Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49109
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭光成(Kuan-Chen Cheng)
dc.contributor.authorHung-Yuen Chenen
dc.contributor.author陳宏岳zh_TW
dc.date.accessioned2021-06-15T11:16:14Z-
dc.date.available2026-02-06
dc.date.copyright2021-03-04
dc.date.issued2021
dc.date.submitted2021-02-06
dc.identifier.citation1. Chen JX, Zeng H, Chen X, Su CY and Lai CC, Induction of heme oxygenase-1 by Ginkgo Biloba Extract but not its terpenoids partially mediated its protective effect against lysophosphatidylcholine-induced damage. Pharmacol. Res., 43:63-69 (2001).
2. Ong Lai Teik D, Lee XS, Lim CJ, Low CM, Muslima M and Aquili L, Ginseng and Ginkgo Biloba Effects on Cognition as Modulated by Cardiovascular Reactivity: A Randomised Trial. PLoS One, 11:e0150447 (2016).
3. Chen H, Wang C, Ye J, Zhou H, Tao R and Li W, Preparation of Starch-Hard Carbon Spherules from Ginkgo Seeds and Their Phenol-Adsorption Characteristics. Molecules, 23:96 (2018).
4. Mahady GB, Global harmonization of herbal health claims. The Journal of nutrition, 131:1120s-1123s (2001).
5. Caie WJ, Advance in allergic composition and mechanism of allergy of ginkgo biloba seeds. Food Sci. Technol. Int., (2009).
6. Sierpina VS, Wollschlaeger B and Blumenthal M, Ginkgo biloba. Am Fam Physician., 68:923-926 (2003).
7. Wang J, Cao F, Su E, Wu C, Zhao L and Ying R, Improving Flavonoid Extraction from Ginkgo biloba Leaves by Prefermentation Processing. J. Agric. Food Chem., 61:5783-5791 (2013).
8. Kleijnen J and Knipschild P, Ginkgo biloba. Lancet, 340:1136-1139 (1992).
9. Ding S, Dudley E, Plummer S, Tang J, Newton RP and Brenton AG, Fingerprint profile of Ginkgo biloba nutritional supplements by LC/ESI-MS/MS. Phytochemistry, 69:1555-1564 (2008).
10. Markham K, Ternai B, Stanley R, Geiger H and Mabry T, Carbon-13 NMR studies of flavonoids—III: Naturally occurring flavonoid glycosides and their acylated derivatives. Tetrahedron, 34:1389-1397 (1978).
11. Lu Q, Hao M, Wu W, Zhang N, Isaac AT, Yin J, Zhu X, Du L and Yin X, Antidiabetic cataract effects of GbE, rutin and quercetin are mediated by the inhibition of oxidative stress and polyol pathway. Acta Biochim. Pol., 65:35-41 (2018).
12. Ahmad M, Saleem S, Ahmad AS, Yousuf S, Ansari MA, Khan MB, Ishrat T, Chaturvedi RK, Agrawal AK and Islam F, Ginkgo biloba affords dose‐dependent protection against 6‐hydroxydopamine‐induced parkinsonism in rats: neurobehavioural, neurochemical and immunohistochemical evidences. J. Neurochem., 93:94-104 (2005).
13. Hua J, Yin N, Yang B, Zhang J, Ding J, Fan Y and Hu G, Ginkgolide B and bilobalide ameliorate neural cell apoptosis in α-synuclein aggregates. Biomed. Pharmacother., 96:792-797 (2017).
14. Calapai G, Crupi A, Firenzuoli F, Marciano MC, Squadrito F, Inferrera G, Parisi A, Rizzo A, Crisafulli C and Fiore A, Neuroprotective effects of Ginkgo biloba extract in brain ischemia are mediated by inhibition of nitric oxide synthesis. Life Sciences, 67:2673-2683 (2000).
15. Marcocci L, Maguire JJ, Droylefaix MT and Packer L, The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem. Biophys. Res. Commun., 201:748-755 (1994).
16. Liu T, Zhang J, Chai Z, Wang G, Cui N and Zhou B, Ginkgo biloba extract EGb 761–induced upregulation of LincRNA-p21 inhibits colorectal cancer metastasis by associating with EZH2. Oncotarget, 8:91614 (2017).
17. Rapp M, Burkart M, Kohlmann T and Bohlken J, Similar treatment outcomes with Ginkgo biloba extract EGb 761 and donepezil in Alzheimer’s dementia in very old age: a retrospective observational study. Int. J. Clin. Pharmacol. Ther., 56:130 (2018).
18. Yang X, Zheng T, Hong H, Cai N, Zhou X, Sun C, Wu L, Liu S, Zhao Y and Zhu L, Neuroprotective effects of Ginkgo biloba extract and Ginkgolide B against oxygen–glucose deprivation/reoxygenation and glucose injury in a new in vitro multicellular network model. Front. Med., 12:307-318 (2018).
19. Luo Y, Alzheimer's disease, the nematode Caenorhabditis elegans, and ginkgo biloba leaf extract. Life sciences, 78:2066-2072 (2006).
20. Schötz K, Quantification of allergenic urushiols in extracts of Ginkgo biloba leaves, in simple one-step extracts and refined manufactured material (EGb 761). Phytochem. Anal., 15:1-8 (2004).
21. Ndjoko K, Wolfender JL and Hostettmann K, Determination of trace amounts of ginkgolic acids in Ginkgo biloba L. leaf extracts and phytopharmaceuticals by liquid chromatography-electrospray mass spectrometry. J. Chromatogr. B: Biomed. Sci. Appl., 744:249-255 (2000).
22. Irie J, Murata M and Homma S, Glycerol-3-phosphate dehydrogenase inhibitors, anacardic acids, from Ginkgo biloba. Biosci., Biotechnol., Biochem., 60:240-243 (1996).
23. Fu Y, Hong S, Li D and Liu S, Novel chemical synthesis of ginkgolic acid (13: 0) and evaluation of its tyrosinase inhibitory activity. J. Agric. Food Chem., 61:5347-5352 (2013).
24. van Beek TA and Montoro P, Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J. Chromatogr. A., 1216:2002-2032 (2009).
25. Fuzzati N, Pace R and Villa F, A simple HPLC-UV method for the assay of ginkgolic acids in Ginkgo biloba extracts. Fitoterapia, 74:247-256 (2003).
26. Qing-Qing Y, Zhen-Hua L, Ming-Cheng X, Hai-Hong H, Hui Z, Jiang H-D, Lu-Shan Y and Su Z, Mechanism for ginkgolic acid (15: 1)-induced MDCK cell necrosis: Mitochondria and lysosomes damages and cell cycle arrest. Chinese journal of natural medicines, 15:375-383 (2017).
27. Yang C, Xu Y-R and Yao W-X, Extraction of pharmaceutical components from Ginkgo biloba leaves using supercritical carbon dioxide. J. Agric. Food Chem., 50:846-849 (2002).
28. Li R, Shen Y, Zhang X, Ma M, Chen B and van Beek TA, Efficient purification of ginkgolic acids from Ginkgo biloba leaves by selective adsorption on Fe3O4 magnetic nanoparticles. J. Nat. Prod., 77:571-575 (2014).
29. Takeo M, Prabu SK, Kitamura C, Hirai M, Takahashi H, Kato D-i and Negoro S, Characterization of alkylphenol degradation gene cluster in Pseudomonas putida MT4 and evidence of oxidation of alkylphenols and alkylcatechols with medium-length alkyl chain. J. Biosci. Bioeng., 102:352-361 (2006).
30. Won K, Kim YH, An ES, Lee YS and Song BK, Horseradish peroxidase-catalyzed polymerization of cardanol in the presence of redox mediators. Biomacromolecules, 5:1-4 (2004).
31. Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S and Sannia G, Laccases: a never-ending story. Cell. Mol. Life Sci., 67:369-385 (2010).
32. Yang S, Hai FI, Nghiem LD, Price WE, Roddick F, Moreira MT and Magram SF, Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: a critical review. Bioresour. Technol., 141:97-108 (2013).
33. Piontek K, Antorini M and Choinowski T, Crystal structure of a laccase from the fungusTrametes versicolor at 1.90-Å resolution containing a full complement of coppers. J. Biol. Chem., 277:37663-37669 (2002).
34. Sun H, Yang H, Huang W and Zhang S, Immobilization of laccase in a sponge-like hydrogel for enhanced durability in enzymatic degradation of dye pollutants. J. Colloid Interface Sci., 450:353-360 (2015).
35. Li D, Luo L, Pang Z, Ding L, Wang Q, Ke H, Huang F and Wei Q, Novel phenolic biosensor based on a magnetic polydopamine-laccase-nickel nanoparticle loaded carbon nanofiber composite. ACS Appl. Mater. Interfaces., 6:5144-5151 (2014).
36. Rodríguez-Delgado MM, Alemán-Nava GS, Rodríguez-Delgado JM, Dieck-Assad G, Martínez-Chapa SO, Barceló D and Parra R, Laccase-based biosensors for detection of phenolic compounds. TrAC, Trends Anal. Chem., 74:21-45 (2015).
37. Kudanga T, Nyanhongo GS, Guebitz GM and Burton S, Potential applications of laccase-mediated coupling and grafting reactions: a review. Enzyme Microb. Technol., 48:195-208 (2011).
38. Shleev S, Christenson A, Serezhenkov V, Burbaev D, Yaropolov A, Gorton L and Ruzgas T, Electrochemical redox transformations of T1 and T2 copper sites in native Trametes hirsuta laccase at gold electrode. Biochem. J., 385:745-754 (2005).
39. Kurniawati S and Nicell JA, Characterization of Trametes versicolor laccase for the transformation of aqueous phenol. Bioresour. Technol., 99:7825-7834 (2008).
40. Kolb M, Sieber V, Amann M, Faulstich M and Schieder D, Removal of monomer delignification products by laccase from Trametes versicolor. Bioresour. Technol., 104:298-304 (2012).
41. Sulaiman S, Mokhtar MN, Naim MN, Baharuddin AS and Sulaiman A, A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Appl. Biochem. Biotechnol., 175:1817-1842 (2015).
42. Datta S, Christena LR and Rajaram YRS, Enzyme immobilization: an overview on techniques and support materials. Biotech., 3:1-9 (2013).
43. Chen K-I, Lo Y-C, Su N-W, Chou C-C and Cheng K-C, Enrichment of two isoflavone aglycones in black soymilk by immobilized β-glucosidase on solid carriers. J. Agric. Food Chem., 60:12540-12546 (2012).
44. Jasni MJF, Sathishkumar P, Sornambikai S, Yusoff ARM, Ameen F, Buang NA, Kadir MRA and Yusop Z, Fabrication, characterization and application of laccase–nylon 6, 6/Fe 3+ composite nanofibrous membrane for 3, 3′-dimethoxybenzidine detoxification. Bioprocess Biosyst. Eng., 40:191-200 (2017).
45. Chen KI, Lo YC, Liu CW, Yu RC, Chou CC and Cheng KC, Enrichment of two isoflavone aglycones in black soymilk by using spent coffee grounds as an immobiliser for β-glucosidase. Food Chem., 139:79-85 (2013).
46. Huang ZM, Zhang YZ, Kotaki M and Ramakrishna S, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol., 63:2223-2253 (2003).
47. Canbolat MF, Savas HB and Gultekin F, Enzymatic behavior of laccase following interaction with γ-CD and immobilization into PCL nanofibers. Anal. Biochem., 528:13-18 (2017).
48. Zamani M, Prabhakaran MP and Ramakrishna S, Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int. J. Nanomed., 8:2997 (2013).
49. Zhang M, Zhao X, Zhang G, Wei G and Su Z, Electrospinning design of functional nanostructures for biosensor applications. J. Mater. Chem., B 5:1699-1711 (2017).
50. Rizvi SA and Saleh AM, Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 26:64-70 (2018).
51. Yin X, Pan H and Liu H, A Novel Micron-Size Particulate Formulation of Felodipine with Improved Release and Enhanced Oral Bioavailability Fabricated by Coaxial Electrospray. AAPS PharmSciTech., 20:282 (2019).
52. Rascón-Chu A, Díaz-Baca JA, Carvajal-Millan E, Pérez-López E, Hotchkiss AT, González-Ríos H, Balandrán-Quintana R and Campa-Mada AC, Electrosprayed Core–Shell Composite Microbeads Based on Pectin-Arabinoxylans for Insulin Carrying: Aggregation and Size Dispersion Control. Polymers, 10:108 (2018).
53. Chakraborty S, Liao IC, Adler A and Leong KW, Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv. Drug Delivery Rev., 61:1043-1054 (2009).
54. Spahn C and Minteer SD, Enzyme immobilization in biotechnology. Recent Pat. Eng., 2:195-200 (2008).
55. Cassimjee KE, Kadow M, Wikmark Y, Humble MS, Rothstein M, Rothstein D and Bäckvall J-E, A general protein purification and immobilization method on controlled porosity glass: biocatalytic applications. Chem. Commun., 50:9134-9137 (2014).
56. Huang XJ, Chen PC, Huang F, Ou Y, Chen MR and Xu ZK, Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. J. Mol. Catal. B: Enzym., 70:95-100 (2011).
57. Fu J, Reinhold J and Woodbury NW, Peptide-modified surfaces for enzyme immobilization. PLoS One, 6:e18692 (2011).
58. Cunha AG, Fernández-Lorente G, Bevilaqua JV, Destain J, Paiva LM, Freire DM, Fernández-Lafuente R and Guisán JM, Immobilization of Yarrowia lipolytica lipase—a comparison of stability of physical adsorption and covalent attachment techniques, Appl. Biochem. Biotechnol., 169-176 (2007).
59. Shen Q, Yang R, Hua X, Ye F, Zhang W and Zhao W, Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochem., 46:1565-1571 (2011).
60. Krauss P, Tziridis K, Buerbank S, Schilling A and Schulze H, Therapeutic Value of Ginkgo biloba Extract EGb 761® in an Animal Model (Meriones unguiculatus) for Noise Trauma Induced Hearing Loss and Tinnitus. PLoS One, 11:e0157574 (2016).
61. Pereira E, Barros L and Ferreira I, Chemical characterization of Ginkgo biloba L. and antioxidant properties of its extracts and dietary supplements. Ind. Crops Prod., 51:244-248 (2013).
62. Mahadevan S and Park Y, Multifaceted therapeutic benefits of Ginkgo biloba L.: chemistry, efficacy, safety, and uses. J. Food Sci., 73:R14-19 (2008).
63. Berg K, Braun C, Krug I and Schrenk D, Evaluation of the cytotoxic and mutagenic potential of three ginkgolic acids. Toxicol., 327:47-52 (2015).
64. Wang R, Kobayashi Y, Lin Y, Rauwald HW, Yao J, Fang L, Qiao H and Kuchta K, HPLC quantification of all five ginkgolic acid derivatives in Ginkgo biloba extracts using 13 : 0 ginkgolic acid as a single marker compound. Planta Med., 81:71-78 (2015).
65. Baron-Ruppert G and Luepke NP, Evidence for toxic effects of alkylphenols from Ginkgo biloba in the hen's egg test (HET). Phytomedicine, 8:133-138 (2001).
66. Yang C, Xu YR and Yao WX, Extraction of pharmaceutical components from Ginkgo biloba leaves using supercritical carbon dioxide. J. Agric. Food Chem., 50:846-849 (2002).
67. Hu Y, Hua Q, Sun G, Shi K, Zhang H, Zhao K, Jia S, Dai Y and Wu Q, The catalytic activity for ginkgolic acid biodegradation, homology modeling and molecular dynamic simulation of salicylic acid decarboxylase. Comput. Biol. Chem., 75:82-90 (2018).
68. Maté D, García-Ruiz E, Camarero S and Alcalde M, Directed evolution of fungal laccases. Curr. Genomics., 12:113-122 (2011).
69. Shraddha, Shekher R, Sehgal S, Kamthania M and Kumar A, Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Res., 2011:217861 (2011).
70. Desai SS and Nityanand C, Microbial Laccases and their Applications: A Review. Asian J. Biotechnol., 3:98-124 (2011).
71. Yang S, Hai FI, Nghiem LD, Price WE, Roddick F, Moreira MT and Magram SF, Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: a critical review. Bioresour. Technol., 141:97-108 (2013).
72. Pollegioni L, Tonin F and Rosini E, Lignin-degrading enzymes. The FEBS Journal, 282:1190-1213 (2015).
73. Robinson PK, Enzymes: principles and biotechnological applications. Essays Biochem., 59:1-41 (2015).
74. Singh RK, Tiwari MK, Singh R and Lee JK, From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int. J. Mol. Sci., 14:1232-1277 (2013).
75. Kim J, Yoo G, Lee H, Lim J, Kim K, Kim CW, Park MS and Yang J-W, Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol. Adv., 31:862-876 (2013).
76. Zhou Y, Zheng Y, Ebersole J and Huang C-f, Insulin secretion stimulating effects of mogroside V and fruit extract of luo han kuo (Siraitia grosvenori Swingle) fruit extract. Yaoxue Xuebao, 44:1252-1257 (2009).
77. Ko CY, Liu JM, Chen KI, Hsieh CW, Chu YL and Cheng KC, Lactose-Free Milk Preparation by Immobilized Lactase in Glass Microsphere Bed Reactor. Food Biophysics, 13:353-361 (2018).
78. Cantone S, Ferrario V, Corici L, Ebert C, Fattor D, Spizzo P and Gardossi L, Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem. Soc. Rev., 42:6262-6276 (2013).
79. Jasni MJF, Arulkumar M, Sathishkumar P, Mohd Yusoff AR, Buang NA and Gu FL, Electrospun nylon 6,6 membrane as a reusable nano-adsorbent for bisphenol A removal: Adsorption performance and mechanism. J. Colloid Interface Sci., 508:591-602 (2017).
80. Greiner A and Wendorff JH, Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie, 46:5670-5703 (2007).
81. Háková M, Raabová H, Havlíková LC, Chocholouš P, Chvojka J and Šatínský D, Testing of nylon 6 nanofibers with different surface densities as sorbents for solid phase extraction and their selectivity comparison with commercial sorbent. Talanta, 181:326-332 (2018).
82. Homaei A, Sariri R, Vianello F and Stevanato R, Enzyme immobilization: an update. J Chem Biol 6:185-205. J. Chem. Biol., 6:185-205 (2013).
83. Chen KI, Lo YC, Su NW, Chou CC and Cheng KC, Enrichment of two isoflavone aglycones in black soymilk by immobilized β-glucosidase on solid carriers. J. Agric. Food Chem., 60:12540-12546 (2012).
84. Chen J, Leng J, Yang X, Liao L, Liu L and Xiao A, Enhanced Performance of Magnetic Graphene Oxide-Immobilized Laccase and Its Application for the Decolorization of Dyes. Molecules, (Basel, Switzerland) 22:221 (2017).
85. Bradford MM, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72:248-254 (1976).
86. Liu J, Niu J, Yin L and Jiang F, In situ encapsulation of laccase in nanofibers by electrospinning for development of enzyme biosensors for chlorophenol monitoring. Analyst, 136:4802-4808 (2011).
87. Pereira E, Barros L, Dueñas M, Antonio AL, Santos-Buelga C and Ferreira ICFR, Gamma irradiation improves the extractability of phenolic compounds in Ginkgo biloba L. Ind. Crops Prod., 74:144-149 (2015).
88. Mendes AA, Oliveira PC, Vélez AM, Giordano RC, Giordano RdLC and de Castro HF, Evaluation of immobilized lipases on poly-hydroxybutyrate beads to catalyze biodiesel synthesis. Int. J. Biol. Macromol., 50:503-511 (2012).
89. Eş I, Vieira JD and Amaral AC, Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl. Microbiol. Biotechnol., 99:2065-2082 (2015).
90. Fatarella E, Spinelli D, Ruzzante M and Pogni R, Nylon 6 film and nanofiber carriers: Preparation and laccase immobilization performance. J. Mol. Catal. B: Enzym., 102:41-47 (2014).
91. Quan J, Liu Z, Branford-White C, Nie H and Zhu L, Fabrication of glycopolymer/MWCNTs composite nanofibers and its enzyme immobilization applications. Colloids Surf., B, 121:417-424 (2014).
92. Wong DE, Senecal KJ and Goddard JM, Immobilization of chymotrypsin on hierarchical nylon 6,6 nanofiber improves enzyme performance. Colloids Surf., B, 154:270-278 (2017).
93. Longo L, Vasapollo G, Guascito MR and Malitesta C, New insights from X-ray photoelectron spectroscopy into the chemistry of covalent enzyme immobilization, with glutamate dehydrogenase (GDH) on silicon dioxide as an example. Anal. Bioanal. Chem., 385:146-152 (2006).
94. Bisswanger H, Enzyme assays. Perspect. Sci., 1:41-55 (2014).
95. Jasni MJF, Sathishkumar P, Sornambikai S, Yusoff ARM, Ameen F, Buang NA, Kadir MRA and Yusop Z, Fabrication, characterization and application of laccase–nylon 6,6/Fe3+ composite nanofibrous membrane for 3,3’-dimethoxybenzidine detoxification. Bioprocess Biosyst. Eng., 40:191-200 (2017).
96. Amin R, Khorshidi A, Shojaei AF, Rezaei S and Faramarzi MA, Immobilization of laccase on modified Fe(3)O(4)@SiO(2)@Kit-6 magnetite nanoparticles for enhanced delignification of olive pomace bio-waste. Int. J. Biol. Macromol., 114:106-113 (2018).
97. Kamin RA and Wilson GS, Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal. Chem., 52:1198-1205 (1980).
98. Nicolucci C, Rossi S, Menale C, Godjevargova T, Ivanov Y, Bianco M, Mita L, Bencivenga U, Mita DG and Diano N, Biodegradation of bisphenols with immobilized laccase or tyrosinase on polyacrylonitrile beads. Biodegradation, 22:673-683 (2011).
99. da Silva AM, Tavares APM, Rocha CMR, Cristóvão RO, Teixeira JA and Macedo EA, Immobilization of commercial laccase on spent grain. Process Biochem., 47:1095-1101 (2012).
100. Pečová M, Šebela M, Marková Z, Poláková K, Čuda J, Šafářová K and Zbořil R, Thermostable trypsin conjugates immobilized to biogenic magnetite show a high operational stability and remarkable reusability for protein digestion. Nanotechnol., 24:125102 (2013).
101. Sathishkumar P, Kamala-Kannan S, Cho M, Kim JS, Hadibarata T, Salim MR and Oh B-T, Laccase immobilization on cellulose nanofiber: The catalytic efficiency and recyclic application for simulated dye effluent treatment. J. Mol. Catal. B: Enzym.,100:111-120 (2014).
102. Daâssi D, Rodriguez-Couto S and Mechichi T, Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads. Int. Biodeterior. Biodegrad., 90:71-78 (2014).
103. Ghattas N, Abidi F, Galai S, Marzouki MN and Salah AB, Monoolein production by triglycerides hydrolysis using immobilized Rhizopus oryzae lipase. Int. J. Biol. Macromol., 68:1-6 (2014).
104. Friedman M and Rasooly R, Review of the inhibition of biological activities of food-related selected toxins by natural compounds. Toxins (Basel), 5:743-775 (2013).
105. Gancarz I, Bryjak J and Karolina Z, Chemical modification of poly(ethylene terephthalate) and immobilization of the selected enzymes on the modified film. Appl. Surf. Sci., 255:8293-8298 (2009).
106. Singh V, Rakshit K, Rathee S, Angmo S, Kaushal S, Garg P, Chung JH, Sandhir R, Sangwan RS and Singhal N, Metallic/bimetallic magnetic nanoparticle functionalization for immobilization of α-amylase for enhanced reusability in bio-catalytic processes. Bioresour. Technol., 214:528-533 (2016).
107. Wang HT, Yang JT, Chen KI, Wang TY, Lu TJ and Cheng KC, Hydrolyzation of mogrosides: Immobilized β-glucosidase for mogrosides deglycosylation from Lo Han Kuo. Food Sci. Nutr., 7:834-843 (2019).
108. Chen KI, Chiang CY, Ko CY, Huang HY and Cheng KC, Reduction of Phytic Acid in Soymilk by Immobilized Phytase System. J. Food Sci., 83:2963-2969 (2018).
109. Nisha S, Karthick SA and Gobi N, A review on methods, application and properties of immobilized enzyme. Chem. Sci. Rev. Lett., 1:148-155 (2012).
110. Afreen S, Idrees D, Khera R, Amir M, Hassan MI and Mishra S, Investigation of the role of central metal ion of Cyathus bulleri laccase 1 using guanidinium chloride-induced denaturation. Int. J. Biol. Macromol., 132:994-1000 (2019).
111. Lettera V, Pezzella C, Cicatiello P, Piscitelli A, Giacobelli VG, Galano E, Amoresano A and Sannia G, Efficient immobilization of a fungal laccase and its exploitation in fruit juice clarification. Food Chem., 196:1272-1278 (2016).
112. Pei Y, Wang S, Qin C, Su J, Nie S and Song X, Optimization of laccase-aided chlorine dioxide bleaching of bagasse pulp. BioResources, 11:696-712 (2016).
113. Amin R, Khorshidi A, Shojaei AF, Rezaei S and Faramarzi MA, Immobilization of laccase on modified Fe3O4@ SiO2@ Kit-6 magnetite nanoparticles for enhanced delignification of olive pomace bio-waste. Int. J. Biol. Macromol., 114:106-113 (2018).
114. Kalkan NA, Aksoy S, Aksoy EA and Hasirci N, Preparation of chitosan‐coated magnetite nanoparticles and application for immobilization of laccase. J. Appl. Polym. Sci., 123:707-716 (2012).
115. Esmaeilnejad-Ahranjani P, Kazemeini M, Singh G and Arpanaei A, Study of molecular conformation and activity-related properties of lipase immobilized onto core–shell structured polyacrylic acid-coated magnetic silica nanocomposite particles. Langmuir, 32:3242-3252 (2016).
116. Patel SK, Choi SH, Kang YC and Lee J-K, Eco-friendly composite of Fe3O4-reduced graphene oxide particles for efficient enzyme immobilization. ACS Appl. Mater. Interfaces., 9:2213-2222 (2017).
117. Ulu A, Birhanli E, Boran F, Köytepe S, Yesilada O and Ateş B, Laccase-conjugated thiolated chitosan-Fe3O4 hybrid composite for biocatalytic degradation of organic dyes. Int. J. Biol. Macromol., 150:871-884 (2020).
118. Suo H, Xu L, Xue Y, Qiu X, Huang H and Hu Y, Ionic liquids-modified cellulose coated magnetic nanoparticles for enzyme immobilization: Improvement of catalytic performance. Carbohydr. Polym., 234:115914 (2020).
119. Demir M, Şenel M and Baykal A, Reversible immobilization of BSA on Cu-chelated PAMAM dendrimer modified iron oxide nanoparticles. Appl. Surf. Sci., 314:697-703 (2014).
120. Anu Bhushani J and Anandharamakrishnan C, Electrospinning and electrospraying techniques: Potential food based applications. Trends Food Sci. Technol., 38:21-33 (2014).
121. Baspinar Y, Üstündas M, Bayraktar O and Sezgin C, Curcumin and piperine loaded zein-chitosan nanoparticles: Development and in-vitro characterisation. Saudi Pharm. J., 26:323-334 (2018).
122. Tsai S and Ting Y, Synthesize of alginate/chitosan bilayer nanocarrier by CCD-RSM guided co-axial electrospray: A novel and versatile approach. Food Res. Int., 116:1163-1172 (2019).
123. Eltayeb M, Stride E and Edirisinghe M, Electrosprayed core–shell polymer–lipid nanoparticles for active component delivery. Nanotechnol., 24:465604 (2013).
124. Wang Y, Zhang Y, Wang B, Cao Y, Yu Q and Yin T, Fabrication of core–shell micro/nanoparticles for programmable dual drug release by emulsion electrospraying. J. Nanopart. Res., 15:1726 (2013).
125. Ajikumar PK, Lakshminarayanan R and Valiyaveettil S, Controlled deposition of thin films of calcium carbonate on natural and synthetic templates. Cryst. Growth Des., 4:331-335 (2004).
126. Yanilmaz M, Zhu J, Lu Y, Ge Y and Zhang X, High-strength, thermally stable nylon 6, 6 composite nanofiber separators for lithium-ion batteries. J. Mater. Sci., 52:5232-5241 (2017).
127. Wong DE, Senecal KJ and Goddard JM, Immobilization of chymotrypsin on hierarchical nylon 6, 6 nanofiber improves enzyme performance. Colloids Surf., B, 154:270-278 (2017).
128. Hsu KD, Wu SP, Lin SP, Lum CC and Cheng KC, Enhanced active extracellular polysaccharide production from Ganoderma formosanum using computational modeling. J. Food Drug Anal., 25:804-811 (2017).
129. Santoso SP, Chou CC, Lin SP, Soetaredjo FE, Ismadji S, Hsieh CW and Cheng KC, Enhanced production of bacterial cellulose by Komactobacter intermedius using statistical modeling. Cellulose, 27:2497-2509 (2020).
130. Bradford MM, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72:248-254 (1976).
131. Nguyen DN, Clasen C and Van den Mooter G, Pharmaceutical applications of electrospraying. J. Pharm. Sci., 105:2601-2620 (2016).
132. Pinto MC, Freire DM and Pinto JC, Influence of the morphology of core-shell supports on the immobilization of lipase B from Candida antarctica. Molecules, 19:12509-12530 (2014).
133. Estrada-Flores S, Martínez-Luévanos A, Bartolo-Pérez P, García-Cerda L, Flores-Guia T and Aguilera-González E, Facile synthesis of novel calcium silicate hydrated-nylon 6/66 nanocomposites by solution mixing method. RSC Adv., 8:41818-41827 (2018).
134. Khan MK, Luo J, Wang Z, Khan R, Chen X and Wan Y, Alginate dialdehyde meets nylon membrane: a versatile platform for facile and green fabrication of membrane adsorbers. J. Mater. Chem. B, 6:1640-1649 (2018).
135. Yan X, Xu T, Chen G, Yang S, Liu H and Xue Q, Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate. J. Phys. D: Appl. Phys., 37:907 (2004).
136. Varshney A, Ahmad B, Rabbani G, Kumar V, Yadav S and Khan RH, Acid-induced unfolding of didecameric keyhole limpet hemocyanin: detection and characterizations of decameric and tetrameric intermediate states. Amino Acids, 39:899-910 (2010).
137. Guess WL and Haberman S, Toxicity profiles of vinyl and polyolefinic plastics and their additives. J. Biomed. Mater. Res., 2:313-335 (1968).
138. Rasekh M, Ahmad Z, Cross R, Hernández-Gil J, Wilton-Ely JDET and Miller PW, Facile Preparation of Drug-Loaded Tristearin Encapsulated Superparamagnetic Iron Oxide Nanoparticles Using Coaxial Electrospray Processing. Mol. Pharmaceutics, 14:2010-2023 (2017).
139. Brinch DS and Pedersen PB, Toxicological studies on Laccase from Myceliophthora thermophila expressed in Aspergillus oryzae. Regul. Toxicol. Pharmacol., 35:296-307 (2002).
140. Wong DE, Senecal KJ and Goddard JM, Immobilization of chymotrypsin on hierarchical nylon 6,6 nanofiber improves enzyme performance. Colloids Surf., B, 154:270-278 (2017).
141. Chen HY, Cheng KC, Hsu RJ, Hsieh CW, Wang HT, Ting YW, Enzymatic degradation of ginkgolic acid by laccase immobilized on novel electrospun nanofiber mat. J. Sci. Food Agri. 100(6), 2705-2712 (2020).
142. Chen HY, Ting YW, Kuo HC, Hsieh CW, Hsu HY, Wu CN, Cheng KC, Enzymatic degradation of ginkgolic acids by laccase immobilized on core/shell Fe3O4/nylon composite nanoparticles using novel coaxial electrospraying process. Int. J. Biol. Macromol. 5, 172:270-280 (2021).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49109-
dc.description.abstract銀杏為全世界常用且廣泛應用及研究的中藥材,其萃取物中主要成分為類黃酮和萜類,具抗氧化、清除游離自由基等能力,廣泛應用於治療冠狀動脈硬化及阿茲海默症等臨床疾病。然而銀杏萃取過程常伴隨有毒性物質,其中以銀杏酸為主,銀杏酸具有嚴重過敏性與毒性,於德國 Commission E規定,銀杏相關產品中銀杏酸驗出量不得高於5 ppm。目前移除銀杏酸的方式主要有三種方法,相較於有機溶劑分離及奈米粒子吸附,酵素降解法對於環境較為友善,但因酵素提取不易且多為水溶性,造成成本高昂、回收不易通常為單次使用等缺點,因此難以實際應用於產業界。本研究將利用酵素固定化的方式,固定漆酶於利用靜電紡絲技術所製成的尼龍載體上,進行銀杏酸的降解反應。靜電紡絲技術成功製備納米碳管和尼龍6,6混合製成的奈米纖維膜,固定在此載體上的漆酶活性較尼龍6,6顆粒高,且漆酶的pH和溫度穩定性得到顯著改善。並且於儲存40天或重複使用10次後仍保持相對活性50%以上。結果成功證明使用奈米纖維膜作為酶固定平台可以顯著提高酶的活性和穩定性。進一步開發使用響應表面方法及同軸靜電噴灑方法,以製備Fe3O4 /尼龍6,6複合納米顆粒,其平均直徑為376 ± 102 nm,並可藉由磁力簡單地回收。固定在複合載體的漆酶量約為60 mg / g。結果顯示漆酶固定後於反應溫度60–90°C範圍內,其熱穩定性得到了顯著改善。此外,固定在複合載體的漆酶在儲存21天或重複使用5個循環後,相對活性仍具有50%,顯示出良好的儲存穩定性和可重複使用性,並且仍具有降解銀杏酸能力。因此以同軸靜電噴灑製備之高性能固定化納米載體具有應用於酵素固定化的潛力。zh_TW
dc.description.abstractGinkgo biloba is a common Chinese medicinal material that is widely used and researched all over the world. The main extracted ingredients are flavonoids and terpenes, which have antioxidant and free radical scavenging activity. G. biloba extract is widely used in the treatment of coronary atherosclerosis, Alzheimer's, and other clinical diseases. However, the extraction process of G. biloba is often accompanied by the production of toxic by-products. Ginkgolic acid is one of the main toxic components among G. biloba extract, and it is severely allergenic and poisonous. According to German Commission E regulations, the content of ginkgolic acid in G. biloba related products must be less than 5 ppm. At present, there are three main ways removing ginkgolic acid. Compared to organic solvent separation and nanoparticle adsorption, enzyme degradation is more environmentally friendly. However, enzymes are difficult to extract and are mostly water-soluble; furthermore, they are expensive and difficult to recycle. Due to the expensive and disposable nature of enzymes, enzyme degradation is rarely used in industrial application. Novel electrospinning technology successfully produced high-quality nanoscopic fiber mats composed of a mixture of multi-walled carbon nanotube and nylon 6,6. Laccase immobilized onto the NFMs exhibited a much higher level of efficiency in the catalysis of ABTS than nylon 6,6 pellet. After NFMs immobilization, the pH and temperature stability of laccase were significantly improved. The nanofiber mat immobilized laccase could maintain more than 50% of its original activity even after 40-day storage or after 10 operational cycles. The results successfully demonstrated the great potential in using novel electrospun nanofiber mat as an enzyme immobilization platform, which could significantly enhance enzyme activity and stability. Core/shell Fe3O4/nylon 6,6 composite nanoparticles (FNCNs) was further developed by the one-step coaxial electrospraying and optimized by response surface methodology (RSM). As results, FNCNs had an average diameter of 376 ± 102 nm and could be recovered easily using magnetic force. The amount of the laccase immobilized on the FNCNs was approximately 60 mg/g FNCNs. As a result, thermal stability of the free laccase was significantly improved in the range of 60–90°C after immobilization. Furthermore, the laccase immobilized on the FNCNs exhibited a relative activity higher than 50% after being stored for 21 days or reused for 5 cycles, showing good storage stability and reusability. Therefore, the high performance immobilization nanocarrier has potential for application in enzyme immobilization.en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:16:14Z (GMT). No. of bitstreams: 1
U0001-0602202118463400.pdf: 2859034 bytes, checksum: 65fa9d8557f60fa8d08a52bf4a254512 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsTable of contents
誌謝 i
摘要 ii
ABSTRACT iii
CHAPTER 1. INTRODUCTION 1
CHAPTER 2. LITERATURE REVIEW 3
2.1 Ginkgo biloba 3
2.1.1 The traditional application of G. biloba 4
2.1.2 The medicine research of G. biloba 4
2.1.3 The marketing and patents of G. biloba 7
2.2 Ginkgolic acid 8
2.2.1 Methods for ginkgolic acid degradation 8
2.2.2 Enzymic degradation of ginkgolic acid 10
2.2.3 Laccase 11
2.3 Enzyme immobilization 13
2.3.1 Materials of carriers 14
2.3.2 Electrospinning 17
2.3.3 Coaxial electrospraying 19
2.3.4 Methods for enzyme immobilization 20
CHAPTER 3. ENZYMATIC DEGRADATION of GINKGOLIC ACID by LACCASE IMMOBILIZED on NOVEL ELECTROSPUNNED NANOFIBER MAT 24
3.1 Abstract 24
3.2 Introduction 25
3.3 Materials and methods 28
3.3.1 Materials 28
3.3.2 Nylon 6,6 nanofiber mats (NFMs) Preparation 28
3.3.3 Laccase Immobilization 28
3.3.4 Morphology Characterization of Laccase Immobilized Systems 29
3.3.5 Measuring of Optimal Reaction Conditions for Immobilized Laccase Activity 30
3.3.6 Measuring of Kinetic Parameters for Laccase Immobilization 30
3.3.7 Determination of Storage Stability and Reusability 30
3.3.8 Extraction of Ginkgolic Acid in G. biloba Leaves 31
3.3.9 Determination of HPLC Analysis for Ginkgolic Acid Degradation ……………………………………………………………..……31
3.3.10 Statistical analysis 31
3.4 Results and Discussion 33
3.4.1 The catalytic efficiency of laccase immobilized on difference carriers…………………………………………………………………… 33
3.4.2 Morphology of laccase immobilized carriers 34
3.4.3 Chemical modification of laccase immobilization 36
3.4.4 Determination of Optimal Conditions for the Laccase Immobilized System 36
3.4.5 Determination of Kinetic Parameters for Laccase Immobilized Systems…………………………………………………………………… 38
3.4.6 Storage Stability and Reusability of the Laccase Immobilized System…………………………………………………………………… 38
3.4.7 Oxidation of Ginkgolic Acid in G. biloba Leaf Extract 41
3.5 Conclusion 41
CHAPTER 4. ENZYMATIC DEGRADATION of GINKGOLIC ACIDS by LACCASE IMMOBILIZED on CORE/SHELL Fe3O4/NYLON COMPOSITE NANOPARTICLES USING NOVEL COAXIAL ELECTROSPRAYING PROCESS 43
4.1 Abstract 43
4.2 Introduction 44
4.3 Experimental Section 49
4.3.1 Materials 49
4.3.2 Optimization of electrospraying conditions for nylon shell nanoparticles 49
4.3.3 Production of FNCNs through coaxial electrospraying 51
4.3.4 Laccase Immobilization 52
4.3.5 Morphology observation 53
Scanning electron microscopy (SEM) diagrams of laccase immobilized systems were measured using scanning electron microscope (JSM-6510LV, JEOL., Japan) at an acceleration of 15 kV. Before that, samples were coated with gold sputtering. 53
4.3.6 Structure characterization 53
4.3.7 Determination of optimal reaction conditions for the L-FNGCNs …………………………………………………………… 53
4.3.8 Extraction of ginkgolic acids in G.biloba leaves 54
4.3.9 Determination of HPLC analysis for ginkgolic acid degradation 54
4.3.10 Determination of storage stability and reusability 54
4.3.11 Statistical analysis 55
4.4 Results and Discussion 56
4.4.1 Optimization of conditions for electrospraying nylon shells 56
4.4.2 Morphology of the FNCNs 59
4.4.3 Structure characterization 60
4.4.4 Determination of optimal reaction conditions for the L-FNGCNs …………………………………………………………… 63
4.4.5 Effect of the L-FNGCNs on oxidative degradation of the ginkgolic acids 65
4.4.6 Storage stability and reusability of the L-FNGCNs 68
4.4.7 Oxidation of ginkgolic acid in G. biloba leaf extract. 68
4.5 Conclusions 69
CHAPTER 5. CONCLUSION and FUTURE PRESPECTIVE 71
REFERENCES 73
List of figures
Figure 2. 1 Systematization of G. biloba in Scientific Classification. 4
Figure 2. 2 Structures of flavonoid glycosides in G. biloba. 5
Figure 2. 3 Structures of ginkgolide. 5
Figure 2. 4 Structures of ginkgolic acid. 7
Figure 2. 5 The structure of laccase. 11
Figure 2. 6 The catalytic mechanism of laccase. 13
Figure 2. 7 The enzyme activity of b-glucosidase on different carriers. 14
Figure 2. 8 Schematic diagram of electrospinning. 18
Figure 2. 9 Schematic diagram of coaxial electrospraying. 20
Figure 2. 10 The physic absorption of enzyme immobilization. 21
Figure 2. 11 The covalent bonding of enzyme immobilization. 22
Figure 2. 12 Matrix entrapment of enzyme immobilization. 22
Figure 3. 1 Relative activity of laccase immobilized on nylon pellets and nylon nanofiber mats (NFMs) at 30oC and 50oC.. 34
Figure 3. 2 Surface morphologies of carriers with and without laccase immobilization. 35
Figure 3. 3 The optimum reaction conditions and kinetic parameters of laccase immobilized on NFMs. 37
Figure 3. 4 Storage stability and reusability of laccase immobilized on NFMs. 40
Figure 4. 1 The schematic diagram of the coaxial electrospraying system for the preparation of Fe3O4/nylon composite nanoparticles (FNCNs). 48
Figure 4. 2 Optimization of production conditions for nylon shells through the electrospraying. 57
Figure 4. 3 Morphologies of FNCNs. 59
Figure 4. 4 The chemical modification of FNCNs and L-FNGCNs. 61
Figure 4. 5 Optimal reaction conditions of pH value and temperature for the laccase relative activity of laccase immobilized systems. 64
Figure 4. 6 The storage stability and the reusability of L-FNGCNs. 68
Figure 5. 1 The schematic design of the FNGCNs application. 72
List of tables
Table 2. 1 Products of G. biloba leaf extract 6
Table 2. 2 Methods for ginkgolic acid degradation 9
Table 2. 3 Commonly used carriers. 16
Table 2. 4 The application of electrospinning. 17
Table 3. 1 Determination of kinetic parameters of laccase immobilized systems. 39
Table 3. 2. Determination of kinetic parameters of the laccase immobilized on NFMs for the ginkgolic acid enzymatic degradation. 40
Table 4. 1 The experimental results of central composite design-response surface methodology (CCD-RSM) for the optimization of the smallest particle size of neat nylon nanoparticles by the coaxial electrospraying. 50
Table 4. 2 The response variables for the neat nylon shell nanoparticles size through the shell needle of coaxial electrospraying by analysis of variance (ANOVA). 58
Table 4. 3 Kinetic parameters of laccase immobilized systems for ABTS oxidation. 65
Table 4. 4 Kinetic parameters of L-FNGCNs for the ginkgolic acids degradation in G. biloba leaf extract.. 67
dc.language.isoen
dc.subject靜電噴灑zh_TW
dc.subject銀杏酸zh_TW
dc.subject酵素固定化zh_TW
dc.subject漆酶zh_TW
dc.subject靜電紡絲zh_TW
dc.subjectGinkgolic aciden
dc.subjectElectrosprayingen
dc.subjectElectrospinningen
dc.subjectLaccaseen
dc.subjectEnzyme immobilizationen
dc.title建立漆酶固定化系統降解銀杏葉萃取物中銀杏酸zh_TW
dc.titleImmobilization of Laccase for Ginkgolic Acid Degradation in Ginkgo biloba Leaf Extracten
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree博士
dc.contributor.coadvisor丁俞文(Yuwen Ting)
dc.contributor.oralexamcommittee邱致穎(Jhih-Ying Ciou),林詠凱(Yung-Kai Lin),賴盈璋(Ying-Jang Lai),林泓廷(Hong-Ting Lin),張元衍(Yuan-Yen Chang)
dc.subject.keyword銀杏酸,酵素固定化,漆酶,靜電紡絲,靜電噴灑,zh_TW
dc.subject.keywordGinkgolic acid,Enzyme immobilization,Laccase,Electrospinning,Electrospraying,en
dc.relation.page84
dc.identifier.doi10.6342/NTU202100635
dc.rights.note有償授權
dc.date.accepted2021-02-08
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
U0001-0602202118463400.pdf
  未授權公開取用
2.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved