請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48483完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝長富(Chang-Fu Hsieh) | |
| dc.contributor.author | Su-Wei Fan | en |
| dc.contributor.author | 范素瑋 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:58:41Z | - |
| dc.date.available | 2012-02-20 | |
| dc.date.copyright | 2011-02-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-01-26 | |
| dc.identifier.citation | Aiba, M. and T. Nakashizuka. 2007. Variation in juvenile survival and related physiological traits among dipterocarp species co-existing in a Bornean forest. J. Veg. Sci. 18: 379-388.
Albrecht, M. A. and B. C. McCarthy. 2009. Seedling establishment shapes the distribution of shade-adapted forest herbs across a topographical moisture gradient. J. Ecol. 97: 1037-1049. Ares, A., S. D. Berryman and K. J. Puettmann. 2009. Understory vegetation response to thinning disturbance of varying complexity in coniferous stands. Appl. Veg. Sci. 12: 472-487. Auclair, A. N. and F. G. Goff. 1971. Diversity relations of upland forests in the western Great Lakes area Am. nat. 105: 499-528. Augspurger, C. K. 1984. Light requirements of neotropical tree seedlings - a comparative-study of growth and survival. J. Ecol. 72: 777-795. Augusto, L., J. L. Dupouey and J. Ranger. 2003. Effects of tree species on understory vegetation and environmental conditions in temperate forests. Ann. For. Sci. 60: 823-831. Band, L. E. and E. F. Wood. 1988. Strategies for large-scale, distributed hydrologic simulation. Appl. Math. Comput. 27: 23-37. Barbier, S., P. Balandier and F. Gosselin. 2009. Influence of several tree traits on rainfall partitioning in temperate and boreal forests: a review. Ann. For. Sci. 66. Barbier, S., F. Gosselin and P. Balandier. 2008. Influence of tree species on understory vegetation diversity and mechanisms involved - A critical review for temperate and boreal forests. For. Ecol. Manag. 254: 1-15. Barnes, P. W. and A. T. Harrison. 1982. Species distribution and community organization in a Nebraska Sandhills mixed prairie as influenced by plant/soil-water relationships. Oecologia 52: 192-201. Bartemucci, P., C. Messier and C. D. Canham. 2006. Overstory influences on light attenuation patterns and understory plant community diversity and composition in southern boreal forests of Quebec. Can. J. For. Res. 36: 2065-2079. Bataineh, A. L., B. P. Oswald, M. M. Bataineh, H. M. Williams and D. W. Coble. 2006. Changes in understory vegetation of a ponderosa pine forest in northern Arizona 30 years after a wildfire. For. Ecol. Manag. 235: 283-294. Beatty, S. W. 1984. Influence of microtopography and canopy species on spatial patterns of forest understory plants. Ecology 65: 1406-1419. Beatty, S. W. 2003. Habitat hetertogeneity and maintenance of species in understory communities. In: Gilliam, F. S. and M. R. Roberts (eds.), The herbaceous layer in forest of eastern north America Oxford university press, New York, US, pp. 177-197. Beaudet, M. and C. Messier. 2002. Variation in canopy openness and light transmission following selection cutting in northern hardwood stands: an assessment based on hemispherical photographs. Agric. For. Meteorol. 110: 217-228 Bebber, D., N. Brown, M. Speight, P. Moura-Costa and Y. S. Wai. 2002. Spatial structure of light and dipterocarp seedling growth in a tropical secondary forest. For. Ecol. Manag. 157: 65-75. Behera, S. K. and M. K. Misra. 2006. Floristic and structure of the herbaceous vegetation of four recovering forest stands in the Eastern Ghats of India. Biodivers. Conserv. 15: 2263-2285. Berger, A. L. and K. J. Puettmann. 2000. Overstory composition and stand structure influence herbaceous plant diversity in the mixed aspen forest of northern Minnesota. Am. Midl. Nat. 143: 111-125. Berkowitz, A. R., C. D. Canham and V. R. Kelly. 1995. Competition vs facilitation of tree seedling growth and survival in early successional communities. Ecology 76: 1156-1168. Bertness, M. D. and R. Callaway. 1994. Positive interactions in communities. Trends Ecol. Evol. 9: 191-193. Besag, J. 1974. Spatial interaction and statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B. Methodol. 36: 192-236. Beven, K. J. 1986. Runoff production and flood frequency in catchments of order n: An alternative approach. In: Gupta, V. K. et al. (eds.), Scale problems in hydrology : runoff generation and basin response. D. Reidel Pub. Co., c, Dordrecht, Holland, pp. 107-131. Blackburn, T. M. and K. J. Gaston. 1996. Spatial patterns in the species richness of birds in the New World. Ecography 19: 369-376. Bolstad, P. V. and S. T. Gower. 1990. Estimation of leaf-area index in 14 southern Wisconsin forest stands using a portable radiometer. Tree Physiol. 7: 115-124. Borcard, D. and P. Legendre. 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model. 153: 51-68. Borcard, D., P. Legendre, C. Avois-Jacquet and H. Tuomisto. 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85: 1826-1832. Bratton, S. P. 1976. Resource division in an understory herb community - responses to temporal and microtopographic gradients. Am. Nat. 110: 679-693. Bray, J. R. 1956. Gap phase replacement in a maple-bass wood forest. Ecology 37: 598-600. Brooker, R. W. and T. V. Callaghan. 1998. The balance between positive and negative plant interactions and its relationship to environmental gradients: a model. Oikos 81: 196-207. Brooker, R. W., F. T. Maestre, R. M. Callaway, C. L. Lortie, L. A. Cavieres, G. Kunstler, P. Liancourt, K. Tielborger, J. M. J. Travis, F. Anthelme, C. Armas, L. Coll, E. Corcket, S. Delzon, E. Forey, Z. Kikvidze, J. Olofsson, F. Pugnaire, C. L. Quiroz, P. Saccone, K. Schiffers, M. Seifan, B. Touzard and R. Michalet. 2008. Facilitation in plant communities: the past, the present, and the future. J. Ecol. 96: 18-34. Brosofske, K. D., J. Chen and T. R. Crow. 2001. Understory vegetation and site factors: implications for a managed Wisconsin landscape For. Ecol. Manag. 146: 75-87. Brubaker, S. C., A. J. Jones, D. T. Lewis and K. Frank. 1993. Soil properties associated with landscape position. Soil Sci. Soc. Am. J. 57: 235-239. Buell, M. F. and R. L. Wilbur. 1948. Life-form spectra of the hardwood forests of the Itasca Park region, Minnesota. Ecology 29: 352-359. Cain, S. A. 1950. Life-forms and phytoclimate. Bot. Rev. 16: 1-32. Callaway, R. M. and L. R. Walker. 1997. Competition and facilitation: A synthetic approach to interactions in plant communities. Ecology 78: 1958-1965. Canham, C. D. 1988. An index for understory light levels in and around canopy gaps. Ecology 69: 1634-1638. Canham, C. D., J. S. Denslow, W. J. Platt, J. R. Runkle, T. A. Spies and P. S. White. 1990. Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Can. J. For. Res. 20: 620-631. Canham, C. D., A. C. Finzi, S. W. Pacala and D. H. Burbank. 1994. Causes and consequences of resource heterogeneity in forests - Interspecific variation in light transmission by canopy trees. Can. J. For. Res. 24: 337-349. Cantlon, J. E. 1953. Vegetation and microclimates on north and south slopes of Cushetunk Mountain, New Jersey. Ecol. Monogr. 23: 241-270. Cavieres, L. A., E. I. Badano, A. Sierra-Almeida and M. A. Molina-Montenegro. 2007. Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high Andes of central Chile. Arct. Antarct. Alp. Res. 39: 229-236. Cavieres, L. A., C. L. Quiroz, M. A. Molina-Montenegro, A. A. Munoz and A. Pauchard. 2005. Nurse effect of the native cushion plant Azorella monantha on the invasive non-native Taraxacum officinale in the high-Andes of central Chile. Perspect. Plant Ecol. Evol. Syst. 7: 217-226. Chang, C.-Y. 2008. Effects of wind speed and other environmental factors on sap flux of three tree species in a subtropical rainforest of Nanjenshan, South Taiwan [dissertation]. Institute of ecology and evolutionary biology, National Taiwan University, Taipei, Taiwan. Chang, L.-m. 1965. An ecological study of tropical rain forest of Taiwan (1) studies on the environmental factors and plant physiognomy. Bull. Taiwan. For. Res. Inst. 111: 1-18. Chang, L.-m. 1967 Ecological studies of monsoon forest of Hengchun peninsula. Bull. Taiwan. For. Res. Inst. 145: 1-22. Chao, W.-C., K.-J. Chao, G.-Z. M. Song and C.-F. Hsieh. 2007. Species composition and structure of the lowland subtropical rainforest at Lanjenchi, southern Taiwan. Taiwania 52: 253-269. Chao, W.-C., G.-Z. M. Song, K.-J. Chao, C.-C. Liao, S.-W. Fan, S.-H. Wu, T.-H. Hsieh, I.-F. Sun, Y.-L. Kuo and C.-F. Hsieh. 2010. Lowland rainforests in southern Taiwan and Lanyu, at the northern border of Paleotropics and under the influence of monsoon wind. Plant Ecol. 210: 1-17. Chen, H. Y. H. 1997. Interspecific responses of planted seedlings to light availability in interior British Columbia: survival, growth, allometric patterns, and specific leaf area. Can. J. For. Res. 27: 1383-1393. Chen, H. Y. H. and K. Klinka. 1997. Light availability and photosynthesis of Pseudotsuga menziesii seedlings grown in the open and in the forest understory. Tree Physiol. 17: 23-29. Chen, H. Y. H., K. Klinka and G. J. Kayahara. 1996. Effects of light on growth, crown architecture, and specific leaf area for naturally established Pinus contorta var. latifolia and Pseudotsuga menziesii var. glauca saplings. Can. J. For. Res. 26: 1149-1157. Chen, H. Y. H., S. Legare and Y. Bergeron. 2004. Variation of the understory composition and diversity along a gradient of productivity in Populus tremuloides stands of northern British Columbia, Canada. Can. J. Bot. 82: 1314-1323. Chen, Y.-F. and T.-C. Huang. 1986. Vegetation analysis in Nanjenshan area. Annu. Taiwan Mus. 29: 189-258. Chen, Z.-S., C.-F. Hsieh, F.-Y. Jiang, T.-H. Hsieh and I.-F. Sun. 1997. Relationship of soil properties to topographphy and vegetation in a subtropical rain forest in southern Taiwan. Plant Ecol. 132: 229-241. Cheng, Y.-B. 1992. The understory of the subtropical rain forest in Nanjenshan area [dissertation]. department of botany, National Taiwan University, Taipei. Chiou, C. R., G. Z. M. Song, J. H. Chien, C. F. Hsieh, J. C. Wang, M. Y. Chen, H. Y. Liu, C. L. Yeh, Y. J. Hsia and T. Y. Chen. 2010. Altitudinal distribution patterns of plant species in Taiwan are mainly determined by the northeast monsoon rather than the heat retention mechanism of Massenerhebung. Bot. Stud. 51: 89-97. Clark, D. B. and D. A. Clark. 1989. The role of physical damage in the seedling mortality regime of a neotropical rainforest. Oikos 55: 225-230. Clark, D. B., D. A. Clark and J. M. Read. 1998a. Edaphic variation and the mesoscale distribution of tree species in a neotropical rain forest. J. Ecol. 86: 101-112. Clark, J. S., E. Macklin and L. Wood. 1998b. Stages and spatial scales of recruitment limitation in southern Appalachian forests. Ecol. Monogr. 68: 213-235. Comita, L. S., M. Uriarte, J. Thompson, I. Jonckheere, C. D. Canham and J. K. Zimmerman. 2009. Abiotic and biotic drivers of seedling survival in a hurricane-impacted tropical forest. J. Ecol. 97: 1346-1359. Condit, R., P. S. Ashton, P. Baker, S. Bunyavejchewin, S. Gunatilleke, N. Gunatilleke, S. P. Hubbell, R. B. Foster, A. Itoh, J. V. LaFrankie, H. S. Lee, E. Losos, N. Manokaran, R. Sukumar and T. Yamakura. 2000. Spatial patterns in the distribution of tropical tree species. Science 288: 1414-1418. Connell, J. H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and rain forest trees. In: den Boer, P. and G. Gradwell (eds.), Dynamics of Populations. Wagenigen, Center for Agricultural Publishing and Documentation, The Netherlands, pp. 298-310. Cook, R. E. 1979. Patterns of juvenile mortality and recruitment in plants. In: Solbrig, O. T. et al. (eds.), Topics in plant population biology. Columbia University Press, New York, USA, pp. 206-231. Costa, F. and W. Magnusson. 2002. Selective logging effects on abundance, diversity, and composition of tropical understory herbs. Ecol. Appl. 12: 807-819. Cressie, N. A. C. 1993. Statistics for spatial data. John Wiley & Sons, Inc., New York, USA, 900.pp. Dale, M. R. T. 2000. Spatial pattern analysis in plant ecology. Cambridge University Press, Cambridge, England, 326.pp. Dale, M. R. T. and M. J. Fortin. 2002. Spatial autocorrelation and statistical tests in ecology. Ecoscience 9: 162-167. Dale, M. R. T. and D. A. Macisaac. 1989. New methods for the analysis of spatial pattern in vegetation. J. Ecol. 77: 78-91. Dalling, J. W., S. P. Hubbell and K. Silvera. 1998. Seed dispersal, seedling establishment and gap partitioning among tropical pioneer trees. J. Ecol. 86: 674-689. Daniels, W. L., L. W. Zelazny and C. J. Everett. 1987. Virgin hardwood forest soils of the southern Appalachian Mountains 2. Weathering, mineralogy, and chemical-properties. Soil Sci. Soc. Am. J. 51: 730-738. Daws, M. I., T. R. H. Pearson, D. Burslem, C. E. Mullins and J. W. Dalling. 2005. Effects of topographic position, leaf litter and seed size on seedling demography in a semi-deciduous tropical forest in Panama. Plant Ecol. 179: 93-105. De Grandpre, L., D. Gagnon and Y. Bergeron. 1993. Changes in the understory of canadian southern boreal forest after fire. J. Veg. Sci. 4: 803-810. Dech, J. P., L. M. Robinson and P. Nosko. 2008. Understorey plant community characteristics and natural hardwood regeneration under three partial harvest treatments applied in a northern red oak (Quercus rubra L.) stand in the Great Lakes-St. Lawrence forest region of Canada. For. Ecol. Manag. 256: 760-773. Denslow, J. S., E. Newell and A. M. Ellison. 1991. The effect of understory palms and cyclanths on the growth and survival of Inga seedlings. Biotropica 23: 225-234. Denslow, J. S., A. L. Uowolo and R. F. Hughes. 2006. Limitations to seedling establishment in a mesic Hawaiian forest. Oecologia 148: 118-128. Desteven, D. 1991. Experiments on mechanisms of tree establishment in old-field succession - seedling survival and growth. Ecology 72: 1076-1088. Diels, L. 1918. Pflanzengeographie (Phytogeography). G. J. Goschen, Berlin, 166.pp. Dirzo, R., C. C. Horvitz, H. Quevedo and M. A. Lopez. 1992. The effects of gap size and age on the understorey herb community of a tropical mexican rain-forest. J. Ecol. 80: 809-822. Dixon, M. and J. Grace. 1984. Effect of wind on the transpiration of young trees. Ann. Bot. 53: 811-819. Dray, S., P. Legendre and P. R. Peres-Neto. 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196: 483-493. Drezner, T. D., P. L. Fall and J. C. Stromberg. 2001. Plant distribution and dispersal mechanisms at the Hassayampa River Preserve, Arizona, USA. Glob. Ecol. Biogeogr. 10: 205-217. Einsmann, J. C., R. H. Jones, M. Pu and R. J. Mitchell. 1999. Nutrient foraging traits in 10 co-occurring plant species of contrasting life forms. J. Ecol. 87: 609-619. Engler, A. 1879, 1882. Versuch einer Entwicklungsgeschichte der Pflanzenwelt, insbesondere der Florengebiete, seit der Tertiärperiode. I-II., Leipzig, Germany, 202, 386 pp. Enoki, T. and A. Abe. 2004. Saplings distribution in relation to topography and canopy openness in an evergreen broad-leaved forest. Plant Ecol. 173: 283-291. Facelli, J. M. 2008. Specialized strategies I: seedlings in stressful environments. In: Leck, M. A. et al. (eds.), Seedling ecology and evolution. Cambridge University Press, Cambridge, UK, pp. 56-78. Facelli, J. M. and S. T. A. Pickett. 1991a. Plant litter - Its dynamics and effects on plant community structure. Bot. Rev. 57: 1-32. Facelli, J. M. and S. T. A. Pickett. 1991b. Plant litter - Light interception and effects on an old-field plant community. Ecology 72: 1024-1031. Faith, D. P., P. R. Minchin and L. Belbin. 1987. Compositional dissimilarity as a robust Measure of ecological distance. Vegetatio 69: 57-68. Fan, K.-H. 2005. Effects of northeasterly monsoon winds on morphology and physiological activities of windward and leeward tree seedling at Nanjenshan [dissertation]. Department of forestry, National Ping-tung university of science and technology, Ping-tung. Fan, S.-W. and C.-F. Hsieh. 2010a. Seedling composition and facilitative effects of the herbaceous layer in a monsoon-affected forest in Nanjenshan, southern Taiwan. Taiwania 55: 373-385. Fan, S.-W. and C.-F. Hsieh. 2010b. Spatial autocorrelation patterns of understory plant species in a subtropical rainforest at Lanjenchi, southern Taiwan. Taiwania 55: 160-171. Ferree, D. C. and F. R. Hall. 1981. Influence of physical stress on photosynthesis and transpiration of apple leaves. J. Am. Soc. Hortic. Sci. 106: 348-351. Fine, P. V. A., I. Mesones and P. D. Coley. 2004. Herbivores promote habitat specialization by trees in amazonian forests. Science 305: 663-665. Fladeland, M. M., M. S. Ashton and X. H. Lee. 2003. Landscape variations in understory PAR for a mixed deciduous forest in New England, USA. Agric. For. Meteorol. 118: 137-141. Fluckiger, W., J. J. Oertli and H. Fluckigerkeller. 1978. Effect of wind gusts on leaf growth and foliar water relations of aspen. Oecologia 34: 101-106. Ford, E. D. and J. D. Deans. 1978. Effects of canopy structure on stemflow, throughfall and interception loss in a young Sitka spruce plantation. J. Appl. Ecol. 15: 905-917. Ford, E. D. and E. Renshaw. 1984. The interpretation of process from pattern using two-dimensional spectral-analysis - modeling single species patterns in vegetation. Vegetatio 56: 113-123. Ford, W. M., R. H. Odom, P. E. Hale and B. R. Chapman. 2000. Stand-age, stand characteristics, and landform effects on understory herbaceous communities in southern Appalachian cove-hardwoods. Biol. Conserv. 93: 237-246. Forget, P. M. 1990. Seed-dispersal of Vouacapoua americana (Caesalpiniaceae) by caviomorph rodents in French-Guiana. J. Trop. Ecol. 6: 459-468. Forget, P. M., K. Kitajima and R. B. Foster. 1999. Pre- and post-dispersal seed predation in Tachigali versicolor (Caesalpiniaceae): effects of timing of fruiting and variation among trees. J. Trop. Ecol. 15: 61-81. Fortin, M.-J. and M. R. T. Dale. 2005. Spatial analysis: a guide for ecologists. Cambridge University Press, Cambridge, U.K., 365.pp. Fox, J. 2006. Structural equation modeling with the sem package in R. Struct. Equ. Modeling 13: 465-486. Galiano, E. F. 1982. Detection and measurement of one-species patterns in grasslands. Acta Oecol. 3: 269-278. Gauch, H. G. and E. L. Stone. 1979. Vegetation and soil pattern in a mesophytic forest at Ithaca, New York. Am. Midl. Nat. 102: 332-345. Gaussen, H. 1954. Géographie des plantes. Colin, Paris, 224.pp. George, L. O. and F. A. Bazzaz. 1999a. The fern understory as an ecological filter: emergence and establishment of canopy-tree seedlings. Ecology 80: 833-845. George, L. O. and F. A. Bazzaz. 1999b. The fern understory as an ecological filter: growth and survival of canopy-tree seedlings. Ecology 80: 846-856. Getis, A. and D. A. Griffith. 2002. Comparative spatial filtering in regression analysis. Geographical Analysis 34: 130-140. Gilliam, F. S. 2007. The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience 57: 845-858. Gilliam, F. S. and M. R. Roberts. 2003a. Conceptual framework for studies of the herbaceous layer. In: Gilliam, F. S. and M. R. Roberts (eds.), The herbaceous layer in forest of eastern north America. Oxford University Press, New York, USA, pp. 3-11. Gilliam, F. S. and M. R. Roberts. 2003b. Interactions between the herbaceous layer and overstory canopy of eastern forests - a mechanism for linkage. In: Gilliam, F. S. and M. R. Roberts (eds.), The herbaceous layer in forest of eastern north America. Oxford university press, New York, pp. 198-223. Gittins, R. 1968. Trend-surface analysis of ecological data. J. Ecol. 56: 845-869. Glasgow, L. S. and G. R. Matlack. 2007. Prescribed burning and understory composition in a temperate deciduous forest, Ohio, USA. For. Ecol. Manag. 238: 54-64. Good, R. 1974. The geography of flowering plants, London, UK, 557.pp. Goodall, D. W. 1978. Numerical classification. In: Whittaker, R. H. (ed.), Classification of plant communities. Dr W. Junk, the Hague, the Netherlands, pp. 249-286. Gracia, M., F. Montane, J. Pique and J. Retana. 2007. Overstory structure and topographic gradients determining diversity and abundance of understory shrub species in temperate forests in central Pyrenees (NE Spain). For. Ecol. Manag. 242: 391-397. Griffith, D. A. 1996. Spatial autocorrelation and eigenfunctions of the geographic weights matrix accompanying geo-referenced data. Can. geogr. 40: 351-367. Griffith, D. A. 2000a. Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses. Linear Algebra Appl. 321: 95-112. Griffith, D. A. 2000b. A linear regression solution to the spatial autocorrelation problem. J. Geogr. Syst. 2: 141-156. Griffith, D. A. 2003. Spatial autocorrelation and spatial filtering : Gaining understanding through theory and scientific visualization. Springer, New York, USA, 247.pp. Griffith, D. A. 2004. A spatial filtering specification for the autologistic model. Environ. Plan. A 36: 1791-1811. Griffith, D. A. and P. R. Peres-Neto. 2006. Spatial modeling in ecology: The flexibility of eigenfunction spatial analyses. Ecology 87: 2603-2613. Gumpertz, M. L., J. M. Graham and J. B. Ristaino. 1997. Autologistic model of spatial pattern of Phytophthora epidemic in bell pepper: Effects of soil variables on disease presence. J. Agric. Biol. Environ. Stat. 2: 131-156. Hagen-Thorn, A., I. Callesen, K. Armolaitis and B. Nihlgard. 2004. The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. For. Ecol. Manag. 195: 373-384. Haining, R. 1990. Spatial data analysis in the social and environmental sciences Cambridge University Press, New York, USA, 409.pp. Hall, J. S., P. M. S. Ashton and G. P. Berlyn. 2003. Seedling performance of four sympatric Entandrophragma species (Meliaceae) under simulated fertility and moisture regimes of a central african rain forest. J. Trop. Ecol. 19: 55-66. Halleck, L. F., J. M. Sharpe and X. M. Zou. 2004. Understorey fern responses to post-hurricane fertilization and debris removal in a Puerto Rican rain forest. J. Trop. Ecol. 20: 173-181. Hardesty, B. D., S. P. Hubbell and E. Bermingham. 2006. Genetic evidence of frequent long-distance recruitment in a vertebrate-dispersed tree. Ecol. Lett. 9: 516-525. Harms, K. E., J. S. Powers and R. A. Montgomery. 2004. Variation in small sapling density, understory cover, and resource availability in four Neotropical forests. Biotropica 36: 40-51. Harper, J. L. 1977. The population biology of plants. Academic Press, New York, NY, US, 892.pp. Harrington, T. B. 2006. Plant competition, facilitation, and other overstory-understory interactions in longleaf pine ecosystems. In: Jose, S. et al. (eds.), The Longleaf Pine Ecosystem- Ecology, Silviculture, and Restoration. Springer, New York, USA, pp. 135-156. Harrington, T. B., C. M. Dagley and M. B. Edwards. 2003. Above- and belowground competition from longleaf pine plantations limits performance of reintroduced herbaceous species. For. Sci. 49: 681-695. Hart, S. A. and H. Y. H. Chen. 2006. Understory vegetation dynamics of North American boreal forests. Crit. Rev. Plant Sci. 25: 381-397. Hart, S. A. and H. Y. H. Chen. 2008. Fire, logging, and overstory affect understory abundance, diversity, and composition in boreal forest. Ecol. Monogr. 78: 123-140. Hayek, A. 1926. Allgemeine Pflanzengeographie. Gebrüder Borntraeger, Berlin, Germany, 409.pp. He, F., P. Legendre and J. V. Lafrankie. 1997. Distribution patterns of tree species in a Malaysian tropical rain forest. J. Veg. Sci. 8: 105-114. He, F. L., J. Zhou and H. T. Zhu. 2003. Autologistic regression model for the distribution of vegetation. J. Agric. Biol. Environ. Stat. 8: 205-222. Heiligmann, R. B., G. Schneider and D. P. White. 2006. Effects of wind barrier protection on eleven-year growth of black walnut seedlings. North. J. Appl. For. 23: 83-86. Hicks, D. J. 1980. Intrastand distribution patterns of southern appalachian cove forest herbaceous species. Am. Midl. Nat. 104: 209-223. Hill, M. O. and H. G. Gauch. 1980. Detrended correspondence analysis - an improved ordination technique. Vegetatio 42: 47-58. Holdaway, R. J. and A. D. Sparrow. 2006. Assembly rules operating along a primary riverbed-grassland successional sequence. J. Ecol. 94: 1092-1102. Horn, H. S. 1971. The adaptive geometry of trees. Princeton University Press, Princeton, N.J. , USA, 144.pp. Hoshizaki, K., W. Suzuki and S. Sasaki. 1997. Impacts of secondary seed dispersal and herbivory on seedling survival in Aesculus turbinata. J. Veg. Sci. 8: 735-742. Hsieh, C.-F. 1995. The subtropical rainforest in Nanjenshan. In: Hong, F.-W. (ed.), Proceedings of Forestry Research Institute Hundred Anniversary Symposium (I): Symposium of Forest Vegetation Ecology in Taiwan: Taiwan Forestry Research Institute. pp. 39-50. Huang, H.-C. 2001. Temporal and spatial distribution of the ground-dwelling Invertebrates in Nanjen Forest [dissertation]. Department of Biology, National Sun Yat-sen University, Kaohsiung, Taiwan. Huang, T.-C., Y.-C. Kuo, Y.-C. Chen and T.-L. Huang. 1980. The vegetation survey of Kenting National Park., Kenting park publication, National Park Service, Taiwan Huang, T. C. (ed.) 1993-2000. Flora of Taiwan. Department of Botany, National Taiwan University, Taipei, Taiwan Huddleston, J. H. and F. F. Riecken. 1973. Local soil-landscape relationships in Western Iowa .1. Distributions of selected chemical and physical properties. Soil Sci. Soc. Am. J. 37: 264-270. Hutchinson, T. F., R. E. J. Boerner, S. Sutherland, E. K. Sutherland, M. Ortt and L. R. Iverson. 2005. Prescribed fire effects on the herbaceous layer of mixed-oak forests. Can. J. For. Res. 35: 877-890. Iverson, L. R., M. E. Dale, C. T. Scott and A. Prasad. 1997. A GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests (USA). Landsc. Ecol. 12: 331-348. Jansen, P. A., F. Bongers and L. Hemerik. 2004. Seed mass and mast seeding enhance dispersal by a neotropical scatter-hoarding rodent. Ecol. Monogr. 74: 569-589. Janzen, D. H. 1970. Herbivores ad the number of tree species in tropical forests. Am. Nat. 104: 501-528. Jiang, F. Y. 1991. Environmental influences on the soil properties and pedogenesis in Nanjenshan, Southern Taiwan [dissertation]. Graduate Institute of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan. Johnson, D. M. and W. K. Smith. 2005. Refugial forests of the southern Appalachians: photosynthesis and survival in current-year Abies fraseri seedlings. Tree Physiol. 25: 1379-1387. Köppen, W. 1936. Das geographische system der Klimate. In: Koppen, W. and W. Geiger (eds.), hadbuch der klimatologie. Teil C., Berlin, pp. 1-50. Körner, C. 2003. Alpine plant life : Functional plant ecology of high mountain ecosystems. Springer, Berlin, Germany, 344.pp. Kershaw, K. A. 1964. Quantitative and dynamic ecology. Edward Arnold, London, 183.pp. Kitajima, K. 2002. Do shade-tolerant tropical tree seedlings depend longer on seed reserves? Functional growth analysis of three Bignoniaceae species. Funct. Ecol. 16: 433-444. Klinka, K., H. Y. H. Chen, Q. L. Wang and L. deMontigny. 1996. Forest canopies and their influence on understory vegetation in early-seral stands on west Vancouver Island. Northwest. Sci. 70: 193-200. Ku, T.-H. 2003. Diversity of litter spiders and their effects on litter decomposition in Nanjenshan rain forest, Taiwan. [dissertation]. Department of biology, National Cheng Kung University Tainan, Taiwan. Kumar, L., A. K. Skidmore and E. Knowles. 1997. Modelling topographic variation in solar radiation in a GIS environment. J. Geogr. Inf. Sci. 11: 475-497. Kuo, Y.-L. and K.-S. Fan. 2003. Regeneration dynamics in a treefall-gap within 3 years in Nanjenshan forest. Taiwan J. For. Sci. 18: 143-151. Kuuluvainen, T., E. Jarvinen, T. J. Hokkanen, S. Rouvinen and K. Heikkinen. 1998. Structural heterogeneity and spatial autocorrelation in a natural mature Pinus sylvestris dominated forest. Ecography 21: 159-174. Légaré, S., Y. Bergeron, A. Leduc and D. Paré. 2001. Comparison of the understory vegetation in boreal forest types of southwest Quebec. Can. J. Bot. 79: 1019-. Lai, I.-L. 1996. Seedling recruitment and understory patterns of Nanjenshan subtropical rain forest [dissertation]. Department of Botany, National Taiwan University, Taipei, Taiwan. Lance, G. N. and W. T. Williams. 1968. A general theory of classificatory sorting strategies .2. clustering systems. Comput. j. 10: 271-277. Lawton, R. O. 1982. Wind stress and elfin stature in a montane rain forest tree: an adaptive explanation. Am. J. Bot. 69: 1224-1230. Leck, M. A. and H. A. Outred. 2008. Seedling natrural history. In: Leck, M. A. et al. (eds.), Seedling ecology and evolution. Cambridge University Press, Cambridge, UK, pp. 17-55. Legendre, P. 1993. Spatial autocorrelation - trouble or new paradigm. Ecology 74: 1659-1673. Legendre, P., D. Borcard and P. R. Peres-Neto. 2005. Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecol. Monogr. 75: 435-450. Legendre, P. and E. D. Gallagher. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271-280. Legendre, P. and L. Legendre. 1998a. Numerical ecology. Elsevier press, New York, NY, USA, 853.pp. Legendre, P. and L. Legendre. 1998b. Spatial analysis. In: Legendre, P. and L. Legendre (eds.), Numerical ecology. Elsevier press, New York, USA, pp. 708-785. Lei, T. T., E. T. Nilsen and S. W. Semones. 2006. Light environment under Rhododendron maximum thickets and estimated carbon gain of regenerating forest tree seedlings. Plant Ecol. 184: 143-156. Lei, T. T., S. W. Semones, J. F. Walker, B. D. Clinton and E. T. Nilsen. 2002. Effects of Rhododendron maximum thickets on tree seed dispersal, seedling morphology, and survivorship. Int. J. Plant Sci. 163: 991-1000. LePage, P. T., C. D. Canham, K. D. Coates and P. Bartemucci. 2000. Seed abundance versus substrate limitation of seedling recruitment in northern temperate forests of British Columbia. Can. J. For. Res. 30: 415-427. Levia, D. F. and E. E. Frost. 2006. Variability of throughfall volume and solute inputs in wooded ecosystems. Progress in Physical Geography 30: 605-632. Li, H. L. and H. Keng. 1950. Phytogeographical affinities of southern Taiwan. Taiwania 1: 103-122. Li, M., M. Lieberman and D. Lieberman. 1996. Seedling demography in undisturbed tropical wet forest in Costa Rica. In: Swaine, M. D. (ed.), The ecology of tropical forest tree seedlings. the Parthenon Publishing group, Carnforth, UK, pp. 340. Li, S.-P. 1995. Seedling regeneration in Nanjenshan subtropical rain forest [dissertation]. Department of Botany, National Taiwan University, Taipei, Taiwan. Li, X.-L., H. Wang, Z. Zheng, L.-X. Lin, X.-B. Deng and M. Cao. 2009. Composition, spatial distribution and survival during the dry season of tree seedlings in a tropical forest in xishuangbanna, sw china. Chin. J. Plant Ecol. 33: 658-671. Liang, J.-R., C.-T. Lin and C.-Y. Li. 1964. Soil of Pingtung county. Bull. Taiwan Agri. Res. Inst. 14. Lichstein, J. W., T. R. Simons, S. A. Shriner and K. E. Franzreb. 2002. Spatial autocorrelation and autoregressive models in ecology. Ecol. Monogr. 72: 445-463. Lieberman, D. 1996. Demog | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48483 | - |
| dc.description.abstract | 林下植群為森林組成最多樣的一層,也是森林更新的重要一環。然而這一層卻僅少受到注目,對於亞熱帶季風地區來說也不例外。在這個研究中我將探討下列的問題:1. 在季風的影響下,森林各層之間是否會相互影響? (森林的上層如何影響下層的組成?) 2. 林下層對外在環境因子有何反應? 3. 控制木本小苗建立的主要因子是什麼?
本研究於台灣南部南仁山欖仁溪樣區進行取樣,在7條5 m寬300 m長的樣帶上進行林下常駐植物(無法長高一直待在林下的物種,包含高度小於1.5 m的草本、藤本植物、小型灌木及樹蕨)的調查,並選取其中的3條進行林下過渡植物(目前長在林下層但有潛力長超出此層的物種,即胸高直徑小於1 cm的冠層、次冠層及大型灌木的小苗)的調查。樣帶上調查到的林下層植物均被鑑定並分別5 m × 5 m的小樣方來記錄他們的覆蓋比例或是株數。調查資料1.先以空間自相關格局,初步探討影響林下植物數量可能的生物內部及外部環境因子;2. 再以支序分析結果比較林下與上層物種組成在空間上分布的情況;3. 應用直接梯度和空間模式檢查林下組成與外在環境因子的關係;4. 設定因果關係以路徑分析來定量林下覆蓋度受到季風直接與間接影響的程度;5. 利用相關分析來評估木本小苗與常駐植物的交互關係及6. 以回歸模式來探討母樹分布及環境因子對小苗數量的影響。 調查共記錄44科83屬94種的林下常駐植物及37科76屬102種共16,925株林下過渡植物。在50 m尺度下,98%林下物種有不同的空間自相關格局,18%物種180 m的尺度下出現顯著的空間自相關。根據各物種所表現的空間尺度,林下物種的空間格局受到自身特性(如:植株大小或具延伸性的組織)及外在地形特徵的影響。 林下常駐植物的組成沿著地形由迎風山頂到背風溪谷變化,且隨上層社會類型而改變;而林下過渡層的組成分布也與上層植物組成有一致的格局。分別進行林下及林上組成的直接梯度分析,顯示各環境因子對林下及林上物種組成有相似的影響。梯度分析結果顯示季風暴露度是林下常駐及過渡組成最重要的影響因子之一。然而林下光線指標-樹冠開闊度並未顯示出對林下層植物組成的重要性。因果關係模式中顯示季風暴露度是林下植群變異的決定因子。相較於樹冠開闊度,季風暴露度與蕨類覆蓋度有較高的相關係數。這顯示季風直接且強烈影響著蕨類覆蓋度,但季風透過改變樹冠結構而影響覆蓋度的路徑相對較弱。 在物種小苗對母樹分布及季風的反應上,許多物種在小苗數量迴歸模式中呈現對區域中母樹數量及季風暴露度有顯著相關。這顯示季風確實是亞熱帶林下木本小苗建立最重要的環境因子,而母樹也對小苗數量扮演了重要的角色。由於許多物種出現小苗與母樹數量的正相關,我認為欖仁溪多數的物種在傳播上有侷限的範圍,但沒有強烈的密度依賴效應。在與林下常駐植物的競爭上,由於缺乏物種與物種,以及結構與物種間的強烈負相關,且小苗數量與草本覆蓋度呈現負相關的物種中大多仍保持與母樹數量正向的關連,顯示草本植物的競爭效應並不強烈仍無法破壞母樹與小苗的分布關連。林下過渡植物與常駐植物在組成上的空間相關,來自於物種對外在環境因子的相似反應,而不是彼此相互影響。 | zh_TW |
| dc.description.abstract | Understory layer is the most diverse component of forest communities and understory woody seedlings play an important role in forest regeneration. However, this layer is least understood, not except for in subtropical region under monsoon climate. In this study, the following questions were asked: 1) under the influence of monsoon, do forest strata interact with each other? (how overstory vegetation affects the understory composition?) 2) how the understory vegetation reflect on exogenous factors? and 3) what are the factors that control tree seedling establishment?
In order to better understand the ecological role of understory vegetation, resident species (including herbaceous species, climbers, small shrubs and tree ferns < ca.1.5 m high) were investigated on seven transects, each 5 m wide and 300 m long in a wind-stressed forest of Lanjenchi in Nanjenshan, southern Taiwan. Seedlings of Transient species (canopy, subcanopy and shrub species) with diameter at breast height < 1 cm were censused in three of the seven transects. Species of understory plants in transects were identified, and the percent coverage of residents or species abundance of transients was estimated for every 5 m × 5 m contiguous quadrat along transects. I detected possible intrinsic and extrinsic factors of understory abundance by detecting spatial autocorrelation patterns with Moran’s I. The composition patterns of understory plants and their corresponding overstories were compared with clustering analyses. The relationships between understory composition and environmental factors were examined with direct ordination and spatial models. The direct and indirect effects of monsoon on herb coverages were tested with path analysis based on a causal model. The interaction (competition or facilitation) between woody seedlings and resident cover was evaluated with correlation analysis. The contributions of parent tree distribution and environmental factors on seedling abundance were evaluated with regression models. A total of 94 resident species, belonging to 44 families and 83 genera were recorded. There were 16,925 transient individuals from 102 tree and shrub species, representing 37 families and 76 genera in seedling census. Most (98%) of understory species had significant autocorrelation in fine scale within 50 m. Eighteen % of species showed a significant autocorrelation at a 180m-class which correspond to the local replicates of topographical features in hilltops. According to the presence of spatial scales of understory species, it is suggested that the understory distribution patterns are influenced by species intrinsic traits (e.g. individual size and prolonged leaves and stems) and topographical characteristics in the plot. The resident compositions shifted with overstory community types along a topographical change, from windward ridges (northeast-facing slopes with strong effect of winter monsoon) to leeward creeks (southwest-facing slope with weak wind effect in winter). The spatial distribution of transient communities also presented a consistent pattern with the overstory composition. The separated direct ordination analyses showed that the understory resident and overstory compositions had very similar responses to every environmental vector, indicating similar habitat requirements of overstory and resident communities. It also showed that monsoon exposure (angle from zenith to skyline in northeast monsoon direction) was one of the most influential factors explaining spatial patterns of both resident and transient vegetations. However, canopy openness, a light availability index in understory, did not show significant correlation with the compositions/abundances of neither residents nor transients. A causal model indicated that monsoon exposure was the major determinants of understory vegetation variation. Path coefficient between monsoon exposure and fern coverage was higher than those between canopy openness/tree density and coverage of ferns which were considered as the indicators of wind effect. This suggested that monsoon might have a strong direct effect on fern coverage, but relatively weak indirect effect via altering canopy structure. Based on the abundance models of species seedlings, many species showed significant responses to parent abundance and monsoon exposure. This revealed that monsoon was the most important environmental factor for seedling establishment, and parent abundance also play an important role in shaping spatial patterns of seeding abundance. Owing to the positive correlations between local numbers of seedlings and parents for most species, it indicated that there was a short dispersal range but no strong density dependences for species in Lanjenchi. In the term of competitive effect of understory resident, strong negative correlations between resident structure/species and seedling abundances were absent. Among seedling species which abundances were negatively correlated with resident coverage, most of them exhibited positive correlation of abundance between seedling and parents. I concluded that the competitive effect of residents was not strong enough to attenuate seedling-parent co-occurrence. In summary, high similarity of spatial patterns between understory and overstory compositions should be attributed to that they both respond similarly to exogenous factors rather than interacted with each other. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:58:41Z (GMT). No. of bitstreams: 1 ntu-100-D91226005-1.pdf: 10852662 bytes, checksum: 9e22a936d06ef5ec0b7680ed59502c59 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
中文摘要 II ABSTRACT IV TABLE OF CONTENTS VII LIST OF TABLES X LIST OF FIGURES XI LIST OF APPENDICES XIV CHAPTER 1. GENERAL INTRODUCTION 1 1.1 Importance of forest understory layer 1 1.2 Association between understory and overstory 4 1.3 Disturbance and understory community 6 1.4 Spatial information of field data 8 1.5 Objectives of this study 10 CHAPTER 2. LITERATURE REVIEW OF STUDIES IN NAJENSHAN 12 2.1 Geographical importance of Najenshan 12 2.2 Climatic characteristics of Nanjenshan 13 2.3 Topographical feature of Nanjenshan 15 2.4 Soil property of Nanjenshan 20 2.5 Vegetation classification of Nanjenshan 22 2.6 Litter production and structure of Forest in Nanjensha 26 CHAPTER 3. SPATIAL AUTOCORRELTION PATTERNS OF UNDERSTORY PLANT SPECIES IN A SUBTROPICAL RAINFOREST IN LANJENCHI, SOUTHERN TAIWAN 29 3.1 Chapter summary 29 3.2 Introduction 30 3.3 Materials and methods 32 Study site 32 Field sampling 33 Data Analysis 35 3.4 Results 39 Spatial autocorrelation and NLV pattern among species 39 Spatial autocorrelation pattern and vegetative triat 40 Spatial autocorrelation pattern and reproductive trait 41 3.5 Discussion 43 Inference of spatial autocorrelation 43 Relationship between Spatial pattern and individual size 43 Relationship between spatial pattern and vegetation growth 44 Relationship between spatial pattern and reproductive traits 45 Spatial scale of influential factor of species distribution 45 Conclusion 46 CHAPTER 4. ASSOCIATION OF UNDERSTORY AND OVERSTORY VEGETATION ACROSS A MONSOON WIND GRADIENT IN A SUBTROPICAL RAIN FOREST OF SOUTHERN TAIWAN 47 4.1 Chapter summary 47 4.2 Introduction 48 4.3 Materials and methods 53 Study site 53 Field sampling 54 Data Analysis 56 4.4 Results 58 Understory diversity of subtropical forests 58 Classification of understory community in subtropical forests 59 Relationship between environmental factors and understory layer 60 Assoication between overstory and understory 62 Correlation between understory species and exogenous factors 64 Monsoon effect on fern coverage 66 4.5 Discussion 68 Spatial patterns of overstory and understory communities 68 Canopy condition and understory vegetation 69 Direct wind effect on plants 70 Chronic wind effects on overstory and understory composition 72 Conclusion 73 CHAPTER 5. SEEDLING COMPOSITION AND ASSOCIATION OF HERBACEOUS LAYER IN A MONSOON-AFFECTED FOREST IN NANJENSHAN, SOUTHERN TAIWAN 74 5.1 Chapter summary 74 5.2 Introduction 75 5.3 Materials and methods 78 Study site 78 Field sampling 79 Data Analysis 82 5.4 Results 85 Species diversity of seedling community 85 Seedling community classfication 85 Relationship between seecdling community and enviromemtal factor 87 Correlation between seedling abundance and herbaceous coverage 88 5.5 Discussion 92 Assoication between seedling and overstory communities 92 Seedling density and seasonality 92 Seedling community and wind effect 93 Interaction between seedling and herb 94 Conclusion 95 CHAPTER 6. DOES PARENT DISTRIBUTION MORE CONSTRAIN SEEDLING ABUNDANCE THAN ENVIRONMENTAL FILTERING? 97 6.1 Chapter summary 97 6.2 Introduction 98 6.3 Materials and methods 101 Study site 101 Field sampling 102 Data Analysis 103 6.4 Results 111 Seedling abundance and dispersal range 111 Spatial structure of seedling composition 112 Model of seedling abundance for each species 113 Effects of parent distribution and exogenous factors on seedlings 113 6.5 Discussion 116 Dispersal range and species traits 116 Cause of spatial structure in seedling composition 118 Effects of environmental factors on seedling abundance 118 Relative contribution of parent distribution and exogenous factors on seedling abundance 120 Conclusion 122 CHAPTER 7. GENERAL DISCUSSION 123 REFERENCES 130 APPENDICES 152 | |
| dc.language.iso | en | |
| dc.subject | 林下林上層相關 | zh_TW |
| dc.subject | 冠層結構 | zh_TW |
| dc.subject | 草本層植群 | zh_TW |
| dc.subject | 種間交互作用 | zh_TW |
| dc.subject | 小苗 | zh_TW |
| dc.subject | 空間自相關 | zh_TW |
| dc.subject | 空間自回歸模式 | zh_TW |
| dc.subject | canopy structure | en |
| dc.subject | understory and overstory association | en |
| dc.subject | spatial autoregressive model | en |
| dc.subject | spatial autocorrelation | en |
| dc.subject | seedlings | en |
| dc.subject | interspecific interaction | en |
| dc.subject | herbaceous vegetation | en |
| dc.title | 臺灣南部南仁山下部山地常綠闊葉林林下層植群之研究 | zh_TW |
| dc.title | The Understory Vegetation of a Lower Montane Evergreen Broad-leaved Forest in Najenshan, Southern Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 郭耀綸,葉慶龍,陳子英,林宜靜 | |
| dc.subject.keyword | 冠層結構,草本層植群,種間交互作用,小苗,空間自相關,空間自回歸模式,林下林上層相關, | zh_TW |
| dc.subject.keyword | canopy structure,herbaceous vegetation,interspecific interaction,seedlings,spatial autocorrelation,spatial autoregressive model,understory and overstory association, | en |
| dc.relation.page | 237 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-01-27 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 10.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
