82] K.W. Andrews, 'Empirical formulae for calculation of some transformation temperatures,' J. Iron Steel Inst., 203 (1965) 721-&. [83] V.H. Schumann, 'Martensitische Umwandlung in austenitischen Mangan-Kohlenstoff-Stählen,' Neue Hütte, 17 (1972) 605-609. [84] P.M. Kelly, 'The martensite transformation in steels with low stacking fault energy,' Acta Metall., 13 (1965) 635-646. [85] K. Shimizu, Y. Tanaka, 'Gamma → epsilon → alpha = martensitic transformations in an Fe-Mn-C alloy,' Trans. Jpn. Inst. Met., 19 (1978) 685-693. [86] G.B. Olson, M. Cohen, 'Kinetics of strain-induced martensitic nucleation,' Metall. Trans. A, 6 (1975) 791-795. [87] S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, N. Guelton, 'Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys,' Mater. Sci. Eng. A, 387-389 (2004) 158-162. [88] S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, 'The morphology and crystallography of lath martensite in Fe-C alloys,' Acta Mater., 51 (2003) 1789-1799. [89] S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki, 'Crystallographic features of lath martensite in low-carbon steel,' Acta Mater., 54 (2006) 1279-1288. [90] S.T. Pisarik, D.C. Van Aken, 'Crystallographic Orientation of the ε → α′ Martensitic (Athermal) Transformation in a FeMnAlSi Steel,' Metall. Mater. Trans. A, 45 (2014) 3173-3178. [91] K. Ogawa, T. Sawaguchi and S. Kajiwara, 'Crystallographic features of lath martensite in low-carbon steel,' Mater. Trans. JIM, 50 (2009) 2778-2784. [92] J.W. Brooks, M.H. Loretto, R.E. Smallman, 'Direct observations of martensite nuclei in stainless steel,' Acta Mater., 27 (1979) 1839-1847. [93] H. Idrissi, L. Ryelandt, M. Veron, D. Schryvers, P.J. Jacques, 'Is there a relationship between the stacking fault character and the activated mode of plasticity of Fe–Mn-based austenitic steels?,' Scripta Mater., 60 (2009) 941-944. [94] D.B. Williams, C.B. Carter, 'Transmission Electron Microscopy,' Plenum, (1996) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49492 | - |
dc.description.abstract | 此研究中,以熱膨脹儀來進行退火及利用Koistinen-Marburger 方程式和量測晶粒大小,可以估計Ms溫度並與熱膨脹曲線量出的Ms比較,可以發現較低的退火溫度時導致晶粒尺寸較小,Ms溫度也較低,說明了經由降低晶粒尺寸,原本平衡上不穩定的沃斯田鐵可以被保留到室溫成為介穩相。
此外,此研究透過穿透式電子顯微鏡、X 光繞射、電子背向散射以及穿透式菊池繞射技術分析Fe-15 Mn-0.03 C (in wt. %) 鋼之顯微結構及機械性質,研究顯示當退火溫度較低時雖然晶粒尺寸較小,但能達到高強度及極佳的延展性,最好的拉伸性質為在600 °C 及650 °C 退火,原因為低退火溫度造成沃斯田鐵晶粒細化,在淬火至室溫時可以有效的抑制麻田散鐵相變態,因此當塑性變形時,細晶粒介穩態沃斯田鐵經由TRIP 效應轉變成ε 麻田散鐵及α'麻田散鐵,提供高強度及極佳的延展性。 | zh_TW |
dc.description.abstract | In this work, the annealing is carried out by dilatometer. Applying the Koistinen-Marburger equation and calculated grain size, the Ms temperature was estimated and compared to which was measured from dilatometeric curve. It was found that annealing at a lower temperature leads to extremely small grains and low Ms temperature. This demonstrates that chemically unstable austenite can be preserved as a metastable phase at room temperature when a significant reduction in grain size is achieved.
Besides, the annealed microstructure and mechanical properties of Fe-15 Mn-0.03 C (in wt. %) steel have been investigated by using transmission electron microscopy, X-ray analysis, electron backscattered diffraction and transmission Kikuchi diffraction in this work. It was found that annealing at a lower temperature leads to both high tensile strength and excellent elongation in spite of its extremely small grains. The best tensile properties is found annealing at 600 °C and 650 °C, which leading to both high tensile strength (~1.2GPa) and excellent elongation (~35%). The reason is that refinement of austenite grain size due to lowering annealing temperature could significantly inhibits martensite transformation during quenching to room temperature. Hence, during plastic deformation, tiny and metastable austenite transformed into ε martensite and α' martensite, producing high strength and excellent ductility via TRIP effects. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T11:31:17Z (GMT). No. of bitstreams: 1 ntu-105-R03527052-1.pdf: 28942060 bytes, checksum: c3553f265606393a43541d4620d815ca (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 摘要 I
Abstract II Content III Figure Content VI Table Content XVII Chapter 1 – Introduction 1 Chapter 2 – Literature Review 2 2.1 Advanced High Strength Steel 2 2.2 Austenite Stability 5 2.2.1 Stacking Fault Energy 5 2.2.2 Factors Affecting the Stacking Fault Energy 7 2.2.3 Influence of Stacking Fault Energy on Deformation Mode in Austenitic Steels 9 2.2.4 Martensitic Transformation 11 2.2.5 Effects of Austenite Grain Size on Martensitic Transformation 14 2.2.6 Austenite Stability 17 2.3 Transformation Induced Plasticity and Mechanical Properties 18 2.3.1 TRIP Steel 18 2.3.2 Conventional TRIP Steels 19 2.3.3 Quenching and Partitioning TRIP Steels 23 2.3.4 Mn-Based Duplex TRIP Steels 27 2.3.5 Delta TRIP Steels 29 2.4 Austenite Reversion 33 2.4.1 Ultrafined Grains 33 2.4.2 Austenite Reversion Mechanism 36 Chapter 3 - General Experimental Procedure 39 3.1 Experimental Alloys 39 3.1.1 Alloy Design 39 3.1.2 Materials Preparation until Cold Rolling 41 3.2 Heat Treatment 44 3.3 Mechanical Tests 45 3.4 Microstructure Characterization 46 3.4.1 Scanning Electron Microscope (SEM) 46 3.4.2 Electron Backscattered Diffraction (EBSD) 47 3.4.3 Transmission Kikuchi Diffraction (TKD) 48 3.4.4 X-Ray Diffractometer (XRD) 51 3.4.5 Transmission Electron Microscope (TEM) 52 3.5 Ms Temperature Measurement 53 3.5.1 Dilatometer 53 Chapter 4 – Effects of Grain Size on Martensitic Transformation and Microstructure 54 4.1 Experimental Results 54 4.1.1 Measurement of Ms Temperature 54 4.1.2 EBSD and TKD Analysis 57 4.1.3 Grain Size Measurement 68 4.2 Discussion 69 4.2.1 The Koistinen-Marburger Equation 69 4.3 Summary 72 Chapter 5 – Transformation Induced Plasticity 73 5.1 Experimental Results 73 5.1.1 Initial Microstructure 73 5.1.2 Tensile Test 82 5.1.3 X-Ray Analysis 85 5.1.4 Deformed Microstructure 90 5.1.5 Fracture Surface 104 5.2 Discussion 108 5.2.1 Deformation Mechanism (γ to ε to α′) 108 5.2.2 Relationships among Austenite – ε Martensite – αꞌ Martensite 115 5.2.3 Effects of Stacking Fault on ε Martensitic Transformation 123 5.2.4 Work Hardening 132 5.3 Summary 135 Chapter 6 – Future Work 136 Reference 137 | |
dc.language.iso | en | |
dc.title | Fe-15 Mn-0.03 C (wt. %) 鋼之沃斯田鐵逆相變 | zh_TW |
dc.title | Austenite Reversion of Fe-15 Mn-0.03 C (wt. %) Steel | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 潘永村,吳明偉(Ming-Wei Wu),陳世偉(Shi-Wei Chen) | |
dc.subject.keyword | 先進高強度鋼,超細晶,沃斯田鐵逆相變, | zh_TW |
dc.subject.keyword | AHSS,ultrafined grain,austenite reversion, | en |
dc.relation.page | 143 | |
dc.identifier.doi | 10.6342/NTU201602839 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-08-17 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 28.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。