Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48251
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉安義
dc.contributor.authorHsiang-Chia Hungen
dc.contributor.author洪祥嘉zh_TW
dc.date.accessioned2021-06-15T06:50:13Z-
dc.date.available2016-02-25
dc.date.copyright2011-02-25
dc.date.issued2011
dc.date.submitted2011-02-17
dc.identifier.citation于達元。濃度對介質研磨纖維素流變性質的影響。國立台灣大學食品科技研究所
碩士論文:台北市,2008。
陳時欣。蔗糖酯奈米/次微米纖維素懸浮液穩定性之研究。國立台灣大學食品科
技研究所碩士論文:台北市,2006。。
駱威達。卵磷脂與麥芽糊精對奈米/次微米纖維素懸浮液穩定性及其凍乾粉末覆
水性之研究。國立台灣大學食品科技研究所碩士論文:台北市,2009 。
Arai, S.; Watanabe, M. Freeze texturing of food materials by ice-nucleation with the
bacterium Erwinia ananas. Agri. Bio. Chem. 1986, 50: 169-175.
Archuleta, C. M.; DeMott, P. J.; Kreidenweis, S. M. Ice nucleation by surrogates for
atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures. Atmos. Chem. Phys. 2005, 5: 2617-2634.
Benjakul, S. and Bauer, F. Physicochemical and enzymatic changes of cod muscle
proteins subjected to different freeze-thaw cycles. J Sci Food Agric. 2000, 80: 1143-1150.
Boonsupthip, W. and Lee, T.-C. Application of antifreeze protein for food
reservation : effect of antifreeze protein for preservation of gel-forming capacity of frozen and chilled actomyosin. J Food Sci. 2003, 68, 1804-1809.
Burke, M. J. and Lindow, S. E. Surface properties and size of the ice nucleation
site in ice nucleation active bacteria : theoretical considerations. Cryobiology, 1990, 27: 80-84.
Carvajal, P. A.; MacDonald, G. A.; Lanier, T. C. Cryostabilization mechanism
of fish muscle protein by maltodextrins. Cryobiology. 1999, 38: 16-26.
Cassagneau, T.; Mallouk, T. E.; Fendler, J. H. Layer-by-layer assembly of thin film
zener diodes from conducting polymers and CdSe nanoparticles. J. Am. Chem. Soc. 1998, 120: 7848-7859.
Chaniotakis, N. A. Enzyme stabilization strategies based on electrolytes and
polyelectrolytes for biosensor applications. Anal. Bioanal. Chem. 2004, 378:
89-95.
Chessin, H.; Passarelli, R. E.; Vonnegut, B. Investigation of the pseudobinary solid
solutions of AgI-CuI by means of X-ray diffraction. Inorg. Chem. 1975, 14: 2551-2552.
Chen, Q-S.; Wang, C-L.; Wet, G-X.; Yan, Y-L. 2007. Research progress on structure
of the ice-nucleation protein and ice producing mechanism. Food Sci. 2007, 28 : 363-367.
Chen, W. and McCarthy, J. T. Layer-bylayer dposition: A tool for polymer surface
modification. Macromolecules. 1997, 30: 78-86.
Christner, B. C. Bioprospecting for microbial products that affect ice crystal
formation and growth. Appl Microbiol Biotechnol. 2010, 85: 481-489.
Debenedetti, P. G. Supercooled and glassy water. J. Phys.-Condes. Matter 2003, 15: 1669-1726.
Decher, G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites.
Science. 1997, 277, 1232-1237.
Easteood, M.; Kritchevsky, D. Dietary fiber: how did we get where we are? Annual
Review of Nutrition 2005, 25: 1-8.
Fletcher, N. H. Physical basis of ice crystal nucleation. Bulletin of the American
meteorological society. 1970, 51: 107.
Fornea, A. P.; Brooks, S. D.; Dooley, J. B.; Saha, A. Heterogeneous freezing of ice on
atmospheric aerosols containing ash, soot, and soil. Cryobiology. 2009, 114: D13201.
Fukuda, Y.; Tarakita, Z.; Arai, K. Effect of freshness of chub mackerel on the
freeze-denaturation of myofibrillar protein. NIPPON SUISAN GAKK, 1984, 50(5), 845-852.
Green, R. L. and Warren, G. J. Physical and functional repetition in a bacterial ice
nucleation gene. Nature. 1985, 317: 645-648.
Hyde, K.; Rusa, M.; Hinestroza, J. Layer-by-layer deposition of polyelectrolyte
nanolayers on natural fibes: cotton. Nanotechnology. 2005, 16: S422-S428.
Jiang, S.-T. and Lee, T.-C. Freezing seafood and seafood products. In: principles and
Applications (edited by Heldman, H. R.). New York, NY: Marcel Dekker Inc. 2003, 245-294.
Klemm, D.; Heublein B.; Fink, H.; Bohn, A. Cellulose: fascinating biopolymer and
sustainable raw material. ChemInform 2005, 36: 3358-3393.
Korhonen, R. W.; Lanier, T. C.; Giesbrecht, F. An evaluation of simple methods for
following rigor development in fish. J. Food Sci. 1990, 55: 346-348.
Lindow, S. E.; Amy, D. C.; Upper, C. Erwinia herbicola:a bacterial ice nucleus active
in increasing frost damage to corn. Phytopathology, 1978, 68: 523-526.
Li, J. and Lee T-C.. Bacterial ice nucleation and its potential application in the food
industry. J Sci Food Agric. 1995. 6: 259-265.
Li, J.; Martha P. I.; Lee, T.-C.. Effect of ice-nucleation active bacteria on the
freezing of some model food systems. International Journal of Food Science and Technology. 1997, 32: 41-49.
Li, J. and Lee, T.-C. Application of biogenic cell-free ice nucleators in food
processing. Paper no. T87, presented at Annual Meeting of Inst. Of Food Technologists, Orlando, FL. 1997, June: 14-18.
Lindow, S. E. The role of bacterial ice nucleation in frost injury to plants. Ann. Rev.
Phytopathol. 1983. 21: 363-384.
Liu, J. and Chen, Q. Effect of calcium alginate immobilization on ice nucleation
activity. 食品與發酵工業 2002, 28 : 8.
Liu, X.-Y. Effect of foreign particles on the growth of faceted crystal faces. J. Chem.
Phy. 2000, 113: 8807-8816.
Liu, X.-Y. and Du, N. Zero-sized effect of nano-particles and inverse homogeneous
nucleation. J. Bio. Chem. 2004, 279: 6124-6131.
MacDonald, G. A. and Lanier, T. C. Actomyosin stabilization to freeze-thaw
and heat denaturation by lactate salts. J Food Sci. 1994, 59: 101-105.
Maki, L. R., Galyan, E. K., Chien, M. C. and Caldwell, D. R. Ice nucleating induces
by Pseudomonas syringae. Applied Microbiol. 1974, 28: 456-459.
Margaritis, A. and Bassi, A. S. Principles and biotechnological applications of
bacterial ice nucleation. Biothchnology. 1991, 77: 2850-2855.
Mark, J. E. Polymer data handbook. Oxford University press, New York, USA. 1999,
p. 39.
Matsumoto, I. ; Ooizumi, T. ; Arai, K. Protective effect of sugar on
freeze-denaturation of carp myofibirillar protein. Bull Jap. Soc. Sci. Fish, 1985, 51(5): 833-839
Matsumoto, M.; Saito, S.; Ohmine, L. Molecular dynamics simulation of the ice
nucleation and growth process leading to water freezing. Nature. 2002, 416: 409-413.
Merisko-Liversidge, E.; Liversidge, G. G.; Copper, E. R. Nanosizing: a formulation
approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci. 2003, 18: 113-120.
Moehler, O.; Georgakopoulos, D. G.; Morris, C. E.; Benz, S.; Ebert, V.; Hunsmann, S.; Saathoff, H.; Schnaiter, M.; Wagner, R. Heterogeneous ice nucleation activity of bacteria: new laboratory experiments at simulated cloud conditions. Biogeosciences. 2008, 5: 1425-1435.
Morris, C. E.; Georgakopoulos, D. G.; Sands, D. C. Ice nucleation active bacteria and
their potential role in precipitation. J. Phys. IV France, 2004, 121: 87-103.
Nejad, P.; Ramstedt, M.; Granhall, U. Pathogenic ice-nucleation active bacteria in
willows for short rotation forestry. Forest Pathol. 2004, 34:369-381.
Passarelli, R. E.; JR.,; Chessin, H.; Vonnegut, B. Ice nucleation by miersite. Journal
of applied meteorology. 1974, 13: 610-612.
Saha, B. C. Lignocellulose biodegradation and applications in biotechnology.
American Chemical Society, Washington, D. C., USA.
Shibkov, A. A.; Golovin, Y.I.; Zheltov, M. A.; Korolev, A. A.; Leonov, A. A. In situ
monitoring of growth of ice from supercooled water by a new electromagnetic method. J. Cryst. Growth. 2002, 236: 434-440.
Wilson, P.W.; Arthur, J.W.; Haymet, A.D.J. Ice premelting during differential
scanning calorimetry. Biophys. J. 1999, 77: 2850-2856.
Wilson, P. W.; Haymet, A. D. J. Effect of solutes on the heterogeneous nucleation
temperature of supercooled water: an experimental. Phys. Chem. Chem. Phys. 2009, 11: 2679-2682.
Xue, Y. ; Xue, C-H. ; Li, Z-J. ; Liu, Y-J, Wang, J-M. Effect of trehalose on
denaturation of bighead carp myofibrillar protein during frozen storage. Journal of Fishery Sciences of China. 2006, 13: 637-641.
Zachariassen, K. E.; Kristiansen, E. Ice nucleation and antinucleation in nature.
Cryobiology 2000, 41: 257-279.
Zasypkin, D. V.; Lee, T.-C. Extracellular ice nucleators from Pantoea Ananas: Effect
on freezing of model foods. J. Food Sci. 1999, 64: 473-478.
Zhang, G. J.; Gu, W. L.; Ji, S. L.; Liu, Z. Z.; Peng, Y. L.; Wang, Z. Preparation of
polyelectrolyte multilayer membranes by dynamic layer-by-layer process for
prevaporation of alcohol/water mixtures. J. Membr. Sci. 2006, 280: 727-733.
Zhu, X.; Lee, T.-C. Application of a biogenic extra cellular ice nucleator for food
processing: effect on the freeze-thaw stability of fish actomyosin from tilapia. J. Food Sci. 2007, 42: 768-772.
Zobrist, B.; Marcolli, C.; Peter, T.; Koop, T. Heterogeneous ice nucleation in aqueous
solutions: the role of water activity. J. Phys. Chem. A. 2008, 112 , 17: 3965-3975.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48251-
dc.description.abstract細菌性冰核是目前發現的天然冰核物質中冰核活性最高者,但幾乎所有冰核細菌皆為植物致病菌或腸內桿菌,無法直接應用於食品中,本研究應用純化之胞外冰核蛋白,並以多層層積技術將冰核蛋白固定於PE膜上,希望能減少冰核蛋白對食品的直接接觸以及殘留,增加使用的便利性與可重複利用性,此外利用介質研磨提高纖維素的冰核活性,探討其取代冰核蛋白的可能性。
應用固定有胞外冰核蛋白之PE膜於食品凍結時,可將原本於-8℃下不能凍結的純水和20%蔗糖溶液,於-8℃產生凍結,也可縮短鮮奶47.2%的總凍結時間,由原先的94.6分鐘下降至49.9分鐘。此固定有胞外冰核蛋白之PE膜也可減少魚肉肌動球蛋白受到冷凍傷害的程度,經過三循環的冷凍解凍後,Ca2+-ATPase活性由原本的38 %、21%以及19%提升至55 %、33%以及31%。
添加纖維素於純水中,成核溫度由-21.7℃提升至-16.6℃,經過5分鐘研磨的纖維素,可將純水成核溫度提升至-13.0℃,隨著研磨時間增加,顆粒變小,但並未使成核溫度升高,反而導致下降,研磨90分鐘後,纖維素平均體積粒徑1.41 μm 的成核溫度為-16.1℃,故研磨5分鐘的纖維素具有較佳的冰核活性。
實驗結果顯示,胞外冰核蛋白固定於PE膜後仍具有冰核活性,能減緩過冷卻現象、縮短總凍結時間以及維持冷凍食品品質,但此膜在使用的過程中,仍有胞外冰核蛋白滲入食品中的可能,於食用安全是個隱憂,因此纖維素具有取代冰核蛋白的可能性。
zh_TW
dc.description.abstractIce nucleation active (INA) bacteria are known to be the most active ice nucleator (IN) found in nature to date. However, nearly all INA bacteria are plant-pathogenic or enterobacteriaceae, thus direct applications to food industry are limited. In this research, we utilize extracellular ice nucleator protein (ECIN) as an IN and immobilize it onto a polyethylene (PE) film by employing layer by layer deposition method to minimize direct contact with foods. In addition, we explore the possibility of media-milled cellulose as a replacer of ECIN.
Coating ECIN on PE film resulted in freezing of 20% sucrose solution at -8℃, which does not freeze at normal conditions, and reduced 47.2% total freezing time of milk (from 94.6 min to 49.9 min). This film also can reduce the deterioration of fish actomyosin (AM) caused by freeze-thaw cycles during storage. The retention values for the three freeze-thaw cycles were greatly improved from 38%, 21%, 19% to 55%, 33%, 31%.
The nucleation temperature of pure water was raised from -21.7℃ to -16.6℃ while cellulose was add. The addition of 5 min media-milled cellulose further raise the nucleation temperature to -13.0℃. Nevertheless, increasing milling did not further raise the nucleation temperature. For examples, 90 min milling resulted in smaller particle size (1.4 μm), but a nucleation temperature at -16.1℃.
Our data show that ECIN can reduce the degree of supercooling, total freezing time and preserve the quality of AM even being immobilized onto PE film. Nevertheless, ECIN still have the possible to contact into foods. So, cellulose have the possibility as a replacer of ECIN.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:50:13Z (GMT). No. of bitstreams: 1
ntu-100-R97641023-1.pdf: 1765769 bytes, checksum: f1223d3f1a28f577be9dca202bfbe18b (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents壹、前言 ....................................................................................................................... 9
貳、文獻回顧 ............................................................................................................. 11
2.1. 冷凍工業 .................................................................................................... 11
2.2. 凍結現象 .................................................................................................... 11
2.2.1. 過冷卻現象(supercooling)以及總凍結時間(total freeze time) .... 11
2.2.2. 水溶液成核作用(ice nucleation) ................................................... 13
2.3. 冰核活性細菌 (ice nucleation active bacteria, INA bacteria) .................. 20
2.3.1. 細菌性冰核的應用 ........................................................................ 21
2.3.2. 冰核活性細菌食用安全性 ............................................................ 23
2.4. 多層層積積術 (Layer by layer deposition, LBL) ..................................... 24
2.5. 纖維素(cellulose) ....................................................................................... 26
2.6. 介質研磨 .................................................................................................... 29
2.7. 示差掃描熱分析儀(Differential scanning calorimeter, DSC) ................... 31
2.7.1. 以DSC測量冷凍曲線 .................................................................. 32
參、實驗目的 ............................................................................................................. 33
肆、實驗流程 ............................................................................................................. 34
伍、材料方法 ............................................................................................................. 36
5.1. 材料 ............................................................................................................ 36
5.2. 儀器設備 .................................................................................................... 37
5.3. 樣品製備 .................................................................................................... 42
5.3.1. 胞外冰核蛋白(extracellular ice nucleation protein, ECIN)分離純化 ............................................................................................................... 42
5.3.2. 利用多層層積技術(LBL)將胞外冰核蛋白(ECIN)固定於聚乙烯膜表面 ....................................................................................................... 42
5.3.3. 魚肉肌動球蛋白(actomyosin, AM)萃取 ...................................... 44
5.3.4. 纖維素之介質研磨 ........................................................................ 45
5.4. 實驗方法及步驟 ........................................................................................ 46
5.4.1. 肌動球蛋白之蛋白質濃度測定法 ................................................ 46
5.4.2. Ca2+-ATPase活性測定方法 ........................................................... 47
5.4.3. 肌動球蛋白之冷凍解凍循環處理詴驗(freeze-thaw cycle test) .. 48
5.4.4. 冷凍曲線 (freezing curve) 測量 ................................................ 48
5.4.5. 固定有胞外冰核蛋白之PE膜重複利用性詴驗 ....................... 49
5.4.6. 以DSC測量液體與固定有胞外冰核蛋白之PE膜接觸時的成核溫度 …………………………………………………………………..49
5.4.7. 以DSC測定纖維素懸浮水溶液之成核溫度 ............................ 50
5.4.8. 纖維素懸浮水溶液之固形物測定.............................................. 50
5.4.9. 粒徑測量...................................................................................... 52
5.4.10. 冷凍乾燥 ..................................................................................... 52
5.4.11. 臨界點乾燥 ................................................................................. 52
5.4.12. 掃描式電子顯微鏡(SEM)觀察 .................................................. 53
5.4.13. 統計分析方法 ............................................................................. 53
陸、結果與討論 ......................................................................................................... 54
6.1. 固定有胞外冰核蛋白(ECIN)之PE膜...................................................... 54
6.2. 以DSC測量液體與固定有冰核蛋白之PE膜接觸時的成核溫度 ........ 55
6.3. 冷凍曲線 (freezing curve) 測量結果 ....................................................... 57
6.4. 冷凍食品之品質維護 — 冷凍解凍循環詴驗 ........................................ 59
6.5. 固定有胞外冰核活性物之聚合膜重複利用性詴驗 ................................ 61
6.6. 利用DSC測量固定有胞外冰核活性物之聚合膜的重複利用性 .......... 62
6.7. 固定有胞外冰核蛋白之PE膜重複使用性實驗...................................... 65
6.8. 以纖維素作為一外來冰核 ........................................................................ 67
6.9. 纖維素經介質研磨後之粒徑分析 ............................................................ 69
6.10. 經介質研磨後纖維素水懸浮液的成核溫度 .......................................... 73
6.11. 未研磨纖維素冰核活性的探討 .............................................................. 77
柒、結論 ..................................................................................................................... 80
dc.language.isozh-TW
dc.title胞外冰核蛋白及纖維素對過冷卻液體成核溫度之影響zh_TW
dc.titleEffect of extracellular ice nucleation protein and cellulose on the nucleation temperature of supercooled liquiden
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.coadvisor李東慶
dc.contributor.oralexamcommittee陳時欣,張克亮,蕭立鼎
dc.subject.keyword胞外冰核蛋白,纖維素,介質研磨,多層層積技術,能源節省,zh_TW
dc.subject.keywordExtracellular ice nucleation protein,Cellulose,Media milling,Layer-by-layer deposition,Energy saving,en
dc.relation.page85
dc.rights.note有償授權
dc.date.accepted2011-02-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
1.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved