Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資料科學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49065
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳定立(Ting-Li Chen)
dc.contributor.authorTzu-Hao Wangen
dc.contributor.author王子豪zh_TW
dc.date.accessioned2021-06-15T11:15:02Z-
dc.date.available2020-08-21
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-12
dc.identifier.citationChen, T.-L., Chen, W.-K., Hwang, C.-R., Pai, H.-M. (2012). On the optimal transition matrix for Markov chain Monte Carlo sampling. SIAM Journal on Control and Optimization, 50(5), 2743-2762.
Ferguson, Thomas S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1, 209-230.
Gentle, James E. (2002). Computational Statistics. New York: Springer.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/49065-
dc.description.abstract無zh_TW
dc.description.abstractIn statistics, Markov chain Monte Carlo (MCMC) is a classical sampling algorithm from a probability distribution, especially for estimating the expectation of real-valued function f. In this study, we focus on developing new algorithms to generates samples on a continuous state space rather than the independent and identically distributed (i.i.d.) sampling.
Chen et al. (2012) derived the optimal transition matrices for finite discrete state space. It is shown that the MCMC based on their optimal transition is more efficient than the independent and identically distributed (i.i.d.) sampling in terms of the asymptotic variance. Motivated by the performance of the MCMC sampling for discrete state space, we propose two MCMC algorithms for continuous state space in chapter 2 with discussion and theoretic justification.
There were many different comparison criteria to evaluate the performance between different MCMC based algorithms, we choose two different criteria to test for our proposed algorithm. These two criteria are the variance of some real function f and the maximum spacing defined below is a similar concept to the worst-case analysis:
(max)┬(1<i≤N)⁡〖{x_((i))-x_((i-1)) 〗,x_((1) ),1-x_((N))},
where x_((i)) is the order statistics of x_i. Based on these two criteria, simulation comparisons of two proposed MCMC algorithms with the i.i.d. sampling are presented in chapter 3. In the end, we have our conclusion remarks in chapter 4.
 
en
dc.description.provenanceMade available in DSpace on 2021-06-15T11:15:02Z (GMT). No. of bitstreams: 1
U0001-1208202022593400.pdf: 1199852 bytes, checksum: 2ab07a8a7e484e60730eed7c45855803 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents
Page
Abstract 2
Content 4
1. Introduction 5
2. Algorithm and Theoretical Analysis 7
3. Simulation Result 15
4. Conclusion 28
Reference 29
 
dc.language.isoen
dc.subject論文zh_TW
dc.subject圖書館zh_TW
dc.subjectlibraryen
dc.subjectthesisen
dc.title連續型分布之有效率馬可夫鏈蒙地卡羅抽樣法zh_TW
dc.titleEfficient Markov Chain Monte Carlo Sampling for Continuous Distributionsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor沈俊嚴(Chun-Yen Shen)
dc.contributor.oralexamcommittee黃啟瑞(Chii-Ruey Hwang),杜憶萍(I-Ping Tu)
dc.subject.keyword圖書館,論文,zh_TW
dc.subject.keywordlibrary,thesis,en
dc.relation.page29
dc.identifier.doi10.6342/NTU202003165
dc.rights.note有償授權
dc.date.accepted2020-08-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資料科學學位學程zh_TW
顯示於系所單位:資料科學學位學程

文件中的檔案:
檔案 大小格式 
U0001-1208202022593400.pdf
  未授權公開取用
1.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved