請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48940完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝淑貞(Hsu-Chen Hsieh) | |
| dc.contributor.author | Yu-Han Kao | en |
| dc.contributor.author | 高郁涵 | zh_TW |
| dc.date.accessioned | 2021-06-15T11:11:58Z | - |
| dc.date.available | 2026-08-18 | |
| dc.date.copyright | 2016-10-05 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-08-22 | |
| dc.identifier.citation | 張瀞文。2015。以體外及體內地模式探討薏仁麩皮萃取物減緩第二型糖尿病的議事效用及其作用機制。國立台灣大學食品科技研究所碩士論文。台北。
郭靜如。2015。中國橄欖甲醇萃取-乙酸乙酯區分層對3T3-L1葡萄糖攝取之功效與機制探討。國立台灣大學食品科技研究所碩士論文。台北。 林孟儒。2013。中國橄欖甲醇-乙酸乙酯區分層脂促葡萄糖攝取功效探討。國立 台灣大學食品科技研究所碩士論文。台北。 Abreu, M.T. (2010). Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function (vol 10, pg 131, 2010). Nature Reviews Immunology 10. Apro, J., Beckman, L., Angelin, B., and Rudling, M. (2015). Influence of dietary sugar on cholesterol and bile acid metabolism in the rat: Marked reduction of hepatic Abcg5/8 expression following sucrose ingestion. Biochem Bioph Res Co 461, 592-597. Andriani, Y., Tengku-Muhammad, T.S., Mohamad, H., Saidin, J., Syamsumir, D.F., Chew, G.S., and Abdul Wahid, M.E. (2015). Phaleria macrocarpa Boerl. (Thymelaeaceae) leaves increase SR-BI expression and reduce cholesterol levels in rats fed a high cholesterol diet. Molecules 20, 4410-4429. Anhe, F.F., Roy, D., Pilon, G., Dudonne, S., Matamoros, S., Varin, T.V., Garofalo, C., Moine, Q., Desjardins, Y., Levy, E., et al. (2015). A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64, 872-883. Benn, T., Kim, B., Park, Y.K., Yang, Y., Pham, T.X., Ku, C.S., Farruggia, C., Harness, E., Smyth, J.A., and Lee, J.Y. (2015). Polyphenol-rich blackcurrant extract exerts hypocholesterolaemic and hypoglycaemic effects in mice fed a diet containing high fat and cholesterol. Brit J Nutr 113, 1697-1703. Bouzakri, K., Zachrisson, A., Al-Khalili, L., Zhang, B.B., Koistinen, H.A., Krook, A., and Zierath, J.R. (2006). siRNA-based gene silencing reveals specialized roles of IRS-1/Akt2 and IRS-2/Akt1 in glucose and lipid metabolism in human skeletal muscle. Cell Metab 4, 89-96. Choe, S.S., Huh, J.Y., Hwang, I.J., Kim, J.I., and Kim, J.B. (2016). Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders. Front Endocrinol (Lausanne) 7, 30. Chen, Q.P., Wu, X.Q., Liu, L.L., and Shen, J.F. (2014). Polyphenol-rich extracts from Oiltea camellia prevent weight gain in obese mice fed a high-fat diet and slowed the accumulation of triacylglycerols in 3T3-L1 adipocytes. J Funct Foods 9, 148-155. Chijimatsu, T., Umeki, M., Okuda, Y., Yamada, K., Oda, H., and Mochizuki, S. (2011). The fat and protein fractions of freshwater clam ( Corbicula fluminea) extract reduce serum cholesterol and enhance bile acid biosynthesis and sterol excretion in hypercholesterolaemic rats fed a high-cholesterol diet. Br J Nutr 105 526-534. Chiu, C.Y., Chan, I.L., Yang, T.H., Liu, S.H., and Chiang, M.T. (2015). Supplementation of chitosan alleviates high-fat diet-enhanced lipogenesis in rats via adenosine monophosphate (AMP)-activated protein kinase activation and inhibition of lipogenesis-associated genes. J Agric Food Chem 63, 2979-2988. Ding, L., Pang, S., Sun, Y., Tian, Y., Yu, L., and Dang, N. (2014). Coordinated Actions of FXR and LXR in Metabolism: From Pathogenesis to Pharmacological Targets for Type 2 Diabetes. Int J Endocrinol 2014, 751859. Eickhoff, H., Guimaraes, A., Louro, T.M., Seica, R.M., and Sousa, F.C.E. (2015). Insulin resistance and beta cell function before and after sleeve gastrectomy in obese patients with impaired fasting glucose or type 2 diabetes. Surgical Endoscopy and Other Interventional Techniques 29, 438-443. Ghanbari-Niaki, A., Zare-Kookandeh, N., and Zare-Kookandeh, A. (2014). ABCG5 gene responses to treadmill running with or without administration of Pistachio atlantica in female rats. Iran J Basic Med Sci 17, 162-171. Gommers, L.M.M., Hoenderop, J.G.J., Bindels, R.J.M., and de Baaij, J.H.F. (2016). Hypomagnesemia in Type 2 Diabetes: A Vicious Circle? Diabetes 65, 3-13. Haeusler, R.A., Camastra, S., Astiarraga, B., Nannipieri, M., Anselmino, M., and Ferrannini, E. (2015). Decreased expression of hepatic glucokinase in type 2 diabetes. Mol Metab 4, 222-226. Hasan, M.K.N., Kamarazaman, I.S., Arapoc, D.J., Taza, N.Z.M., Amom, Z.H., Ali, R.M., Arshad, M.S.M., Shah, Z.M., and Kadir, K.K.A. (2015). Anticholesterol Activity of Anacardium occidentale Linn. Does it Involve in Reverse Cholesterol Transport? Sains Malays 44, 1501-1510. He, Z., and Xia, W. (2007). Analysis of phenolic compounds in Chinese olive (Canarium album L.) fruit by RPHPLC-DAD-ESI-MS. Food Chem 105, 1307-1311. He, Z., Xia, W., and Chen, J. (2008). Isolation and structure elucidation of phenolic compounds in Chinese olive (Canarium album L.) fruit. Eur Food Res Technol 226, 1191-1196. Huang, H.Y., Korivi, M., Yang, H.T., Huang, C.C., Chaing, Y.Y., and Tsai, Y.C. (2014). Effect of Pleurotus tuber-regium polysaccharides supplementation on the progression of diabetes complications in obese-diabetic rats. Chin J Physiol 57, 198-208. Howe V., Sharpe L.J., Alexopoulos S.J., Kunze S.V., Chua N.K., Li D., Brown A.J. (2015). Cholesterol homeostasis: How do cells sense sterol excess? Chem. Phys. Lipids. Jessen, N., Pold, R., Buhl, E.S., Jensen, L.S., Schmitz, O., and Lund, S. (2003). Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles. J Appl Physiol 94, 1373-1379. Jiao, Y., Lu, Y., and Li, X.Y. (2015). Farnesoid X receptor: a master regulator of hepatic triglyceride and glucose homeostasis. Acta Pharmacol Sin 36, 44-50. Ko, S.C., Kim, J.I., Park, S.J., Jung, W.K., and Jeon, Y.J. (2016). Antihypertensive peptide purified from Styela clava flesh tissue stimulates glucose uptake through AMP-activated protein kinase (AMPK) activation in skeletal muscle cells. Eur Food Res Technol 242, 163-170. Kim, E., Kim, S., and Park, Y. (2015). Sorghum extract exerts cholesterol-lowering effects through the regulation of hepatic cholesterol metabolism in hypercholesterolemic mice. Int J Food Sci Nutr 66, 308-313. Kuipers, F., Bloks, V.W., and Groen, A.K. (2014). Beyond intestinal soap-bile acids in metabolic control. Nat Rev Endocrinol 10, 488-498. Kwon, B., Lee, H.K., and Querfurth, H.W. (2014). Oleate prevents palmitate-induced mitochondrial dysfunction, insulin resistance and inflammatory signaling in neuronal cells. Bba-Mol Cell Res 1843, 1402-1413. Laurent, T., Okuda, Y., Chijimatsu, T., Umeki, M., Kobayashi, S., Kataoka, Y., Tatsuguchi, I., Mochizuki, S., and Oda, H. (2013). Freshwater Clam Extract Ameliorates. Machado-Lima, A., Iborra, R.T., Pinto, R.S., Castilho, G., Sartori, C.H., Oliveira, E.R., Okuda, L.S., Nakandakare, E.R., Giannella-Neto, D., Machado, U.F., et al. (2015). In type 2 diabetes mellitus glycated albumin alters macrophage gene expression impairing ABCA1-mediated cholesterol efflux. J Cell Physiol 230, 1250-1257. Mazibuko, S.E., Muller, C.J.F., Joubert, E., de Beer, D., Johnson, R., Opoku, A.R., and Louw, J. (2013). Amelioration of palmitate-induced insulin resistance in C2C12 muscle cells by rooibos (Aspalathus linearis). Phytomedicine 20, 813-819. Mitsuhashi, K., Senmaru, T., Fukuda, T., Yamazaki, M., Shinomiya, K., Ueno, M., Kinoshita, S., Kitawaki, J., Katsuyama, M., Tsujikawa, M., et al. (2015). Testosterone stimulates glucose uptake and GLUT4 translocation through LKB1/AMPK signaling in 3T3-L1 adipocytes. Endocrine. Modica, S., Gadaleta, R.M., and Moschetta, A. (2010). Deciphering the nuclear bile acid receptor FXR paradigm. Nucl Recept Signal 8, e005. Mueller, M., Thorell, A., Claudel, T., Jha, P., Koefeler, H., Lackner, C., Hoesel, B., Fauler, G., Stojakovic, T., Einarsson, C., et al. (2015). Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity. J Hepatol 62, 1398-1404. Naowaboot, J., Somparn, N., Saentaweesuk, S., and Pannangpetch, P. (2015). Umbelliferone Improves an Impaired Glucose and Lipid Metabolism in High-Fat Diet/Streptozotocin-Induced Type 2 Diabetic Rats. Phytotherapy Research 29, 1388-1395. Nathan, D.M. (2015). Diabetes: Advances in Diagnosis and Treatment. JAMA 314, 1052-1062. Oosterveer, M.H., and Schoonjans, K. (2014). Hepatic glucose sensing and integrative pathways in the liver. Cell Mol Life Sci 71, 1453-1467. Pagadala, M., Kasumov, T., McCullough, A.J., Zein, N.N., and Kirwan, J.P. (2012). Role of ceramides in nonalcoholic fatty liver disease. Trends Endocrinol Metab 23, 365-371. Penney, N.C., Kinross, J., Newton, R.C., and Purkayastha, S. (2015). The role of bile acids in reducing the metabolic complications of obesity after bariatric surgery: a systematic review. Int J Obes (Lond) 39, 1565-1574. Prawitt, J., Caron, S., and Staels, B. (2011). Bile acid metabolism and the pathogenesis of type 2 diabetes. Curr Diab Rep 11, 160-166. Repa, J.J., and Mangelsdorf, D.J. (2002). The liver X receptor gene team: Potential new players in atherosclerosis. Nature Medicine 8, 1243-1248. Samuel, V.T., and Shulman, G.I. (2012). Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852-871. Skovso, S. (2014). Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J Diabetes Invest 5, 349-358. Song, P.Z., Rockwell, C.E., Cui, J.Y., and Klaassen, C.D. (2015). Individual bile acids have differential effects on bile acid signaling in mice. Toxicol Appl Pharm 283, 57-64. Stinkens, R., Goossens, G.H., Jocken, J.W., and Blaak, E.E. (2015). Targeting fatty acid metabolism to improve glucose metabolism. Obes Rev 16, 715-757. Thorens, B. (2015). GLUT2, glucose sensing and glucose homeostasis. Diabetologia 58, 221-232. Wu, W.L., Gan, W.H., Tong, M.L., Li, X.L., Dai, J.Z., Zhang, C.M., and Guo, X.R. (2011). Over-expression of NYGGF4 (PID1) inhibits glucose transport in skeletal myotubes by blocking the IRS1/PI3K/AKT insulin pathway. Mol Genet Metab 102, 374-377. Yamada, K., Nakata, M., Horimoto, N., Saito, M., Matsuoka, H., and Inagaki, N. (2000). Measurement of glucose uptake and intracellular calcium concentration in single, living pancreatic beta-cells. J Biol Chem 275, 22278-22283. Yamamoto, N., Ueda, M., Kawabata, K., Sato, T., Kawasaki, K., Hashimoto, T., and Ashida, H. (2010). Artemisia princeps extract promoted glucose uptake in cultured L6 muscle cells via glucose transporter 4 translocation. Biosci Biotechnol Biochem 74, 2036-2042. Zeng, H., Miao, S., Zheng, B., Lin, S., Jian, Y., Chen, S., and Zhang, Y. (2015). Molecular Structural Characteristics of Polysaccharide Fractions from Canarium album (Lour.) Raeusch and Their Antioxidant Activities. J Food Sci 80, H2585-2596. Zhou, H., and Hylemon, P.B. (2014). Bile acids are nutrient signaling hormones. Steroids 86, 62-68. Zhu, Y., Pereira, R.O., O'Neill, B.T., Riehle, C., Ilkun, O., Wende, A.R., Rawlings, T.A., Zhang, Y.C., Zhang, Q., Klip, A., et al. (2013). Cardiac PI3K-Akt impairs insulin-stimulated glucose uptake independent of mTORC1 and GLUT4 translocation. Mol Endocrinol 27, 172-184. Zhang, G., Zhou, Y., Rao, Z., Qin, H., Wei, Y., Ren, J., Zhou, L., and Wu, X. (2015). Effect of Yin-Zhi-Huang on up-regulation of Oatp2, Ntcp, and Mrp2 proteins in estrogen-induced rat cholestasis. Pharm Biol 53, 319-325. Zhou, H., and Hylemon, P.B. (2014). Bile acids are nutrient signaling hormones. Steroids 86, 62-68 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48940 | - |
| dc.description.abstract | 中國橄欖(Canarium album L.)屬於橄欖科植物,廣泛栽種於台灣新竹縣, 中國東南方以及亞洲其他區域。擁有多種藥理性質,包含保肝、抗微生物、抗病毒與抗毒性。中國橄欖富含多酚化合物與三萜類也被證實與抗代謝疾病間具有強關聯性,然而其確切之相關機制仍未盡明確。因此本篇研究將透過第二型糖尿病大鼠探討中國橄欖乙醇萃取物的介入對於第二型糖尿病之高血糖與高血脂之代謝路徑影響。第二型糖尿病大鼠之誘導模式採高脂飲食輔以低劑量(35 mg/kg BW) STZ腹腔注射,模擬實驗動物在肥胖導致慢性發炎下使胰臟細胞受損的病理症狀。大鼠經四週中國橄欖乙醇萃取物介入後,藉提升肝臟GLUT2以及GK表現量促進葡萄糖攝取、降低PEPCK表現抑制糖質新生。此外更能增加肌肉組織Akt磷酸化,而促進胰島素敏感度,故推測中國橄欖可能藉由促進肝臟與肌肉組織之葡萄糖攝取能力,並抑制肝臟糖質新生而益於調降高血糖。在血脂代謝方面,中國橄欖可顯著降低血清中的總膽固醇、總膽酸。在膽固醇代謝方面,體內的膽固醇80%來自內生性膽固醇。中國橄欖主要藉降低肝臟SREBP-2與HMGCR表現量,抑制內生性膽固醇生成。另外,樣品介入後提升肝臟LDLR與ABCG-8表現量,分別提升肝臟攝取以及排除膽固醇的能力,綜合上述兩者的影響,顯著降低血清中之總膽固醇。而在膽酸代謝方面,體內95%膽酸來自迴腸端的再吸收,5%來自肝臟的內生性製造。中國橄欖藉由抑制NTCP的表現,可調控膽酸回收至肝臟的量。此外,經由抑制運輸蛋白BSEP、MRP3/4表現,降低肝臟中膽酸排出至膽管及週邊循環的量,最後藉由影響FXR、SHP及CYP7A1之表現量,抑制肝臟中內生性膽酸生成,因而使血清中的總膽酸低於疾病組。綜合上述實驗結果,推測中國橄欖可改善因肥胖及糖尿病而造成之肝臟膽固醇及膽酸調節失衡的現象,對於第二型糖尿病血糖、血脂與膽酸代謝失衡之調節,均有正向的貢獻。 | zh_TW |
| dc.description.abstract | Chinese olive (Canarium album L.), a plant in the Burseraceae family is widely cultivated in Hsinchu (Taiwan), the southeast area of China and other Asian regions. It has several pharmacological effects including hepatoprotective, antimicrobial, detoxic and antivirus. Phytochemical studies have shown that Chinese olive fruit is rich in polyphenols. These phytochemcals appear to be responsible for the pharmacological activity of Chinese olive fruit and have properties that may reduce the risk of metabolic diseases. Diabetes can be controlled through the reduction of hyperglycaemia. However, the exact mechanism of protection is not real understood. Thus, the objective of this study was to investigate the effects of an ethanol extract of Canarium album L. (COE) on the regulation of glucose and lipid metabolism in type 2 diabetic rats and L6 muscle cell line. Type 2 diabetes was induced in rats by feeding a 60% high-fat diet (HFD) and a low dose (35 mg/kg.BW) of streptozotocin injection. COE significantly reduced the elevated blood glucose levels, epididymal fat, serum FFA, total cholesterol and bile acid level elevated by HFD. Moreover, treatment of COE elevated deoxyglucose uptake in differentiated L6 muscle cells. Our findings demonstrate that COE improves glucose metabolism and in type 2 diabetes by decreased hepatic gluconeogenesis via its regulation on GK and PEPCK expressions. COE could attenuate the hepatic expression of SREBP-2 with a subsequent decrease in hepatic HMGCR mRNA expression and an increase in hepatic LDL receptor to decreased serum cholesterol concention. Also, COE represses hepatic BA synthesis via a FXR/SHP/CYP7A1 signaling pathway. Thus, COE could act as adjuvant therapeutics for metabolic disorders via attenuating obesity, epididymal fat, and improving serum parameters with cholesterol clearance and bile acid regulation of liver. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T11:11:58Z (GMT). No. of bitstreams: 1 ntu-105-R03641023-1.pdf: 8916187 bytes, checksum: ef8005e23a86613882e64878fc4f87fb (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 第一章 前言 1
第二章 文獻回顧 2 一、 糖尿病 2 1. 分類 2 2. 診斷標準 3 3. 第二型糖尿病致病機轉 3 二、 胰島素與血糖恆定 4 1. 胰島素與醣類代謝 4 2. 周邊組織之GLUT4轉位機制 5 3. 胰島素阻抗現象 5 4. 肝臟中的葡萄糖代謝 6 5. 醣解作用、肝糖分解與糖質新生 6 6. 葡萄糖轉運蛋白 7 7. 肝臟中葡萄糖偵測器失衡與代謝疾病的關係 7 三、 高脂飲食合併藥物模式誘導第二型糖尿病動物 8 四、 誘導胰島素阻抗之細胞模式 8 五、 肥胖與脂肪酸的過度生成 8 六、 膽固醇的平衡 9 1. 來源 9 2. 肝臟中的膽固醇代謝與轉錄因子的調控 9 3. 膽酸代謝與第二型糖尿病 10 4. 膽酸循環與轉錄因子的調控 10 七、 中國橄欖 14 1. 簡介 14 2. 中國橄欖之主要成分分析 14 3. 中國橄欖之藥理學研究 15 第三章 研究動機與實驗架構 17 一、 研究動機 17 二、 實驗架構 18 1. 動物飼養 18 2. 臟器重量、血液生化數值及相關代謝路徑之探討 19 第四章 材料與方法 20 一、 實驗材料 20 1. 實驗試劑 20 2. 設備 24 二、 中國橄欖乙醇萃取物製備 25 三、 實驗動物 25 1. 實驗動物與分組 25 2. 實驗動物飼料及飲水 25 3. 動物飼養、樣品介入與臟器收集 26 四、 樣品分析 28 1. 血液樣本分析 28 2. 即時定量聚合酶連鎖反應(Real-time Quantitative Polymerase Chain Reaction,RT q-PCR ) 30 3. 西方墨點法分析 33 五、 體外試驗-肌肉細胞胰島素阻抗模式 40 1. 細胞培養液配製 40 2. 細胞株 41 3. 細胞的培養與分化 41 4. 胰島素阻抗誘發與葡萄糖攝取實驗 42 5. 統計分析 47 第五章 結果 47 一、 中國橄欖乙醇萃取物製備 47 二、 動物試驗 47 1. SD大鼠經STZ誘導後之體重、攝食量與臟器重量變化 47 2. SD大鼠之禁食血糖與胰島素濃度變化 49 3. SD大鼠之發炎因子分析 49 4. SD大鼠之脂質濃度變化量 50 5. SD大鼠之葡萄糖代謝路徑分析 56 a 體外試驗 57 (1) 建立胰島素阻抗細胞模式 57 (2) 中國橄欖乙醇萃取物介入對胰島素阻抗模式中之L6肌肉細胞葡萄糖攝取能力的影響 57 第六章 討論 89 一、 樣品的選擇 89 二、 體重、攝食量與能量代謝 89 三、 發炎因子分析 90 四、 脂質代謝 90 五、 膽固醇代謝 90 六、 膽酸代謝 92 七、 葡萄糖代謝 93 第七章 結論 95 第八章 參考文獻 97 第九章 附圖 104 | |
| dc.language.iso | zh-TW | |
| dc.subject | 第二型糖尿病 | zh_TW |
| dc.subject | 膽酸 | zh_TW |
| dc.subject | 膽固醇 | zh_TW |
| dc.subject | 中國橄欖乙醇萃取物 | zh_TW |
| dc.subject | cholesterol | en |
| dc.subject | bile acid | en |
| dc.subject | type 2 diabetes | en |
| dc.subject | Chinese olive ethanol extract | en |
| dc.title | 以動物模型探討中國橄欖乙醇萃取物延緩高血糖與高血脂作用之機制 | zh_TW |
| dc.title | Study on mechanisms underlying the preventive effects of the
Chinese olive ethanol extract on modulation of hyperglycemia and hypercholesterolemia in animal model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 姜安娜(An-Na Chiang) | |
| dc.contributor.oralexamcommittee | 郭靜娟(Ching-Chuan Kuo),黃智興(Tze-Sing Huang),羅翊禎(Yi-Chen Lo) | |
| dc.subject.keyword | 中國橄欖乙醇萃取物,第二型糖尿病,膽固醇,膽酸, | zh_TW |
| dc.subject.keyword | Chinese olive ethanol extract,type 2 diabetes,cholesterol,bile acid, | en |
| dc.relation.page | 107 | |
| dc.identifier.doi | 10.6342/NTU201603277 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-08-22 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 8.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
