請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48554
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李源弘(Yuan-Haun Lee) | |
dc.contributor.author | Wen-Chi Lai | en |
dc.contributor.author | 賴文啟 | zh_TW |
dc.date.accessioned | 2021-06-15T07:01:49Z | - |
dc.date.available | 2011-02-09 | |
dc.date.copyright | 2011-02-09 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-01-18 | |
dc.identifier.citation | 1. K. E. Spear and J. P. Dismukes, “Synthetic Diamond - Emerging CVD Science and Technology”, Wiley, New York, (1994).
2. M. W. Geis, D. D. Rathman, D. J . Eerlish, R. A. Murphy and W. T. Lindly, IEEE Electron Device Lett. 8 (1987) 341. 3. J. Beason and R. B. Patterson, III, Proceedings of the 1981 Houston Conference on High- Temperature Electronics and Instrumentation, IEEE, New York, (1981) 101. 4. 董家齊、陳寬任,科學發展 354 (2002) 53。 5. M. Kamo, Y. Sato, S. Matsumoto and N. Setaka, J. Cryst. Growth 62 (1983) 642. 6. P. Gonon, E. Gheeraert, A, Deneuville, L. Abello, Thin Solid Films 256 (1995) 13. 7. K. Suzuki, H. Fukuda, T. Yamada, A. Sawabe, Diamond Relat. Mater. 10 (2001) 2153. 8. S. Koizumi, T. Inuzuka, Jpn. J. Appl. Phys 32 (1993) 3920. 9. Y. K. Liu, P. L. Tso, I.N. Lin, Y. Tzeng, Y. C. Chen, Diamond Relat. Mater. 15 (2006) 234. 10. J. G. Buijnsters, L. Vázquez, J.J. ter Meulen, Diamond Relat. Mater. 18 (2009) 1239. 11. X. Li, J. Perkins, R. Collazo, R. J. Nemanich, Z. Sitar, Diamond Relat. Mater. 15 (2006) 1784. 12. K. Kusakabe, A. Sobana, K. Sotowa, T. Imato, T. Tsubota, Diamond Relat. Mater. 12 (2003) 1396. 13. P. K. Chuang, I.J. Teng, W.H. Wang, C.T. Kuo, Diamond Relat. Mater. 14 (2005) 1911. 14. J. K. Yan, Li Chang, Thin Solid Films 498 (2006) 230. 15. M. Suzuki, T. Ono, N. Sakuma, T. Sakai, Diamond Relat. Mater.18 (2009) 1274. 16. W. Mu¨ller-Sebert, E. Wo¨rner, F. Fuchs, C. Wild, P. Koidl, Appl. Phys. Lett. 68 (1996) 759. 17. Y. Mokuno, A. Chayahara, Y. Soda, H. Yamada, Y. Horino, N. Fujimori, Diamond Relat. Mater. 15 (2006) 455. 18. J. E. Graebner, J.A. Mucha, L. Seibles, J. Appl. Phys. 7 (1992) 71. 19. C. Gu, X. Jiang, Z. Jin, Diamond Relat. Mater. 8 (1999) 262. 20. Y. K. Kim, K. Y. Lee, J. Y. Lee, Thin Solid Films 272 (1996) 64. 21. Z. Yu, A. Flodström, Diamond Relat. Mater. 6 (1997) 81. 22. K. Mallika, R. Komanduri, Thin Solid Films 396 (2001) 145. 23. A. Van der Drift, Philips Res. Rep. 22 (1967) 267. 24. B. Wild, P. Koidl, W. MfiUer-Sebert, H. Walcher, R. Kohl, N. Herres, R. Locher, Diamond Relat. Mater. 2 (1993) 158. 25. C. Wild, R. Kohl, N. Herres, W. Miiller-Sebert, P. Koidl, Diamond Relat. Mater. 3 (1994) 373. 26. Y. Liou, Appl. Surf. Sci. 92 (1996) 115. 27. B. R. Huang, W. Z. Ke, Mater. Chem. and Phys. 60 (1999) 143. 28. K. Janischowsky, M. Stammler, L. Ley, Diamond Relat. Mater. 8 (1999) 179. 29. M. S. Raghuveer, S. N. Yoganand, K. Jagannadham, R.L. Lemaster, J. Bailey, Wear 253 (2002) 1194. 30. Q. F. Su, Y. B. Xia, L. J. Wang, J. M. Liu, W. M. Shi, Appl. Surf. Sci. 252 (2006) 8239. 31. Y. Okumura, K. Kanayama, M. Tabaru, S. Kawabata, Proceed. Combust. Inst. 31 (2007) 1831. 32. B. X. Yang, W. Zhu, J. Ahn, H. S. Tan, J. Cryst. Growth 151 (1995) 319. 33. T. Tachibana, Y. Andoa, A. Watanabe, Y. Nishibayashi, K. Kobashi, T. Hirao, K. Oura, Diamond Relat. Mater. 10 (2001) 1569. 34. D. S. Knight, W. B. White, Mater. Res. Soc. 4 (1989) 385. 35. S. Adhikari, S. Aghikary, A. M. M. Omer, M. Rusop, H. Uchida, T. Soga, M. Umeno, Diamond Relat. Mater. 14 (2005) 1824. 36. M. A. Tamor, W.C. Vasell, “Raman ``fingerprinting' of amorphous carbon films” J. Appl. Phys. 76 (1994) 3823. 37. T. Yamada, A. Sawabe , S. Koizumi , T. Kamio, Ken Okano, Diamond Relat. Mater. 11 (2002) 257. 38. Y. Liao, C. Chang, C.H. Li, Z.Y. Ye, G.Z. Wang, R.C. Fang, Thin Solid Films 368 (2000) 303. 39. In-D. Jeon, Chang J. Park, Doh-Y. Kim, Nong M. Hwang, J. Cryst. Growth 223 (2001) 6. 40. Universities’ Carbon Films and Materials Group, “Diamond Growth and Films”, Elsevier Applied Science, London; New York, (1989) 11. 41. D. Jeon, C. J. Park, D. Y. Kim, N. M. Hwang, J. Cryst. Growth 223 (2001) 6. 42. P. W. May, W. J. Ludlow, M. Hannaway, P. J. Heard, J. A. Smith, K. N. Rosser, Chem. Phys. Lett. 446 (2007) 103. 43. A. J. S. Fernandes, M. A. Neto, F. A. Almeida, R. F. Sliva, F.M.Costa, Diamond Relat. Mater. 16 (2007) 757. 44. S. Bühlmann, E. Blank, R. Haubner, B. Lux, Diamond Relat. Mater. 8 (1999) 194. 45. M. S. Raghuveer, S. N. Yoganand, R. L. Lemaster, J. Bailey, Wear 253 (2002) 1194. 46. H. Sein, W. Ahmed, M. Jackson, R. Woodwards, R. Polini, Thin Solid Films 447-448 (2004) 455. 47. C. T. Williams, C. Demetry, R. Li, Ceram. Eng. Sci. Proc. 21 (2000) 697. 48. X. L. Shi, G. Q. Shao, X. L. Duan, Z. Xiong, H.Yang, Diamond Relat. Mater. 15 (2006) 1643. 49. S. Kamiya, H. Takahashi, R. Polini, P. D’Antonio, E. Traversa, Diamond Relat. Mater. 10 (2001) 786. 50. R. Polini, F. Bravi, F. Casadei, P. D’Antonio, E. Traversa, Diamond Relat. Mater. 11(2002) 726. 51. R. Polini, Thin Solid Films 515 (2006) 4. 52. J. B. Donnet, D. Paulmier, H. Oulanti, T. Le Huu, Carbon 42 (2004) 2215. 53. . Q. P. Wei, Z. M. Yu, L. Ma, D. F. Yin and J. Ye, Appl. Surf. Sci. 256 (2009) 1322. 54. B. S. Park, Y. J. Baik, Diamond Relat. Mater. 6 (1997) 1716. 55. J. G. Buijnsters, L. Vázquez, J. J. ter Meulen, Diamond Relat. Mater. 18 (2009) 1239. 56. J. W. Ager, M. D. Drory, Phys. Rev. B 48 (1993) 2601. 57. H. Sein, W. Ahmed, M. Jackson, N. Ali, J. Gracio, Surf. Coat. Technol. 163–164 (2003) 196. 58. H. Sein, W. Ahmed, M. Jackson, R. Woodwards, R. Polini, Thin Solid Films 447–448 (2004) 455. 59. W. Tang, Q. Wang, S. Wang, F. Lu, Diamond Relat. Mater. 