Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4813
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王倫
dc.contributor.authorYan-Bo Huangen
dc.contributor.author黃彥博zh_TW
dc.date.accessioned2021-05-14T17:47:51Z-
dc.date.available2018-03-13
dc.date.available2021-05-14T17:47:51Z-
dc.date.copyright2015-03-13
dc.date.issued2015
dc.date.submitted2015-02-11
dc.identifier.citationReferences
[1] P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J.Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, J. V. Badding, Science 2006, 311, 1583.
[2] J. Ballato and E. Snitzer, Appl. Opt. 1995, 34, 6848.
[3] J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, D. R. Powers, Opt. Express 2008, 16, 18675.
[4] B. Scott, K. Wang, G. Pickrell, IEEE Photonic. Technol. Lett. 2009, 21, 1798.
[5] J. Blyler, L.L and F. V. DiMarcello, Proc. IEEE, 1980, 68, 1194.
[6] U. Paek, J. Lightwave Technol, 1986 , 4, 1048.
[7] U. C. Paek, J.Heat Transfer, 1999, 121, 774.
[8] D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, P. J. A. Sazio, Appl. Phys. Lett. 2007, 91, 161112.
[10]N. Healy, J. R. Sparks, P. J. A. Sazio, J. V. Badding, A. C. Peacock, Opt. Express 2010, 18, 7596.
[11] Jacoboni, C., C. Canali, G. Ottaviani, and A. A. Quaranta, Solid State Electron., 1977, 20, 77.
[12] S. Morris, T. Hawkins, P. Foy, J. Hudson, L. Zhu, R. Stolen, R. Rice, and J. Ballato, Optical Materials Express 2012, 2, 1511.
[13] L. Pavesi and G. Guillot, Optical Interconnects: The Silicon Approach , 2000.
[14] D. W. Peters, Proc. IEEE 1967, 5, 704.
[15] Tanabe, T.; Sumikura, H.; Taniyama, H.; Shinya, A.; Notomi, M. Appl. Phys. Lett. 2010, 96, 101103.
[16] Bradley, J. D. B.; Jessop, P. E.; Knights, A. P. Appl. Phys. Lett. 2005, 86, 241 103
[17] P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, Opt. Express 2010, 18, 16826
[18] Assefa, S.; Xia, F.; Vlasov, Y. A. Nature, 2010, 464, 80.
[19] Liang, T. K.; Tsang, H. K.; Day, I. E.; Drake, J.; Knights, A. P.; Asghari, M. Appl. Phys. Lett. 2002, 81, 1323.
[20] S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, Appl. Phys. Lett. 2008, 92, 081 103.
[21] M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffre、, I. Rendina, and G. Coppola, Appl. Phys. Lett. 2010, 96, 241 112.
[22]S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices, Wiley, New York, USA, 2006.
[23] I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, Nano Lett. 2011, 11, 2219.
[24] P. Kramer, and L. J. van Ruyven, Appl. Phys. Lett. 1972, 20, 420.
[25] Ali Akbari, R. Niall Tait, and Pierre Berini, Opt. Express 2010, 18, 8505.
[26] Michel, J.; Liu, J.; Kimerling, L. C. High-performance Ge-on-Si
photodetectors. Nat. Photonics, 2010, 4, 527.
[27] M. A. Yeganeh and S. H. Rahmatollahpur, J. Semicond. 2010, 31, 07400.
[28] Scales, C. and Berini, IEEE J. Quantum Elect. 2010, 46, 633.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4813-
dc.description.abstract近年來結合半導體材料和傳統光纖的研究主題正在迅速發展,透過這樣的結合能夠產生各式各樣的應用在矽光子領域、生醫感測領域、或是達成全光調變的可能性。
在這個論文中,我們示範了矽核光纖的製作方法,透過結合了垂直抽絲法及粉末法的特點,不需要使用昂貴的單晶矽晶棒,而改以低成本的多晶矽粉末作為代替,在經由優化製程的參數製作做出數公尺長的矽核光纖。由於矽的光學特性及電性都深深地被結晶性影響所以先針對了結晶性的部份做量測,經由穿透式電子顯微鏡及柆曼光譜儀的檢測結果證實為單晶矽之後並量測矽核光纖的光學及電的特性。
由於矽核光纖在光學特性及電性上有良好的表現,我們利用矽核光纖製作了蕭特基光偵測器,透過內部光激發的效應(internal photoemission process)使得此光偵測器能夠偵測到矽原本是在此通訊波段不吸收此波段的光。此外更由於矽核光纖天生的波導特性,能夠透過與接收端的光纖熔接,免去原本難處理的光耦合步驟。
zh_TW
dc.description.abstractRecently the combination of semiconductor materials with fiber optics has become one of the emerging research topics. Such combination of semiconductor and fiber optics may lead to various applications in Si photonics, bio-chemical sensing, and all-optical modulation.
In this thesis, we demonstrated a method of fabricating silicon cored fiber. In this study, a technique featuring powder-in-tube and vertical-drawing was adopted for making single-crystal Si-cored fibers. Much cheaper polycrystalline Si powders substituting expensive single-crystal Si powders or seed rods were packed into a fused silica tube. By optimizing the drawing parameters, meter-long Si-cored fibers were obtained. Because the electrical and optical characteristics of Si are much affected by the crystallinity of Si, we need first analyze the crystallinity of Si-cored fibers, and then measure their electrical and optical characteristics. The measured result showed that our Si-cored fibers displayed excellent single crystallinity confirmed by micro-Raman spectra and high-resolution transmission electron microscope images. The Si-cored fibers also exhibited outstanding optical and electrical properties.
With the above merits, a Si Schottky photodetector (SSPD) made by using a Si-cored fiber is demonstrated. Based on the internal photoemission process, SSPD can work in telecom regimes where Si is well known as transparent. Furthermore, another major advantage is that the inherent waveguide property of Si-cored fiber enabled an SSPD to be spliced with a receiving silica fiber, which can eliminate the need of cumbersome optical coupling.
en
dc.description.provenanceMade available in DSpace on 2021-05-14T17:47:51Z (GMT). No. of bitstreams: 1
ntu-104-R01941079-1.pdf: 8499099 bytes, checksum: 047d4c49185204ff0f9c9e39c9519309 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝…………………………………………………………………………...………….i
中文摘要……………………………………………………………………………...…ii
ABSTRACT…………………………………………………………………………….iii
Statement of Contributions……………………………………………………………iv
LIST OF FIGURES………………………………………………………………………….......vii
LIST OF TABLES……………………………………………………………….….…xi
Chapter 1 Introduction…………………………………………………………………...1
1.1 Motivation…………………………………………………………………….1
1.2 Organization of the Thesis…………………………………………………….3
Chapter 2 Fabrication of Si-cored fibers…………………………………………………4
2.1 Literature Review……………………………………………………………..4
2.1.1 High-pressure chemical vapor deposition method…………………...…4
2.1.2 Molten core method…………….…………………………………….....7
2.1.3 Powder in tube method………………………………………….……..10
2.2 A Si-cored Fiber Drawing Tower………………………………………..…..14
2.3 Fabrication process of Si-cored fiber………………………………………...19
Chapter 3 Characteristic of Si-cored fibers……………………………………………..28
3.1 Material characteristic of Si-cored fibers……………………………...…….28
3.1.1 Energy-Dispersive X-ray Spectroscopy ……………………………….28
3.1.2 Raman spectroscopy………………………………...…………………32
3.2 The electrical measurement of Si-cored fibers………………………………36
3.3 The optical measurement of Si-cored fibers……………………………...…43
3.4 Splicing of Si-cored fiber…………………….……………………………...51
Chapter 4 Schottky Photodetector made on Si-cored fiber………………………….…59
4.1. Motivation………………………………….…………….………………….59
4.2 The theory of Schottky junction………….………………………………….61
4.3 Fabrication of Schottky photodetector on a Si-cored fiber…………….……66
4.4 Electrical Characteristics of Schottky Photodetector on Si-cored fiber….….69
4.5 Bandwidth of Schottky photodetector…………….…………………………74
Chapter 5 Conclusions and Future Work ……………………………………………….78
5.1 Conclusions……………………………………………..…………………...78
5.2 Future Work………………………………………………………………….80
References……………………………………………………………………………...81
LIST OF FIGURES
Fig. 2-1 A schematic illustration shows the high pressure chemical vapor deposition for Si-cored fibers. [8]……………………………………………………………..6
Fig. 2-2 (a) Optical microscope image of the 5.6 μm polysilicon core fiber, scale bar 50 μm. (b) SEM image of the 1.3 μm core, scale bar 400 nm.[8]…………………6
Fig. 2-3 SEM of the core region of the silicon core, silica-clad optical fiber. [11]……...9
Fig. 2-4 Illustration of the silicon optical fiber drawing system. [12]…...……………..12
Fig. 2-5 An approximately 7-cm-long silicon optical fiber. [12]………………..……..13
Fig. 2-6.An SEM micrograph of silicon optical fiber. [12]…………………………….13
Fig. 2-7 The experimental setup of Si-cored fibers drawing tower (a) side view (b) front view………………………………………………………………………..….16
Fig. 2-8 Manufactured graphites tube served as a heating source……………………...17
Fig. 2-9 The feeding system used to control the holder to slowly travel to provide more materials for fiber drawing: (a) control panel, (b) a silica tube holder……......17
Fig. 2-10 A water cooling system used to cool the heat of electrodes……………….....18
Fig.2-11The heating control panel, which controls output current to the heating resistors and monitor the temperature of heated zone……………………………….....18
Fig. 2-12 A flow chart of fabrication process for a Si-cored fiber…………………...…21
Fig. 2-13 The tube is molded into a Si-cored fiber by drawing………………………...21
Fig. 2-14 A schematic illustration shows how the Si-cored fibers are made through the vertical drawing process……………………………………………………..22
Fig. 2-15 The melt silicon is blocked by air jam……………………………………….22
Fig. 2-16 An optical image shows that there are some cracks in Si-cored fibers………23
Fig. 2-17 Si-cored fibers are deformed because of too high temperature………….…..23
Fig. 2-18 Cracks in Si-cored fiber are decreased at higher working temperature….…..24
Fig. 2-19 An optical image of Si-cored fiber shows that there are no obvious cracks along fiber…………………………………………………………………...24
Fig. 2-20 An SEM image of Si core inside the fiber is continuous without observable defects. …………………………………………………………………...…27
Fig. 3-1 EDS measurement of the Si-cored fiber by scanning along its radial direction and the weight percentage of its elements are obtained………………………30
Fig. 3-2 Distributions of Si and O elements across the Si-cored optical fiber without employing the vacuum pump in drawing process…………………………….31
Fig. 3-3 Distributions of Si and O elements across the Si-cored optical fiber after employing the vacuum pump in drawing process…………………………….31
Fig. 3-4 An energy-level diagram of Raman signal. [25]………………………………34
Fig. 3-5 An SEM image of Si fiber……………………………………………………..34
Fig. 3-6 Raman spectra of the intrinsic polycrystalline Si powder and a Si fiber.……..35
Fig. 3-7 Raman spectrum of n-type Si-cored fiber, Si fiber, and single crystal wafer....35
Fig. 3-8 A schematic of measurement of I-V characteristics of Si-cored fibers…...….38
Fig.3-9 The I-V characteristics of Si-cored fibers sintered at different temperature….38
Fig. 3-10 The I-V characteristics of (a) intrinsic, (b) n-type and (c) p-type Si-cored fibers…………………………………………………………………………39
Fig. 3-11 Donor (a) and acceptor (b) density in silicon versus mobility where open and closed circles are reported by Irvin and Mousty et al, respectively [26]……..41
Fig. 3-12 The I-V characteristics of Si fiber in different lengths………….…………...42
Fig. 3-13 (a) A schematic setup for transmission loss measurement; TLD: tunable laser diode, SMF: single-mode fiber. (b) Photograph of the transmission loss measurement setup……………………………………………………..……45
Fig. 3-14 The measured transmission losses of Si-cored fibers (a) diameter ranging from 100 to 200 μm (b) diameter ranging from 20 to 100μm in the wavelength regime from 1520 to 1560 nm………………………………………..……...46
Fig. 3-15 A Schematic setup for side coupling method. ……………………………….47
Fig. 3-16 (a) Optical microscope image of measuring the transmission loss by side coupling method (b) after zooming in from (a)………………..……………48
Fig. 3-17 The measurement of transmission loss of Si fiber diameter of (a)15μm and (b) 8μm by side coupling method…………………………………………...…..49
Fig. 3-18 (a) Setup of electrode tips devices (b) A stable arc discharge………………..53
Fig. 3-19 (a) The optical microscope image of two Si microfibers which were overlapped each other (b) Two Si microfibers melted to become one after arc discharging…………………………………………………………………..54
Fig. 3-20 (a) The two Si-cored fibers were connected straight to each other (b) A spliced Si-cored fiber after arc discharge……………………………………………55
Fig. 3-21 The measured splicing loss of Si microfiber by side coupling method…...…56
Fig. 3-22 The process of splicing of Si-cored fiber and single-mode fiber…………….57
Fig. 4-1 The energy diagram of metal and n-type semiconductor (a) before contact (b) after contact (c) the energy diagram of Schottky junction under reverse bias V. [31]……………………………………………………………………………63
Fig. 4-2 Photoexcitation in the n-type semiconductor under reverse bias. [31]………..64
Fig. 4-3 Photoexcitation in the metal by near-infrared wavelength regimes. [31]……..65
Fig. 4-4 (a) The schematic fabrication process of defining the detection and contact areas (b) The optical microscope image of the revealed area of Si-cored fiber…………..67
Fig. 4-5 A schematic diagram showing a Schottky photodector directly made on a silicon cored fiber……………………………………………………....…….68
Fig. 4-6 (a) A schematic setup for for measuring the I-V characteristics of the SSPD (b) photograph of the I-V characteristics measurement setup…………………….71
Fig. 4-7 (a) Measured photocurrent versus reverse bias for varied optical power. (b) Measured photocurrent versus varied optical power from a 1550 nm laser……………72
Fig. 4-8 (a) Measured photocurrent as a function of incident optical power at wavelengths from 1520 nm to 1560 nm without bias. (b) Fowler plot……...73
Fig. 4-9 A schematic diagram of the setup of response frequency of Schottky PD……76
Fig. 4-10 The results of measurement response frequency of laser source……...……..77
Fig. 4-11 The results of measurement response frequency of Schottky PD……………77



LIST OF TABLES
Table 2-1 Si-cored drawing at different speed and the results………………….……...25
Table 2-2 Comparison of diameter range between the reported fabrication methods and this work…………………………………………………………….…….....26
Table 3-1 Comparison between the reported Si-cored fibers and this work in terms of source materials, fabrication methods, crystallinity of fiber cores, transmission losses and core diameters……………………………………...50
Table 3-2 The splicing loss of different kinds of fibers…………………………...……58
dc.language.isoen
dc.subject蕭特基光偵測器zh_TW
dc.subject半導體光纖zh_TW
dc.subject矽核光纖zh_TW
dc.subjectsemiconductor fibersen
dc.subjectSchottky photodetectoren
dc.subjectsilicon cored fibersen
dc.title利用矽核光纖製作蕭特基光偵測器zh_TW
dc.titleFabrication of Schottky Photodetector by using Si-cored fibersen
dc.typeThesis
dc.date.schoolyear103-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃升龍,劉致為,孟心飛,冉曉雯
dc.subject.keyword半導體光纖,矽核光纖,蕭特基光偵測器,zh_TW
dc.subject.keywordsemiconductor fibers,silicon cored fibers,Schottky photodetector,en
dc.relation.page82
dc.rights.note同意授權(全球公開)
dc.date.accepted2015-02-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf8.3 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved