Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資料科學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49065
標題: 連續型分布之有效率馬可夫鏈蒙地卡羅抽樣法
Efficient Markov Chain Monte Carlo Sampling for Continuous Distributions
作者: Tzu-Hao Wang
王子豪
指導教授: 陳定立(Ting-Li Chen)
共同指導教授: 沈俊嚴(Chun-Yen Shen)
關鍵字: 圖書館,論文,
library,thesis,
出版年 : 2020
學位: 碩士
摘要: 無
In statistics, Markov chain Monte Carlo (MCMC) is a classical sampling algorithm from a probability distribution, especially for estimating the expectation of real-valued function f. In this study, we focus on developing new algorithms to generates samples on a continuous state space rather than the independent and identically distributed (i.i.d.) sampling.
Chen et al. (2012) derived the optimal transition matrices for finite discrete state space. It is shown that the MCMC based on their optimal transition is more efficient than the independent and identically distributed (i.i.d.) sampling in terms of the asymptotic variance. Motivated by the performance of the MCMC sampling for discrete state space, we propose two MCMC algorithms for continuous state space in chapter 2 with discussion and theoretic justification.
There were many different comparison criteria to evaluate the performance between different MCMC based algorithms, we choose two different criteria to test for our proposed algorithm. These two criteria are the variance of some real function f and the maximum spacing defined below is a similar concept to the worst-case analysis:
(max)┬(1<i≤N)⁡〖{x_((i))-x_((i-1)) 〗,x_((1) ),1-x_((N))},
where x_((i)) is the order statistics of x_i. Based on these two criteria, simulation comparisons of two proposed MCMC algorithms with the i.i.d. sampling are presented in chapter 3. In the end, we have our conclusion remarks in chapter 4.
 
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49065
DOI: 10.6342/NTU202003165
全文授權: 有償授權
顯示於系所單位:資料科學學位學程

文件中的檔案:
檔案 大小格式 
U0001-1208202022593400.pdf
  未授權公開取用
1.17 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved