Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49163
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林唯芳(Wei-Fang Su)
dc.contributor.authorTse-Hsuan Leeen
dc.contributor.author李澤軒zh_TW
dc.date.accessioned2021-06-15T11:17:54Z-
dc.date.available2016-08-25
dc.date.copyright2016-08-25
dc.date.issued2016
dc.date.submitted2016-08-18
dc.identifier.citation[1] 台灣行政院環境保護署, http://www.epa.gov.tw/
[2] Health Canada, http://www.hc-sc.gc.ca
[3] 歐盟網站https://europa.eu
[4] 美國環境保護署, www.epa.gov
[5] http://www.cambustion.com/products/hfr500/fast-fid-principles
[6] Driscoll, J. N., Evaluation of a new photoionization detector for organic compounds. Journal of Chromatography A 1977, 134 (1), 49-55.
[7] http://www.ishn.com/articles/96693-led-driven-infrared-sensors
[8] Liao, H. C.; Hsu, C. P.; Wu, M. C.; Lu, C. F.; Su, W. F., Conjugated polymer/nanoparticles nanocomposites for high efficient and real-time volatile organic compounds sensors. Analytical chemistry 2013, 85 (19), 9305-11.
[9] Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J., Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Advanced Functional Materials 2005, 15 (10), 1617-1622.
[10] Mihailetchi, V. D.; Xie, H.; de Boer, B.; Popescu, L. M.; Hummelen, J. C.; Blom, P. W. M.; Koster, L. J. A., Origin of the enhanced performance in poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester solar cells upon slow drying of the active layer. Applied Physics Letters 2006, 89 (1), 012107.
[11] Verploegen, E.; Miller, C. E.; Schmidt, K.; Bao, Z.; Toney, M. F., Manipulating the Morphology of P3HT–PCBM Bulk Heterojunction Blends with Solvent Vapor Annealing. Chemistry of Materials 2012, 24 (20), 3923-3931.
[12] Huang, Y. C.; Tsao, C.-S.; Chuang, C.-M.; Lee, C.-H.; Hsu, F.-H.; Cha, H.-C.; Chen, C.-Y.; Lin, T.-H.; Su, C.-J.; Jeng, U. S.; Su, W.-F., Small- and Wide-Angle X-ray Scattering Characterization of Bulk Heterojunction Polymer Solar Cells with Different Fullerene Derivatives. The Journal of Physical Chemistry C 2012, 116 (18), 10238-10244.
[13] 許哲溥. 高分子-奈米粒子混摻材料製作之感測器. 臺灣大學, 2012.
[14] Banerjee, S., Handbook of Specialty Fluorinated Polymers:Preparation, Properties, and Applications. 2015
[15] Chen, C. Y.; Tsao, C. S.; Huang, Y. C.; Liu, H. W.; Chiu, W. Y.; Chuang, C. M.; Jeng, U. S.; Su, C. J.; Wu, W. R.; Su, W. F.; Wang, L., Mechanism and control of the structural evolution of a polymer solar cell from a bulk heterojunction to a thermally unstable hierarchical structure. Nanoscale 2013, 5 (16), 7629-38.
[16] Liao, H. C.; Tsao, C. S.; Huang, Y. C.; Jao, M. H.; Tien, K. Y.; Chuang, C. M.; Chen, C. Y.; Su, C. J.; Jeng, U. S.; Chen, Y. F.; Su, W. F., Insights into solvent vapor annealing on the performance of bulk heterojunction solar cells by a quantitative nanomorphology study. RSC Advances 2014, 4 (12), 6246.
[17] Liao, H. C.; Tsao, C. S.; Huang, Y. C.; Jao, M. H.; Tien, K. Y.; Chuang, C. M.; Chen, C. Y.; Su, C. J.; Jeng, U. S.; Chen, Y. F.; Su, W. F., Insights into solvent vapor annealing on the performance of bulk heterojunction solar cells by a quantitative nanomorphology study. RSC Advances 2014, 4 (12), 6246.
[18] Persaud, K.; Dodd, G., “Analysis of Discrimination Mechanisms in the Mammalian Olfactory System Using a Model Nose,” 1982, Nature, 299, 352.
[19] Halova, J.; Strouf, O.; Zak, P.; Sochozova, A.; Uchida, N.; Yuzuri, T.; Sakakibara, K.; Hirota, M.; “QSAR of Catechol Analogs against Malignant Melanoma Using Fingerprint Descriptors,” 1998, Quant. Struct.-Act. Relat., 17, 37.
[20] Tisch, U.; Haick, H., Chemical sensors for breath gas analysis: the latest developments at the Breath Analysis Summit 2013. Journal of breath research 2014, 8 (2), 027103.
[21] Curie, J.; Curie, P., Développement par pression de l'électricité polaire dans les hémièdres à faces inclines. Compt Rendus 1880,19,294-295
[22] Sauerbrey, G., Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik 1959, 155 (2), 206-222.
[23] Das, R.; Biswas, S.; Bandyopadhyay, R.; Pramanik, P., Polymerized linseed oil coated quartz crystal microbalance for the detection of volatile organic vapours. Sensors and Actuators B: Chemical 2013, 185, 293-300.
[24] Kimura, M., Liu, Y., Sakai, R., Sato, S., Hirai, T., Fukawa, T., & Mihara, T. Detection of volatile organic compounds by analyses of polymer-coated quartz crystal microbalance sensor arrays. Sensors and Materials 2011, 23(7), 359-368.
[25] Ying, Z.; Jiang, Y.; Du, X.; Xie, G.; Yang, Y.; Tai, H. In Surface modified polysiloxane a sensitive coatings for QCM sensors, 2008; pp 69843O-69843O-4.
[26] Zeng, H.; Jiang, Y.; Xie, G.; Yu, J., Polymer coated QCM sensor with modified electrode for the detection of DDVP. Sensors and Actuators B: Chemical 2007, 122 (1), 1-6.
[27] Frietsch, M.; Zudock, F.; Goschnick, J.; Bruns, M., CuO catalytic membrane as selectivity trimmer for metal oxide gas sensors. Sensors and Actuators B: Chemical 2000, 65 (1–3), 379-381.
[28] Jones, A.; Jones, T. A.; Mann, B.; Firth, J. G., The effect of the physical form of the oxide on the conductivity changes produced by CH4, CO and H2O on ZnO. Sensors and Actuators 1984, 5 (1), 75-88.
 
[29] Advani, G. N.; Nanis, L., Effects of humidity on hydrogen sulfide detection by SnO2 solid state gas sensors. Sensors and Actuators 1981, 2, 201-206.
[30] Shaver, P. J., Activated Tungsten oxide gas detectors. Applied Physics Letters 1967, 11 (8), 255-257.
[31] Kim, I. D.; Rothschild, A.; Lee, B. H.; Kim, D. Y.; Jo, S. M.; Tuller, H. L., Ultrasensitive Chemiresistors Based on Electrospun TiO2 Nanofibers. Nano Letters 2006, 6 (9), 2009-2013.
[32] Li, Z.; Zhang, H.; Zheng, W.; Wang, W.; Huang, H.; Wang, C.; MacDiarmid, A. G.; Wei, Y., Highly Sensitive and Stable Humidity Nanosensors Based on LiCl Doped TiO2 Electrospun Nanofibers. Journal of the American Chemical Society 2008, 130 (15), 5036-5037.
[33] Zhang, C.; Chen, P.; Hu, W., Organic field-effect transistor-based gas sensors. Chemical Society Reviews 2015, 44 (8), 2087-2107.
[34] Scharber, M. C.; Sariciftci, N. S., Efficiency of bulk-heterojunction organic solar cells. Progress in Polymer Science 2013, 38 (12), 1929-1940.
[35] Guillaud, G.; Simon, J.; Germain, J. P., Metallophthalocyanines: Gas sensors, resistors and field effect transistors1. Coordination Chemistry Reviews 1998, 178–180, Part 2, 1433-1484.
[36] Torsi, L.; Dodabalapur, A.; Cioffi, N.; Sabbatini, L.; Zambonin, P. G., NTCDA organic thin-film-transistor as humidity sensor: weaknesses and strengths. Sensors and Actuators B: Chemical 2001, 77 (1–2), 7-11.