10 (2001) 1700. 60. M. L. Zhang, B. B. Gu, L. J. Wang, Y.B. Xia, Vacuum 79 (2005) 84. 61. L. Fayette, M. Mermoux, B. Marcus, F. Brunet, P. Germi, M. Pernet, L. Abello, G. Lucazeau, J. Garden, Diamond Relat. Mater. 4 (1995) 1243. 62. K. Somogyi, B. Theys, A. Deneuville, J. Chevallie, Diamond Relat. Mater. 11 (2002) 332. 63. N. Ishigaki, S.Yugo, Diamond Relat. Mater. 9 (2000) 1646. 64. A. Sawabe, H. Fukuda, T. Suzuki, Y. Ikuhhara, T. Suzuki, Surf. Sci. 467 (2000) L845. 65. L. Fayette, M. Mermoux, B. Marcus, F. Brunet, P. Germi, M. Pernet, L. Abello, G. Lucazeau, J. Garden, Diamond Relat. Mater. 4 (1995) 1243. 66. M. Zhang, B. Gu, L. Wang, Y. Xia, Phys. Lett. A. 332 (2004) 320. 67. B. Q. Yang, X. P. Wang, H. X. Zhang, Z. B. Wang and P. X. Feng, Mater. Lett. 62 (2008) 1547-1550. 68. S. Bühlmann, E. Blank, R. Haubner and B. Lux, Diamond Relat. Mater. 8 (1999) 194. 69. X. M. Meng, S. J. Askari, W. Z. Tang, L. F. Hei, F. Y. Wang, C. S. Jiang and F. X. Lu, Vacuum 82 (2008) 543. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48554 | - |
dc.description.abstract | 具有優選方位鑽石膜使用微波電漿化學氣相沉積法製作,其參數為: 1200 W的微波功率、腔體壓力為110 torr、甲烷與氫氣的比例為1/20、處理時間為0.5-4.0 h。在鑽石膜生長2.0-4.0 h後,鑽石膜表面形態呈現四方形結構且規則的堆疊,此形態從XRD數據顯示是{111}結構鑽石膜,但表面形態偏向生長出{110}優選方位的鑽石結構。此現象是在生長初期鑽石先由(111)矽晶片異質磊成長(heteroepitaxial growth)而生成球狀鑽石,到生長4.0 h後形成正方且堆疊的形態,由3.0 h沉積後的TEM明視野像得知堆疊層間距為200 nm。最後結果顯示在不同時間沉積成長的鑽石膜,具有球形與{110}四方形鑽石2個型態特徵。由 I-V曲線,可以知道在沉積4 h後的薄膜較符合歐姆接觸特性,因在此形態下鑽石膜表面粗糙度最小。
為了避免鈷造成負面效應,在含6 wt %鈷的碳化鎢(WC-6 % Co)底材上生長鑽石膜處理前,在基材表面上覆蓋鎢粉而增加鑽石膜附著度。鑽石沉積過程中,鎢粉會轉變成W2C 和WC,其WC可與碳原子形成鑽石膜,所以鎢粉會幫助抓取碳並在附近沉積成鑽石,使鑽石顆粒圍繞著鎢粉成核和生長。由洛氏硬度測試後的表面觀察,發現較小顆粒鎢粉的間距與空隙相對較小,所以較小鎢粉有較好附著性,故鎢粉間隙是影響附著性的因素之一。最後,再由拉曼、硬度與附著性測試知道使用2.0 μm鎢粉前處理碳化鎢試片,可以使鑽石膜有好品質、高硬度(可達27.78 GPa)與好的附著性。 | zh_TW |
dc.description.abstract | The textured orientation of diamond films is elaborated by microwave plasma chemical vapor deposition (MPCVD) in 1200 W, 110 torr, CH4/H2=1/20, and 0.5-4.0 h deposition time. The special morphology revealed the rectangular structure stacked regularly on diamond films after growing 2.0-4.0 h. The {111} textured orientation of diamond films grew {110} preferred orientation on the surface that measured by XRD results. The formation of the diamond film epitaxial formed the textured octahedron on the ball-shape (or cauliflower-like) diamonds in an early duration 0.5 h, then the surface of diamond films extended to pile the rectangular structure at 4.0 h. And the width of the tier was about 200 nm in the 3.0 h deposition time by TEM images. The result revealed that textured diamond films in different deposition time had two morphology properties of typical ball-shape and rectangular diamonds in the growth period. The I-V characteristics of the oriented diamond films in 4.0 h deposition time was more conform to the ohmic contact.
To increase the adhesion of diamond films and avoid the negative effects of using cobalt, previous treatments have employed tungsten particles to cover the surface of the 6 wt.% cobalt-cemented tungsten carbide (WC-Co) substrate. The surface of the tungsten particles is transformed into W2C and WC, which attracts and traps carbon. Through the process of nucleation, the carbon forms around the tungsten particles, thereby satisfying the conditions necessary for the formation of diamond film. Rockwell indentation tests indicate that addition of tungsten particles promotes the interfacial adhesion of diamond films with WC-Co substrates. We determined that using smaller tungsten particles decreased the number of gaps and cavities on the surface of the substrate, thereby enhancing the adhesion of the diamond film. Using Raman spectroscopy, we determined that diamond films of excellent quality with good adhesive properties and a hardness level as high as 27.78 GPa could be produced following pretreatment with 2.0 μm tungsten particles. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T07:01:49Z (GMT). No. of bitstreams: 1 ntu-100-D92527013-1.pdf: 6196828 bytes, checksum: 22d4d2b28a19cd21b5c67d0b9e292378 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 目 錄
致謝 I 中文摘要 II Abstract III 圖目錄 IV 表目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 1-3 未來方向 3 第二章 文獻回顧與理論 4 2-1 鑽石結構與特性 4 2-2 製備鑽石的方法 6 2-3 微波電漿化學氣相沉積(MPCVD)法 8 2-4 影響鑽石薄膜生長的因素 9 2-5 鑽石膜的成長 13 2-6 具結構鑽石膜之應用 18 2-7 鑽石膜量測方法 18 2-8 碳化鎢的特性 22 2-9 碳化鎢上沉積鑽石薄膜 22 2-10 基材表面粗糙度和晶粒大小與鑽石膜附著性的影響 24 2-11 鈷顆粒經熱處理於鑽石膜表面擴散過程 25 2-12 鎢與碳化鎢在熱處理過程中的變化 25 2-13 使用不同材質顆粒對基材前處理的影響 28 2-14 由拉曼計算碳化鎢與鑽石膜之間應力大小 28 第三章 實驗步驟與方法 31 3-1優選方位鑽石膜結構探討 31 3-1-1 試片前處理 31 3-1-2 沉積鑽石薄膜 31 3-1-3 分析儀器 31 3-2 改良碳化鎢上生長鑽石膜的附著性 37 3-2-1 試片前處理 37 3-2-2 沉積鑽石薄膜 37 3-2-3 分析儀器 37 第四章 實驗結果與討論 40 4-1 優選方位鑽石膜結構探討 40 4-1-1 鑽石膜的生長形態 40 4-1-2 鑽石薄膜的結構 43 4-1-3 TEM分析 45 4-1-4 拉曼光譜分析 49 4-1-5不同形態鑽石薄膜的電學性質 52 4-1-6 優選方位鑽石薄膜之成長 61 4-2 改良碳化鎢上生長鑽石膜的附著性 64 4-2-1 由SEM觀察鎢粉顆粒大小 64 4-2-2 碳化鎢底材經過鎢粉處理後的XRD 67 4-2-3 鑽石生長於碳化鎢後的表面形態 69 4-2-4 碳化鎢試片鑽石沉積後的拉曼特性 75 4-2-5 鑽石膜的硬度與楊氏係數 78 4-2-6 鑽石膜與碳化鎢的附著性 80 4-2-7 鑽石膜、碳化鎢與鎢的附著機制 86 第五章 結論 88 5-1 優選方位鑽石膜結構探討 88 5-2 改良碳化鎢上生長鑽石膜的附著性 89 參考文獻 90 | |
dc.language.iso | zh-TW | |
dc.title | 微波電漿氣相沉積鑽石膜結構與附著性改良之研究 | zh_TW |
dc.title | The study of textured diamond films and improved adhesion via microwave plasma chemical vapor deposition | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-1 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 張火成(Hou-Cheng Chang),吳玉祥(Yu-Shiang Wu) | |
dc.contributor.oralexamcommittee | 張文固(Wen-Ku Chang),陳軍華(Chun-Hua Chen) | |
dc.subject.keyword | 鑽石膜,{110}優選方位,四方形,層狀,歐姆接觸,鎢粉,附著度, | zh_TW |
dc.subject.keyword | diamond film,{110} preferred orientation,rectangular structure,tier,ohmic contact,tungsten powder,adhesion, | en |
dc.relation.page | 96 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-01-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 6.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。