請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48620
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林致廷(Chih-Ting Lin) | |
dc.contributor.author | Yu-Fu Weng | en |
dc.contributor.author | 翁裕復 | zh_TW |
dc.date.accessioned | 2021-06-15T07:05:00Z | - |
dc.date.available | 2016-01-17 | |
dc.date.copyright | 2011-01-17 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-12-13 | |
dc.identifier.citation | 參考文獻
[1] HIDEYOSHI TOYOKAWA , “Promotive effects of far-infrared ray on full-thickness skin wound healing in rats , ”2003 [2] Su-Wei Hu, “Effect on narrow bandwidth infrared radiation on araiabidopsisthaliana growth and expression, ”2009 [3] Chi-Feng Chen , “Effect on narrow bandwidth infrared radiation on mungbean growth and expression, ”2007 [4] Kovacs G.T., Storment C.W., Halks M.M., Belczynski C.R., Della Santina C.C., Lewis E.R., Maluf N.I., “Silicon-Substrate Microelectrode Arrays for Parallel Recording of Neural Activity in Peripheral and Cranial Nerves,” IEEE Trans Biomed Eng., 1994 Jun, 41(6):567-77. [5] Wittkamp F.M., Cammann K., Amrein M., Reichelt R., “Characterization of microelectrode arrays by means of electrochemical and surface analysis methods,” Sensors and Actuators B: Chemical, 1997 May, 40(1):79-84. [6] Borkholder D.A., Bao J., Maluf N.I., Perl E.R., Kovacs G.T.A., “Microelectrode arrays for stimulation of neural slice preparations,” Journal of Neuroscience Methods, 1997, 77: 61-66. [7] de Haro C., Mas R., Abadal G., Muñoz J., Perez Murano F., Dominguez C., “Electrochemical platinum coatings for improving performance of implantable microelectrode arrays,” Biomaterials., Dec 2002, 23(23): 4515-21. [8] Kawana A., Jimbo Y., “Neurointerface—Interfaces of Neuronal Networks to electrical circuit,” Micro Electro Mechanical Systems, 1999. MEMS apos;99. Twelfth IEEE International Conference on, 17-21 Jan 1999:14-20. [9] Oka H., Shimono K., Ogawa R., Sugihara H., Taketani M., “A new planer multielectrode array for extracellular recording: application to hippocampal acute slice,” Journal of Neuroscience Methods, 1999, 93:61-67. [10] Brain A.H., Cecilia D.R., Robert R., David F.B., David M.R., “A MEMS fabricated flexible electrode array for recording surface field potentials,” Journal of Neuroscience Methods, 2006, 153:147-153. 94 [11] Berdondini L., van der Wal P.D., de Rooij N. F., Koudelka-Hep M., “Development of an electroless post-processing technique for depositing gold as electrode material on CMOS devices,” Sensors and Actuators B: Chemical, May 2004, 99(1): 505-510. [12] Nisch W., Mohr A., Finger W., Fohr K.J., Hammerle H., Gopel W., “Performance of a thin film microelectrode array for monitoring electrogenic cells in vitro” Sensors and Actuators B: Chemical, August 1996, 34: 265-269. [13] Kleps I., Angelescu A., Miu, M., Avram M., Simion M., “Technology of silicon nano and microelectrode arrays for pollution control,” Semiconductor Conference, 2001. CAS 2001 Proceedings. International, 2001, 1(1):39-42. [14] Bai Q., Wise K.D., Anderson D.J., “A High-Yield Microassembly Structure for three-Dimensional Microelectrode Arrays,” IEEE Trans Biomed Eng., Mar 2000, 47(3):281-9. [15] Qing B., Wise K.D., “Single-Unit Neural Recording with Active Microelectrode Arrays,” Biomedical Engineering, IEEE Transactions on, Aug 2001, 48(8):911 – 920. [16] Mathieson K., Kachiguine S., Adams C., Cunningham W., Gunning D., O’Shea V., Smith K. M., Chichilnisky E. J., Litke A. M., Sher A., Rahman M., “Large-Area Microelectrode Arrays of Recording of Neural Signals,” IEEE TRANSACTIONS ON NUCLEAR SCIENCE, Oct. 2004, 51(5): 2027 – 2031. [17] http://www.med64.com/. [18] Bucher V., Schubert M., Kern D., Nisch W., “Light-addressed sub-mm electrodes for extracellular recording and stimulation of excitable cells,” Microelectronic Engineering, 2001, 57:705–712. [19] Bucher V., Brugger J., Kern D., Kim G.M., Schubert M., Nisch W., “Electrical properties of a light-addressable microelectrode chip with high electrode density for extracellular stimulation and recording of excitable cells,” Biosensors and Bioelectronics, May 2001, 16(3):205–210. [20] Bucher V., Brugger J., Kern D., Kim G. M., Schubert M., Nisch W., “Electrical properties of 95 light-addressed sub-mm electrodes fabricated by use of nanostencil-technology,” Microelectronic Engineering, 2002, 61: 971-980. [21] Thomas C.A., Springer P.A., Loeb G.E., Berwald Netter Y., Okun L.M., “A miniature microelectrode array to monitor the bioelectric activity of cultured cells,” 1972,74: 61-66. [22] Kawana A., Jimbo Y., “Neurointerface-Interfaces of Neuronal Networks to Electrical Circuit,” 1999 MEMS. Int. Conf. IEEE. [23] Ok H., Shimono K., Ogawa R., Sugihara H., Taketani M., “A new planar multielectrode array for extracellular recording :application to hippocampal acute slice,” Journal of Neuroscience Methods, 1999, 93: 61–67. [24] Joseph J.P., “A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection,” Biosensors and Bioelectronics, 2003, 18: 1339-1347. [25] Mathieson K., Cunningham W., Marchal J., Melone J., Horn M., Gunning D., Tang R., Wilkinson C., O’Shea V., Smith K.M., Litke A., Chichilnisky E.J., Rahman M., “Detection of retinal signals using position sensitive microelectrode arrays,” Nucl. Instr. Meth. A., 2003, 513:51–56. [26] Egert U., Schlosshauer B., Fennrich S., Nisch W., Fejtl M., Knott T., Mu‥ller T., Ha‥mmerle H., “A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays,” Brain Res, 1998, 2: 229-242. [27] Ya-Qi D., Ming D., HuaMin L., Hescheler J., “Investigation on spontaneous electrical activity of murine embryonic heart using microelectrode arrays,“ Acta Physiologica Sinica, 2006, 58(1) :65-70. [28] Chiappalone M., Davide F., Grattarola M., Pasa, S., Maura G., Marcoli M., Tedesco M.B.,“Networks of spinal cord neurons cultured on microelectrode arrays: response to stimuli and homeostasis,” 2nd International Symposium on 'Image and Signal Processing and Analysis' Pula (Croatia), 2001:645-649. 96 [29] Manos P., “Characterization of rat spinal cord neurons cultured in defined media on microelectrode arrays,” Neuroscience Letters., 1999, 271:179-182. [30] Shimono K, J Neuroscience.2000, 20(22): 8462-8473. [31] Takahashi H., Ejiri T., Nakao M., Matsumoto K., Mase F., Hatamura Y., Hervé T., “Surface Multipoint Microelectrode for Direct Recording of Auditory Evoked Potentials on the Auditory Cortex of a Rat,” Proceedings of 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, October 2000:512-517. [32] Mathieson K., “Detection ofretinal signals using position sensitive microelectrode arrays,” Nuclear Instruments and Methods in Physics Research A, 2003, 513:51–56. [33] Reppel M., “Microelectrode Arrays: A New Tool to Measure Embryonic Heart Activity,” Journal of Electrocardiology, 2004, 37:104-109. [34] Bio-Rad,“PDquest 7.1 manul”2000, Hercules, California 94547 [35]Sullivan et al.,1986. [36]Wang et al., 1986. [37]Cleveland, 1987. [38]Lopata and Cleveland, 1987. [39]Verdier-Pinard et al., 2005. [40]Katzen, 1998. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48620 | - |
dc.description.abstract | 本研究的目的,是想要模擬紅外光照射下老鼠神經細胞的生長情形、蛋白質表現,於是設計一種整合紅外線發射器和二氧化碳培養箱的機器,並使用PC12和加入神經生長因子的PC12作為模擬老鼠神經細胞,來觀察細胞生長情形的表現及蛋白質表現的影響。將PC12和加入神經生長因子的PC12經過波長2um~4.5um之紅外光照射4天後,觀察其細胞覆蓋率和細胞個數以了解生長狀態,再進而使用蛋白質二維電泳分析法分析其表現蛋白質表現,並利用質譜分析出有差異性的蛋白質。實驗結果顯示PC12和加入神經生長因子的PC12發現在紅外光照射下會導致在細胞生長上和蛋白質量的變化。而在紅外光照射1天後,變化最明顯。此外並製作合適的神經細胞晶片,將細胞培養晶片上,來量測細胞電訊號的變化。 | zh_TW |
dc.description.abstract | The purpose of this study is to simulate the rat neuron cell growth and protein expression in infrared radiation, and design a machine which combine the infrared emitter and carbon dioxide incubator, and utilize the above cells to simulate the rat neuron cells, and to know the cell growth by observing the cell coverage and cell numbers. After 4 days exposure to infrared radiation, the cell coverage and cell numbers of PC12 and PC12 which treated with nerve growth were measured. Two dimensional protein gel electrophoresis and mass spectrometry are also applied to observe the protein expression pattern. From the results, the cell growth and protein quality under infrared radiation are changed. The difference is visible in infrared radiation 1 day. We also design the neuron chip to measure the neuron electric signals. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T07:05:00Z (GMT). No. of bitstreams: 1 ntu-99-R97943083-1.pdf: 5156895 bytes, checksum: 3295de839bf6b800b98af74f9e8bed69 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 目錄
謝辭 i 摘要 ii Abstract iii 目錄 I 圖目錄 III 第1章 序論 1 1.1 前言 1 1.2 研究動機 3 1.3 論文架構 4 第2章 文獻回顧 5 2.1紅外光與動植物體影響 5 2.2 微電極陣列晶片 7 2.3 結論 9 第3章 實驗原理與流程 10 3.1 簡介 10 3.2 材料 11 3.2.1 老鼠PC12細胞 11 3.2.2 Nerve growth factor 12 3.3 紅外燈與二養化碳培養箱 13 3.3.1 紅外燈機構 13 3.3.2 二養化碳培養箱 15 3.4 實驗細胞培養流程圖 17 3.5 實驗細胞處理及蛋白質濃度量測 19 3.6二維電泳 28 3.6.1原理 28 3.6.2二維電泳第一維─Isoelectric focusing(IEF) 29 3.6.3二維電泳第二維─Sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE) 33 3.7 Coomassie brilliant blue(CBR)染色和退色 38 3.8 蛋白質分析 40 3.9晶片製作 44 第4章 實驗結果 47 4.1細胞成長變化 47 4.2蛋白質變化分析 52 4.3晶片觀察與量測 60 第5章 結論與未來展望 61 參考文獻 63 | |
dc.language.iso | zh-TW | |
dc.title | 紅外線照射對PC12發育和基因表現影響及微電極晶片 | zh_TW |
dc.title | Effect of Infrared Radiation on Rat PC12 Cells
Growth and Expression and MEA chip | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭柏齡(Po-Ling Kuo),潘建源(Chien-Yuan Pan) | |
dc.subject.keyword | 紅外線,微電極晶片, | zh_TW |
dc.subject.keyword | PC12,MEA chip, | en |
dc.relation.page | 66 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-12-13 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 5.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。