[37] Fukuda, H.; Ise, M.; Kogure, T.; Takano, N., Gas sensors based on poly-3-hexylthiophene thin-film transistors. Thin Solid Films 2004, 464–465, 441-444.
 
[38] Crone, B.; Dodabalapur, A.; Gelperin, A.; Torsi, L.; Katz, H. E.; Lovinger, A. J.; Bao, Z., Electronic sensing of vapors with organic transistors. Applied Physics Letters 2001, 78 (15), 2229-2231.
[39] Huang, J.; Miragliotta, J.; Becknell, A.; Katz, H. E., Hydroxy-Terminated Organic Semiconductor-Based Field-Effect Transistors for Phosphonate Vapor Detection. Journal of the American Chemical Society 2007, 129 (30), 9366-9376.
[40] Bora, M.; Schut, D.; Baldo, M. A., Combinatorial Detection of Volatile Organic Compounds Using Metal−Phthalocyanine Field Effect Transistors. Analytical chemistry 2007, 79 (9), 3298-3303.
[41] Tomchenko, A. A.; Harmer, G. P.; Marquis, B. T.; Allen, J. W., Semiconducting metal oxide sensor array for the selective detection of combustion gases. Sensors and Actuators B: Chemical 2003, 93 (1–3), 126-134.
[42] Potyrailo, R. A.; Surman, C.; Nagraj, N.; Burns, A., Materials and Transducers Toward Selective Wireless Gas Sensing. Chemical Reviews 2011, 111 (11), 7315-7354.
[43] Zanardi, C.; Terzi, F.; Seeber, R., Polythiophenes and polythiophene-based composites in amperometric sensing. Analytical and Bioanalytical Chemistry 2013, 405 (2), 509-531.
[44] Feng, L.; Musto, C. J.; Kemling, J. W.; Lim, S. H.; Suslick, K. S., A colorimetric sensor array for identification of toxic gases below permissible exposure limits. Chemical communications 2010, 46 (12), 2037-2039.
[45] van Kempen, T. A. T. G.; Powers, W. J.; Sutton, A. L., Technical note: fourier transform infrared (FTIR) spectroscopy as an optical nose for predicting odor sensation. Journal of animal science 2002, 80, 1524-1527.
[46] Cozzolino, D.; Smyth, H. E., Gishen, M., Feasibility Study on the Use of Visible and Near-Infrared Spectroscopy Together with Chemometrics To Discriminate between Commercial White Wines of Different Varietal Origins. Journal of Agricultural and Food Chemistry 2003, 51 (26), 7703-7708.
[47] Xianfeng, W., Bin, D.; Jianyong, Y., Moran, W.; Fukui, P., A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance. Nanotechnology 2010, 21 (5), 055502.
[48] Ding, B., Kim, J., Miyazaki, Y., & Shiratori, S. (2004). Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection. Sensors and Actuators, B: Chemical 2004, 101(3), 373-380.
[49] Wang, X.; Ding, B.; Sun, M.; Yu, J.; Sun, G., Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors. Sensors and Actuators B: Chemical 2010, 144 (1), 11-17.
[50] He, X.; Arsat, R.; Sadek, A. Z.; Wlodarski, W.; Kalantar-zadeh, K.; Li, J., Electrospun PVP fibers and gas sensing properties of PVP/LiTaO3 SAW device. Sensors and Actuators B: Chemical 2010, 145 (2), 674-679.
[51] Qi, Q.; Zhang, T.; Liu, L.; Zheng, X., Synthesis and toluene sensing properties of SnO2 nanofibers. Sensors and Actuators B: Chemical 2009, 137 (2), 471-475.
[52] Siram, R. B. K.; Stephen, M.; Ali, F.; Patil, S., Investigation of Phase Separation in Bulk Heterojunction Solar Cells via Supramolecular Chemistry. The Journal of Physical Chemistry C 2013, 117 (18), 9129-9136.
[53] Huang, Y. C.; Welch, G. C.; Bazan, G. C.; Chabinyc, M. L.; Su, W. F., Self-vertical phase separation study of nanoparticle/polymer solar cells by introducing fluorinated small molecules. Chemical communications 2012, 48 (58), 7250-2.
[54] Iyengar, D. R.; Perutz, S. M.; Dai, C.-A.; Ober, C. K.; Kramer, E. J., Surface Segregation Studies of Fluorine-Containing Diblock Copolymers. Macromolecules 1996, 29 (4), 1229-1234.
[55] Wei, Q.; Nishizawa, T.; Tajima, K.; Hashimoto, K., Self-Organized Buffer Layers in Organic Solar Cells. Advanced Materials 2008, 20 (11), 2211-2216.
[56] http://www.hk-phy.org/atomic_world/tem/tem02_c.html
[57] Zhao, Y.; Sugunan, A.; Schmidt, T.; Fornara, A.; Toprak, M. S.; Muhammed, M., Relaxation is the key to longer life: suppressed degradation of P3HT films on conductive substrates. Journal of Materials Chemistry A 2014, 2 (33), 13270-13276.
[58] Abdou, M. S. A.; Orfino, F. P.; Xie, Z. W.; Deen, M. J.; Holdcroft, S., Reversible charge transfer complexes between molecular oxygen and poly(3-alkylthiophene)s. Advanced Materials 1994, 6 (11), 838-841.
[59] Ding, B.; Wang, M.; Wang, X.; Yu, J.; Sun, G., Electrospun nanomaterials for ultrasensitive sensors. Materials Today 2010, 13 (11), 16-27.
[60] http://www.gisaxs.de/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49163-
dc.description.abstract近年來,環境安全衛生意識逐漸引起大眾的關注,人們不再為了經濟發展而對於自身健康安全以及環境保護有所妥協。在傷害人類健康以及造成環境破壞的毒化物中,最令人憂心的是有毒之有機揮發性化合物(volatile organic compounds, VOC),工廠裡產品的生產以及材料的合成過程常伴隨著VOC的排放。雖然我們知道VOC的危險而且同時大量地使用,但現階段對於VOC警示濃度的偵測並沒有一個有效的預警系統,這些看不見也摸不著的有毒氣體帶給人類無法預防的威脅。所以,現階段對於低成本以及高效率的VOC偵測器有其迫切的需求。
以P3HT混摻PC71BM製成的氣體偵測器,在先前的工作中已證明其是為有效且成本低廉的偵測方法。本研究透過奈米粒子的氟化改質成功將此系統之偵測極限大幅提升了2-3倍。同時,我們也使用GISAXS/GIWAXS及多項分析儀器鑑定摻有氟化奈米粒子的感測層形貌,並將測層形貌對應到其在VOC偵測上的表現,最後,我們發現好的分散性是氟化奈米粒子提升敏感度的關鍵因素。
除了氣體偵測器形貌以及其VOC之偵測表現外,我們同時也針對偵測試片在不同溫度下做穩定性測試,由結果來看,我們的試片建議存放於25oC下較可以確保試片的穩定。另一方面,我們將感測層塗佈於導電基材上,使得試片之生命週期提升兩倍。綜合以上幾點,本研究除了在基礎科學的研究上有所貢獻也成功地增加VOC偵測器實際的應用價值。
zh_TW
dc.description.abstractHuman health care and environmental protection have growing attention in recent years, and are no longer an acceptable trade-off for economy for the majority of people. The most hazardous and toxic chemicals are volatile organic compounds (VOC), which are mainly released from oil refinery, factory ,household paints, etc. Although VOCs are used extensively and known for their hazardous , little protective measurements have been developed to provide effective warning signal before the harmful high level of VOC. These invisible and toxic VOC put the human safety into dangerous condition without notice. Thus, there is an urgent need to develop a high efficient, low cost VOC sensor to ensure the health and safety of mankind.
We have demonstrated before, a low cost and effective VOC sensor can be fabricated from P3HT/PC71BM nanocomposite on glass substrate. In the work, we further improve the sensitivity of VOC sensor 2-3 times by incorporating fluorinated PC71BM in the nanocomposite. We also utilize GISAXS/GIWAXS, AFM, XPS etc instruments to characterize the structure of sensing layer. As the result, we correlate the morphology of sensing layer to the performance of VOC sensing, which reveals that the improved dispersion of F-PC71BM in P3HT is the key factor to improve the sensitivity of sensor.
Besides the study of the performance and morphology of VOC sensor, stability test of VOC sensor under various temperature was also conducted to estimate the life time of the sensor. Our sensor needs to be stored under 25oC temperature for a life more than 3 months. Furthermore, we show the life time of sensor can be doubled by coating the sensing layer onto the conductive substrate ITO.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:17:54Z (GMT). No. of bitstreams: 1
ntu-105-R03527069-1.pdf: 6133003 bytes, checksum: 3517371120c2a4fa3e12f953a41f8c30 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 IX
第一章:前言 1
1.1 研究背景 1
1.1.1 VOC簡介 2
1.1.2 VOC偵測器發展概況 3
1.1.3現行VOC偵測器之議題 7
1.2研究動機 9
1.3 高分子/奈米粒子混摻材料製作之VOC偵測器 10
1.3.1 利用光學原理的VOC偵測系統 10
1.3.2 氟化奈米粒子 12
1.4 文獻回顧 13
1.4.1氣體偵測方法 13
1.4.2 氟化改質 21
1.4.3 材料分析 25
1.5 研究目標 27
第二章:實驗方法 28
2.1 實驗用藥品 28
2.2 實驗用儀器 29
2.3 實驗步驟 30
2.3.1 高分子與奈米粒子複合材料 30
2.3.1.1 高分子-P3HT 30
2.3.1.2 奈米粒子 31
2.3.1.3 氟化奈米粒子 32
2.3.2薄膜製程與不同混摻比例之試片命名 33
2.4 光譜分析與即時VOC量測系統 34
2.5 感測層形態學之分析方法 37
2.5.1 縱深分析 37
2.5.2 感測層結構分析 39
2.5.2.1 銳角入射小/廣角度散射(GISAXS/GIWAXS) 39
2.5.2.2 原子力顯微鏡(AFM) 41
2.5.2.1 穿透式電子顯微鏡(TEM) 43
第三章:結果與討論 45
3.1 氟化改質奈米粒子對於氣體感測能力之影響 45
3.2 VOC感測器感測層之縱深結構 47
3.3 VOC感測器感測層之形態結構 49
3.3.1 銳角入射小/廣角度散射實驗 49
3.3.1.1未曝露VOC之感測層 49
3.3.1.2 曝露偵測濃度甲苯之感測層 52
3.3.1.2 曝露飽和濃度甲苯之感測層 54
3.3.2 模型擬合以及量化數據 58
3.3.3 奈米結構分析 62
3.3.3.1 原子力顯微鏡在感測層形貌上的分析 62
3.3.3.2 穿透式電子顯微鏡在感測層形貌上的分析 67
3.3.3.2氟化改質對於感測層氣體感測能力提升之機制 72
3.4 VOC感測器之應用 75
3.4.1偵測器對於不同VOC之偵測極限 75
3.4.2 VOC偵測器之生命週期預測 78
3.4.2.1 不同溫度下生命週期預測 79
3.4.2.3 基材效應延展感測器生命週期 82
第四章:結論 84
第五章:建議 85
附錄一. 86
附錄二. 87
第六章:參考文獻 88
dc.language.isozh-TW
dc.title氟化奈米粒子-共軛高分子製作之有機揮發性化合物感測器zh_TW
dc.titleFluorinated Nanoparticles in Conjugated Polymer for Volatile Organic Compounds Sensoren
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曹正熙(Cheng-Si Tsao),吳明忠(Ming-Chung Wu),黃裕清(Yu-Ching Huang)
dc.subject.keyword有機揮發物檢測器,奈米複合材料,氟化改質,形貌研究,導電高分子,富勒烯,zh_TW
dc.subject.keywordvolatile organic compound,nanocomposite,fluorination,morphology,conducting polymer,fullerene,sensor.,en
dc.relation.page94
dc.identifier.doi10.6342/NTU201603326
dc.rights.note有償授權
dc.date.accepted2016-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
5.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved