請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48650完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 汪重光(Chorng-Kuang Wang) | |
| dc.contributor.author | Yi-Hung Lin | en |
| dc.contributor.author | 林宜宏 | zh_TW |
| dc.date.accessioned | 2021-06-15T07:06:33Z | - |
| dc.date.available | 2015-12-10 | |
| dc.date.copyright | 2010-12-10 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-11-21 | |
| dc.identifier.citation | [1]Schenk T.C.W., Smulders P.F.M. and Fledderus E.R.,'Estimation and compensation
of TX and RX IQ imbalance in OFDM-based MIMO systems,' IEEE Radio and Wireless Symposium, pp. 215- 218, 17-19 Jan. 2006. [2] Schuchert A., Hasholzner R. and Antoine P., 'Compensation schemes and performance analysis of IQ imbalances in OFDM receivers,' IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 3257- 3268, Aug. 2005. [3] Tarighat A. Bagheri R. and Sayed A.H., 'Compensation schemes and performance analysis of IQ imbalances in OFDM receivers,' IEEE Transactions on Signal Pro- cessing, vol. 53, no. 8, pp. 3257- 3268, Aug. 2005. [4] Vincent K.-P. Ma and Tommi Ylamurto, Analysis of IQ Imbalance on Initial Frequency O set Estimation in Direct Down-Conversion Receivers,' Workshop in Signal Processing Advances in Wireless Communications, pp. 158-161, March 2001. [5] R. van Nee and R. Prasad, 'OFDM for Wireless Multimedia Communications,' 3rd ed., Artech House, Boston, Jul. 2000. [6] A. Pandharipande, 'Principles of OFDM,' IEEE Potential, vol. 21, pp. 16-19, Apr./May. 2002. [7] Goldsmith, A., Jafar, S.A., Jindal, N. and Vishwanath, S., 'Capacity limits of MIMO channels,' IEEE Journal on Selected Areas in Communications, vol. 21, pp. 684-702, June 2003. [8] Ta-Sung Lee et al., 'Summer School for Communication Theory and Technologies,' 2006. [9] Arogyaswami Paulraj, Rohit Nabar and Dhananjay Gore, 'Introduction to Space- Time Wireless Communications,' Cambridge University Press, 2003. [10] 'IEEE Standard for Information technology{Telecommunications and information exchange between systems{Local and metropolitan area networks{Speci c requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Speci cations Amendment 5: Enhancements for Higher Throughput,' IEEE Std 802.11n-2009 (Amendment to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, and IEEE Std 802.11w-2009,' pp. c1-502, Oct. 29 2009. [11] Siavash M. Alamouti, 'A Simple Transmit Diversity Technique for Wireless Communications,' IEEE Journal on Select Areas in Communication, vol. 16, no. 8, pp. 1451-1458, Oct. 1998. [12] P. W. Wolniansky, G. J. Foschini, G. D. Golden and R. A. Valenzuela, 'V-BLAST: An Architecture for Realizing Very High Data Rates Over the Rich-Scattering Wireless Channel,' URSI International Symposium on Signals, Systems, and Electron- ics, vol. 29, pp. 295-300, Oct. 1998. [13] TGn Channel Model: IEEE 802.11-03-0940-04-000n [14] Simon R. Sauders, 'Antennas and Propagation for Wireless Communication Systems,' Wiely, 2001. [15] A.A.M. Saleh and R.A. Valenzuela, 'A statistical model for inddor multipath propagation,' IEEE Journal on Selected Areas in Communications, vol. 5, pp. 128-137, Feb. 1987. [16] T.Pollet, P.Spruyt and M. Moeneclaey, 'BER Sensitivity of OFDM Systems to Carrier Frequency O set and Wiener Phase Noise,' IEEE Transactions on Com- munications, vol. 43, issue 2, part 3, Feb., March., April., pp. 191-193, 1995. [17] Michael Speth, Stefan A. Fechtel and Heinrich Meyr, 'Optimum Receiver Design for Wireless Broad-Band Systems Using OFDM. Part I,' IEEE Transactions on Communications, vol. 47, no. 11, pp. 1668-1677, Nov. 1999. [18] Fang-Li Yuan, Chin-Hsien Lin, Yi-Hsien Lin, Chih-Feng Wu and Chorng-Kuang Wang, 'A MIMO-OFDM digital baseband receiver design with adaptive equalization technique for IEEE 802.16 WMAN,' IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 617-620, Apr. 2009. [19] Tzung-Ming Chen, Yung-Ming Chiu, Chun-Cheng Wang, Ka-Un Chan, Ying-Hsi Lin, Ming-Chong Huang, Chao-Hua Lu, Wen-Shan Wang, Che-Sheng Hu, Chao- Cheng Lee, Jiun-Zen Huang, Bin-I Chang, Yen, S.-C. and Ying-Yao Lin 'A Low- Power Fullband 802.11a/b/g WLAN Transceiver With On-Chip PA,' IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 983-991, May. 2007. [20] Marc Engels,'Wireless OFDM Systems,' KAP, 2002. [21] Lan Zhao, and V.K. Dubey, 'Detection Schemes for Space-Time Block Code and Spatial Multiplexing Combined System,' IEEE Transaction on Communication Letters, vol. 9, no. 1, pp. 49-51, Jan. 2005. [22] Angela Doufexi, Andrew Nix and Mark Beach, 'Combined Spatial Multiplexing and STBC to Provide Throughput Enhancement to Next Generation WLANs,' IST Mobile and Wireless Communications Summit, Dresden, 2005. [23] Y. Yang, Y. H. Chew, and T. T. Tjhung, 'Adaptive Frequency-Domain Equalization for Space-Time Block-Coded DS-CDMS Downlink,' IEEE International Conference on Communications, vol. 4, pp. 2343-2346, May 2005. [24] A. Chandrakasan et al., 'Optimizing power using transformations,' IEEE Trans- action on Computer-Aided Design of Integrated Circuits and Systems, vol. 14, pp. 12-31, Jan. 1995. [25] Yi-Hsien Lin, Chih-Hsien Lin, Chih-Feng Wu, Muh-Tian Shiue and Chorng-Kuang Wang, 'Cost-E ective Equalization for STBC MIMO/MISO OFDM Systems overMultipath Fading Channel,' Vehicular Technology Conference Fall, pp. 1-5, Sept. 2009. [26] Chin-Hsien Lin, Yi-Hsien Lin, Chich-FengWu, Muh-Tian Shiue and Chorng-Kuang Wang, 'Cost E cient FEQ Implementation for IEEE 802.16a OFDM Transceiver,' International Symposium onVLSI Design, Automation and Test, pp. 154-157, 28-30 April 2009. [27] Fang Lu and Henry Samueli, 'A 60-MBd, 480-Mb/s,256-QAM Decision-Feedback Equalizer in 1.2-u m CMOS,' IEEE Journal of Solid State Circuits, vol. 28, no. 3, March 1993. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48650 | - |
| dc.description.abstract | 在這篇論文,提出了實虛部不匹配補償及通道等化之結合演算法與實虛部不
匹配自我偵測及校正的演算法。在這個演算法中,IEEE802.11n 的規格將被用來 做為測試的平台。在實虛部不匹配自我偵測及校正的演算法中,是在一啟動使用 者的傳收端時,及立即做自我的振幅及相位的偵測,使得在使用者端,可以大幅 減少實虛部不匹配的影響,並且可以使得載波頻率不匹配的偵測,更加的可靠。 雖然解決了在使用者端的實虛部不匹配及載波頻率不匹配,但由遠端的傳送端所 引起的實虛部不匹配依然存在,因此,實虛部不匹配補償及通道等化之結合演算 法就是用來解決這方面的問題,這個演算法是採用了MMSE 的準則,使得這個 演算法的表現,比LS 的準則,增進了2 dB 左右。 除此之外,在FPGA 的設計上,採用了SR Transformation 來實現實虛部不 匹配補償及通道等化之結合演算法,這個演算法包含了三個部份: 通道估測, MISO/MIMO 信號偵測解碼,以及通道及實虛部不匹配資訊之更新; 經過簡化後, 可以減少35%的乘法複雜度。並且可以達到與未經簡化之前的演算法,有相同 SER 的表現。 最後,經過改良後的複數乘法器設計以及適當的記憶體安排,實現此演算法。 在FPGA 的測量上,是透過Altera Stradix EP1S80 FPGA 板,並在Tektronix TLA 715 邏輯分析儀量測,來驗證此演算法的可行性及正確性。 | zh_TW |
| dc.description.abstract | In this thesis, the joint I/Q imbalance compensation and channel equalization and
the start up self-calibration algorithm of I/Q imbalance are proposed. The IEEE 802.11n MISO/MIMO OFDM transceiver is adopted as a test vehicle to demonstrate the presented algorithm. The self-calibration algorithm is performed at transceiver start-up to estimate the end user I/Q imbalance parameter, including phase and gain mismatch. Therefore, the Tx/Rx I/Q imbalance of end user can be alleviated by self calibration and compensation. In addition, the start-up self calibration and compensation can make conventional CFO estimation and compensation more reliable under end user Rx I/Q imbalance impairment. Although Rx I/Q imbalance self compensation and CFO have been compensated, the remote Tx I/Q imbalance and quasi-static channel variation degrade the system performance. Therefore, based on MMSE criteria, the joint I/Q imbalance compensation and channel equalization is presented to minimize the remote Tx I/Q imbalance and quasi-static channel variation during the physical data transmission. Consequently, the performance improvement is 2-dB compared with LS algorithm. On the other hand, the cost-e cient architecture of joint I/Q imbalance compensation and channel equalization is proposed to reduce hardware complexity based on strength-reduced transformation. The cost e cient architecture of joint I/Q imbalance and channel equalization contains three parts: MIMO detection, updating process and channel estimation. The overall architecture obtains the 35% reduction e ciency in multiplication. Furthermore, The uncoded SER of this design is the same as the direct implementation. Finally, the joint I/Q imbalance compensation and channel equalization is realized by FPGA board EP1S80 at 40MHz and the system evaluations are measured by Tektronix TLA715 pattern generator and logic analyzer. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T07:06:33Z (GMT). No. of bitstreams: 1 ntu-99-R97943004-1.pdf: 5733054 bytes, checksum: 2c8e324b4c52e58b8cc76c0413291c7a (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Basic Principles of MIMO-OFDM 3 2.1 OFDM Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 OFDM Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Guard Interval and Cyclic Prex . . . . . . . . . . . . . . . . . . 5 2.2 MIMO Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 MIMO Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 MIMO Channel Capacity . . . . . . . . . . . . . . . . . . . . . . 8 2.2.3 Space Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.4 MIMO Transmission Schemes . . . . . . . . . . . . . . . . . . . . 9 2.3 MIMO-OFDM Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Overview of IEEE 802.11n Wireless LAN 13 3.1 Introduction of Wireless LAN . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 IEEE 802.11n Specication . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1 Packet Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.3 HT-LTF Arrangement . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.4 Pilot Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.5 Constellation Mapping . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.6 Space-Time Encoder . . . . . . . . . . . . . . . . . . . . . . . . . 20 4 Wireless Channel Model 23 4.1 MIMO Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 Spatial Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3 Multipath Rayleigh Fading . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.4 Path Loss and Shadowing . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.5 Additive White Gaussion Noise . . . . . . . . . . . . . . . . . . . . . . . 29 4.6 Timing Frequency Oset . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.7 Carrier Frequency Oset . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.8 I/Q Imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5 Receiver Design 35 5.1 Packet Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.1.1 Coarse Symbol Boundary Detection . . . . . . . . . . . . . . . . . 37 5.1.2 Fine Symbol Boundary Detection . . . . . . . . . . . . . . . . . . 37 5.2 CFO Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.2.1 Coarse/Fine CFO Estimation . . . . . . . . . . . . . . . . . . . . 39 5.2.2 Residual CFO Tacking Loop . . . . . . . . . . . . . . . . . . . . . 40 5.3 Phase Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6 I/Q Imbalance Compensation Algorithm 45 6.1 I/Q Imbalance Self Calibration and Compensation Algorithm . . . . . . 45 6.1.1 Symmetric Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.1.2 Anti-Symmetric Stage . . . . . . . . . . . . . . . . . . . . . . . . 48 6.1.3 Gain and Phase Mismatch Calibration . . . . . . . . . . . . . . . 49 6.1.4 Compensation Scheme . . . . . . . . . . . . . . . . . . . . . . . . 51 6.1.5 I/Q Imbalance Eect on CFO Estimation . . . . . . . . . . . . . 52 6.2 Joint I/Q Imbalance Compensation and Channel Equalization Algorithm 55 6.2.1 I/Q Imbalance Eect on STBC Scheme . . . . . . . . . . . . . . . 55 6.2.2 Prior Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.2.3 MMSE Design Criteria . . . . . . . . . . . . . . . . . . . . . . . . 57 6.2.4 Coecients Denition for I/Q Imbalance Compensation and Channel Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2.5 Adaptation for Joint Algorithm . . . . . . . . . . . . . . . . . . . 63 6.3 Initial Coecient Acquisition . . . . . . . . . . . . . . . . . . . . . . . . 64 6.4 I/Q Imbalance Eect on Channel Estimation . . . . . . . . . . . . . . . . 64 7 Hardware Design of Joint Algorithm 73 7.1 Cost Ecient Joint Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 73 7.1.1 Strength Reduced Multiplication . . . . . . . . . . . . . . . . . . 73 7.1.2 MISO/MIMO Detection . . . . . . . . . . . . . . . . . . . . . . . 74 7.1.3 Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.1.4 Channel Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7.1.5 Comparisons and System Simulation . . . . . . . . . . . . . . . . 91 7.2 Fixed-Point Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.3 Slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.4 RAM Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 7.5 FPGA Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 8 Conclusion 107 | |
| dc.language.iso | en | |
| dc.subject | 實虛部不匹配 | zh_TW |
| dc.subject | 實虛部不平衡 | zh_TW |
| dc.subject | I/Q mismatch | en |
| dc.subject | I/Q imbalance | en |
| dc.title | 應用於 STBC MISO/MIMO 正交分頻多工系統之實虛部不匹配
補償與通道等化之聯合演算法及FPGA 設計實作 | zh_TW |
| dc.title | Joint I/Q Imbalance Compensation and Channel Equalization for
STBC MISO/MIMO OFDM Systems, and FPGA Design | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳安宇(An-Yeu Wu),闕志達(Tzi-Dar Chiueh),鐘嘉德(Char-Dir Chung),李鎮宜(Chen-Yi Lee),周世傑(Shyh-Jye Jou) | |
| dc.subject.keyword | 實虛部不平衡,實虛部不匹配, | zh_TW |
| dc.subject.keyword | I/Q imbalance,I/Q mismatch, | en |
| dc.relation.page | 112 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-11-22 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 5.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
