請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48096完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林新智(Hsin-Chih Lin) | |
| dc.contributor.author | Po-Cheng Wang | en |
| dc.contributor.author | 王伯政 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:46:08Z | - |
| dc.date.available | 2021-06-21 | |
| dc.date.copyright | 2011-07-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-06-21 | |
| dc.identifier.citation | 1.C.H. Caceres, C.J. Davidson, J.R. Griffiths, and C.L. Newton, “Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy”, Mater. Sci. Eng. A 325 (2002) 344-355.
2.A.F. Crawley, and B. Lagowski, “Effect of two-step aging on the precipitate structure in magnesium alloy AZ91”, Metall. Mater. Trans. B, 4 (1974) 949-951. 3.M.A. Gharghouri, G.C. Weatherly, and D.J. Embury, “The interaction of twins and precipitates in a Mg-7.7 at.% Al alloy”, Philos, Mag. 78 (1998) 1137-1149. 4.D. Ohno, R. Mirkovic, and R. Schmid-Fetzer, “Liquidus and solidus temperatures of Mg-rich Mg-Al-Mn-Zn alloys”, Acta Mater, 54 (2006) 3883-3891. 5.D. Duly, J.P. Simon, and Y. Brechet, “On the competition between continuous and discontinuous precipitations in binary Mg-Al alloys”, Acta Metall. Mater. 43 (1995) 101-106. 6.Q.M. Amir, and S.P. Gupta, “Cellular precipitation and precipitate coarsening in a Mg-Al alloy”, Can. Metall. Q. 34 (1994) 43-50. 7.T.J. Bastow, and S. Celotto, “Clustering and formation of nano-precipitates in dilute aluminium and magnesium alloys”, Mater. Sci. Eng. C 23 (2003) 757-762. 8.E. Cerri, and S. Barbagallo, “The influence of high temperature exposure on aging kinetics of a die cast magnesium alloy”, Mater. Lett. 56 (2002) 716-720. 9.J.F. Nie, “Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys”, Scripta Mater. 48 (2003) 1009-1015. 10.L.J. Yang, Y.H. Wei, and L.F. Hou, “Microstructure evolution of thixomolding AZ91D magnesium alloy”, J. Mater. Sci. 45 (2010) 3626-3634. 11.C.J. Bettles, “The effect of gold additions on the ageing behaviour and creep properties of the magnesium alloy AZ91E”, Mater. Sci. Eng. A 348 (2003) 280-288. 12.K.N. Braszczyńska-Malik, “Discontinuous and continuous precipitation in magnesium-aluminum type alloys”, J. Alloys Compd. 477 (2009) 870-876. 13.W.F. Smith, “Structure and Properties of Engineering Alloy”, 2nd ed., McGraw-Hill Publishing Co., 1993, pp. 556. 14.H. Watanabe, H. Tsutsui, T. Mulcai, M. Kohzu, S. Tanabe, and K. Higashi, “Deformation mechanism in a coarse-grained Mg-Al-Zn alloy at elevated temperatures”, International Journal of Plasticity, 17 (2001) 387-397. 15.S. Celotto, and T.J. Bastow, “Study of precipitation in aged binary Mg-Al and ternary Mg-Al-Zn alloys using 27Al NMR spectroscopy”, Acta Mater. 49 (2001) 41-51. 16.M.F. Horstemeyer, N. Yang, K. Gall, D.L. McDowell, J. Fan, and P.M. Gullett, “High cycle fatigue of a die cast AZ91E-T4 magnesium alloy”, Acta Mater. 52 (2004) 1327-1336. 17.G. Eisenmeier, B. Holzwarth, H.W. Hoppel, and H. Mughrabi, “Cyclic deformation and fatigue behavior of the magnesium alloy AZ91”, Mater. Sci. Eng. A 319-321 (2001) 578-582. 18.P. Zhang, and J. Lindemann, “Influence of shot peening on high cycle fatique properties of the high-strength wrought magnesium alloy”, Scripta Mater. 52 (2005) 485-490. 19.I.A. Yakubtsov, B.J. Diak, C.A. Sager, B. Bhattacharya, W.D. Macdonald, and M. Niewczas, “Effects of heat treatment on microstructure and tensile deformation of Mg AZ80 alloy at room temperature”, Mater. Sci. Eng. A 496 (2008) 247-255. 20.Q. Guo, H.G. Yan, Z.H. Chen, and H. Zhang, “Elevated temperature compression behavior of MgAlZn alloys”, Mater. Sci. and Technol. 22 (2006) 725-729. 21.Y. Uematsu, K. Tokaji, M. Kamakura, K. Uchida, H. Shibata, and N. Bekku, “Effect of extrusion conditions on grain refinement and fatigue behavior in magnesium alloys”, Mater. Sci. Eng. A 434 (2006) 131-140. 22.S.H. Chang, S.K. Wu, W.L. Tsai, and J.Y. Wang, “Cold-rolling effect on damping capacity of high-temperature damping background for AZ80 magnesium alloy”, J. Alloys Compd. 487 (2009) 142-145. 23.T. Nakajima, M. Takeda, and T. Endo, “Strain Enhanced Precipitate Coarsening during Creep of a Commercial Magnesium Alloy AZ80”, Mater. Trans. 47 (2006) 1098-1104. 24.W.C. Say, C.C. Chen, and S.J. Hsieh, “Electrochemical characterization of non-chromate surface treatments on AZ80 magnesium”, Materials Characterization 59 (2008) 1400-1406. 25.M. B. Haroush, G.B. Hamu, D. Eliezer, and L. Wagner, “The relation between microstructure and corrosion behavior of AZ80 Mg alloy following different extrusion temperatures”, Corr. Sci. 50 (2008) 1766-1778. 26.M. Marya, G.R. Edwards, and S. Liu, “An investigation on the effects of gases in GTA welding of a wrought AZ80 Magnesium alloy”, Welding Journal 83 (2004) 203S-212S. 27.H. Haferkamp, R. Boehm, U. Holzkamp, C. Jaschik, V. Kaese, and M. Niemeyer, “Alloy Development, Processing and Applications in Magnesium Lithium Alloys”, Mater. Trans. 42 (2001) 1160-1166. 28.P.Metenier, G. González-Doncel, O.A. Ruano, J. Wolfenstine, and O.D. Sherby, “Super plastic behavior of a fine-grained two-phase Mg-9wt.%Li alloy”, Mater. Sci. Eng. A 125 (1990) 195-202. 29.R.E. Lee, and W.J.D. Jones, “Micro plasticity and fatigue of some magnesium-lithium alloys”, J. Mater. Sci. 9 (1974), pp. 469-475. 30.J. Y. Wang, W.P. Hong, P.C. Hsu, C.C. Hsu, and S. Lee, “Microstructures and mechanical behavior of processed Mg-Li-Zn alloy”, Mater. Sci. Forum 419-422 (2003) 165-170. 31.A. Yamamoto, T. Ashida, Y. Kouta, K.B. Kim, S. Fukumoto, and H. Tsubakino, “Precipitation in Mg-(4-13)%Li-(4-5)%Zn Ternary Alloys”, Mater. Trans. 44 (2003) 619-624. 32.C.H. Chiu, H.Y. Wu, J.Y. Wang, and S. Lee, “Microstructure and mechanical behavior of LZ91 Mg alloy processed by rolling and heat treatments”, J. Alloy Compd. 460 (2008) 246-252. 33.H. Takuda, S. Kikuchi, T. Tsukada, K. Kubota, and N. Hatta, “Tensile properties of a few Mg-Li-Zn alloy thin sheets”, J. Mater. Sci. 37 (2002) 51-57. 34.C. C. Hsu, J. Y. Wang, and S. Lee, “Room Temperature Aging Characteristic of MgLiAlZn Alloy”, Mater. Trans. 49 (2008) 2728-2731. 35.Y.W. Kim, D.H. Kim, H.I. Lee, and C.P. Hong, “Widmanstatten type solidification in squeeze casting of Mg-Li-Al alloys”, Scripta Mater. 38 (1998) 923-929. 36.F. Stippich, E. Vera, G.K. Wolf, G. Berg, and C. Friedrich, “Enhanced corrosion protection of magnesium oxide coatings on magnesium deposited by ion beam-assisted evaporation”, Surf. Coat. Technol. 103-104 (1998) 29-35. 37.R. Rodríguez-Clemente, B. Aspar, N. Azema, B. Armas, C. Combescure, J. Durand, and A. Figueras, “Morphological properties of chemical vapor deposited AlN films”, J. Cryst. Growth 133 (1993) 59-70. 38.J. F. Fälth, S. K. Davidsson, X. Y. Liu, and T. G. Andersson, “Influence of Al/N flux ratio during nucleation layer growth on the structural properties of AlN grown on sapphire by molecular beam epitaxy”, Appl. Phys. Lett. 87 (2005) 161901-1~161901-3. 39.E. Rille, R. Zarwasch, and H.K. Pulker, “Properties of reactively D.C. magnetron-sputtered AlN thin films”, Thin Solid Films 228 (1993) 215-217. 40.M. Leskela, and M. Ritala, “Atomic Layer Deposition Chemistry: Recent Developments and Future Challenges”, Angew. Chem. Int. Ed. 42 (2003) 5548-5554. 41.B.S. Lim, A. Rahtu, and R.G. Gordon, “Atomic layer deposition of transition metals”, Nat. Mater. 2 (2003) 749-754. 42.C.X. Shan, X. Hou, K.L. Choy, and P. Choquet, “Improvement in corrosion resistance of CrN coated stainless steel by conformal TiO2 deposition”, Surf. Coat. Technol. 202 (2008) 2147-2151. 43.C.X. Shan, X. Hou, and K.L. Choy, “Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition”, Surf. Coat. Technol. 202 (2008) 2399-2402. 44.R. Matero, M. Ritala, M. Leskelä, T. Salo, J. Aromaa, and O. Forsén, “Atomic layer deposited thin films for corrosion protection”, J. Phys. IV France 9 (1999) Pr8-493-499. 45.H.E. Friedrich, and B.L. Mordike, “Magnesium Technology”, Springer-Verlag Berlin Heidelberg, 2006. 46.B.L. Mordike, I. Stulikova, and B. Smola, “Mechanisms of creep deformation in Mg-Sc-based alloys”, Metall. Trans. A 36A (2005) 1729-1736. 47.H.Y. Wu, Z.W. Gao, J.Y. Lin, and C.H. Chiu, “Effects of minor scandium addition on the properties of Mg-Li-Al-Zn alloy”, J. Alloy Compd. 474 (2009) 158-163. 48.C.J. Peel, B. Evans, C.A. Baker, D.A. Bennett, and P.J. Gregson, “Proceeding of the second international Aluminum-Lithium Conference”, The Metallurgy Society of AIME, California USA, (1983) 363-392. 49.J.B. Clark, “Age hardening in a Mg-9wt.% Al alloy”, Acta Metall., 16 (1968)141-152. 50.A.F. Crawley, and K.S. Milliken, “Precipitate morphology and orientation relationships in an aged Mg-9%Al-1%Zn-0.3%Mn alloy”, Acta Metall., 22 (1974) 557-562. 51.D. Duly, and Y. Brechet, “Nucleation mechanism of discontinuous precipitation in Mg-Al alloys and relation with the morphology”, Acta Metall. Mater., 42 (1994) 3035-3043. 52.D. Duly, M.C. Cheynet, and Y. Brechet, “Morphology and chemical nanoanalysis of discontinuous precipitation in Mg-Al alloys-regular growth”, Acta Metall. Mater., 42 (1994) 3843-3854. 53.D. Duly, J.P. Simon, and Y. Brechet, “On the competition between continuous and discontinuous precipitations in binary Mg-Al alloys”, Acta Metall. Mater. 43 (1995) 101-106. 54.S. Celotto, “TEM study of continuous precipitation in Mg-9 wt%Al-1 wt% Zn alloy”, Acta Mater., 48 (2000) 1775-1787. 55.X. Meng, R. Wu, M. Zhang, L. Wu, and C. Cui, “Microstructures and properties of superlight Mg-Li-Al-Zn wrought alloys”, J. Alloys Compd. 486 (2009) 722-725. 56.G.L. Song, and A. Atrens, “Corrosion Mechanisms of Magnesium Alloys”, Adv. Eng. Mater. 1 (1999) 11-33. 57.J.E. Gray, and B. Luan, “Protective coatings on magnesium and its alloys- a critical review”, J. Alloys Compd. 336 (2002) 88-113. 58.H. Hoche, C. Rosenkranz, A. Delp, and M.M. Lohrengel, “Investigation of the macroscopic and microscopic electrochemical corrosion behaviour of PVD-coated magnesium die cast alloy AZ91”, Surf. Coat. Technol. 193 (2005) 178-184. 59.ASTM E8M-03, Standard Test Method for Tension Testing of Metallic Materials, Philadelphia, PA, 2005. 60.S.M. George, A.W. Ott, and J.W. Klaus, “Surface chemistry for atomic layer growth”, J. Phys. Chem. 100 (1996) 13121-13131. 61.G.S. Higashi, and C.G. Fleming, “Sequential surface chemical reaction limited growth of high quality Al2O3 dielectrics”, Appl. Phys. Lett. 55 (1989) 1963-1965. 62.A.C. Dillon, A.W. Ott, J.D. Way, and S.M. George, “Surface chemistry of Al2O3 deposition using Al (CH3)3 and H2O in a binary reaction sequence”, Surf. Sci. 322 (1995) 230-242. 63.A.W. Ott, J.W. Klaus, J.M. Johnson, and S.M. George, “Al2O3 thin film growth on Si (100) using binary reaction sequence chemistry”, Thin Solid Films 292 (1997) 135-144. 64.ASTM D4060-07, Standard test method for abrasion resistance of organic coatings by the taber abraser, Philadelphia, PA, 2007. 65.ASTM D3359-97, Standard test method for measuring adhesion by tape test, Philadelphia, PA, 2003. 66.ASTM Standard G32-92, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, West Conshohocken, PA, USA, 1992. 67.S. Kleiner, E. Ogris, O. Beffort, and P.J. Uggowitzer, “Semi‐Solid Metal Processing of Aluminium Alloy A356 and Magnesium Alloy AZ91: Comparison Based on Metallurgical Consideration”, Adv. Eng. Mater. 9 (2003) 653-658. 68.K. Kuriyama, and N. Masaki, “The crystal structure of LiAl”, Acta Cryst. B31 (1975) 1793. 69.V. Komisarov, M. Talianker, and B. Cina, “Effect of retrogression and reaging on the precipitates in an 8090 Al–Li alloy”, Mater. Sc. Eng. A 242 (1998) 39-49. 70.D.M.J. Wilkes, Y. Li, and H. Jones, “The aging characteristics of rapidly solidified high lithium Al-Li-Mg alloys”, Mater. Sci. Eng. A 179/180 (1994) 681-687. 71.R.E. Reed-Hill, and R. Abbaschian, “Physical Metallurgy Principles”, 3rd ed., PWS Publishing Company, 1994, pp. 698-706. 72.D. Duly, W.Z. Zhang, and M. Audier, “High-resolution electron microscopy observations of the interface structure of continuous precipitates in a Mg-Al alloy and interpretation with the O-lattice theory”, Phil. Mag. A 71 (1995) 187-204. 73.W.J. Lai, Y.Y. Li, Y.F. Hsu, S. Trong, and W.H. Wang, “Aging behavior and precipitate morphologies in Mg–7.7Al–0.5Zn–0.3Mn (wt.%) alloy”, J. Alloys Compd. 476 (2008) 118-124. 74.W.F. Smith, “Structure and Properties of Engineering Alloy”, 2nd ed., McGraw-Hill Publishing Co., 1993, pp. 226-228. 75.W.F. Smith, “Structure and Properties of Engineering Alloy”, 2nd ed., McGraw-Hill Publishing Co., 1993, pp. 544-549. 76.J.Y. Wang, “Mechanical properties of room temperature rolled MgLiAlZn alloy”, J. Alloys Compd. 485 (2009) 241-244. 77.H. Altun, and S. Sen, “ The effect of DC magnetron sputtering AlN coatings on the corrosion behaviour of magnesium alloys”, Surf. Coat. Technol. 197 (2005) 193-200. 78.P. Villars, A. Prince, and H. Okamoto, “Handbook of ternary alloy phase diagrams”, ASM international 9 (1995) 12223-12229. 79.M.V. Kral, B.C. Muddle, and J.F. Nie, “Crystallography of the bcc/hcp transformation in a Mg–8Li alloy”, Mater. Sci. Eng. A 460-461 (2007) 227-232. 80.M.V. Koudriachova, N.M. Harrison, and S.W. de Leeuw, “Diffusion of Li-ions in rutile. An ab initio study”, Solid State Ionics 157 (2003) 35-38. 81.K. Kinoshita, J.W. Sim, and J.P. Ackerman, “Preparation and characterization of lithium aluminate”, Mat. Res. Bull. 13 (1978) 445-455. 82.S. PalDey, and S.C. Deevi, “Single layer and multilayer wear resistant coatings of (Ti, Al) N: a review”, Mater. Sci. Eng. A 342 (2003) 58-79. 83.Y.H. Yoo, D.P. Le, J.G. Kim, S.K. Kim, and P.V. Vinh, “Corrosion behavior of TiN, TiAlN, TiAlSiN thin films deposited on tool steel in the 3.5 wt.% NaCl solution”, Thin Solid Films 516 (2008) 3544-3548. 84.R. Saha, and W.D. Nix, “Effects of the substrate on the determination of thin film mechanical properties by nanoindentation”, Acta Mater. 50 (2002) 23-38. 85.Hadis Morkoç, “Handbook of Nitride Semiconductors and Devices”, Materials Properties, Physics and Growth, vol.1, 2008, pp. 358. 86.S.Q. Wu, Z.F. Hou, and Z.Z. Zhu, “First-principles study on the structural, elastic, and electronic properties of γ-LiAlO2”, Comput. Mater. Sci. 46 (2009) 221-224. 87.P.Auerkari, “Mechanical and physical properties of engineering alumina ceramics”, Technical Research Centre of Finland Espoo, VTT Tiedotteita-Meddelanden-Research Notes 1792, 1996, pp. 44. 88.ASTM D3359-97, Standard test method for measuring adhesion by tape test, Philadelphia, PA, 2003. 89.A. Leyland, and A. Matthews, “Design criteria for wear-resistant nanostructured and glassy-metal coatings”, Surf. Coat. Technol. 177-178 (2004) 317-324. 90.A. Leyland, and A. Matthews, “On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimized tribological behavior”, Wear 246 (2000) 1-11. 91.B.S. Mann, and V. Arya, “An experimental study to corelate water jet impingement erosion resistance and properties of metallic materials and coatings”, Wear 253 (2002) 650-661. 92.A.K. Dua, V.C. George, and R.P. Agarwala, “Characterization and microhardness measurement of electron-beam-evaporated alumina coatings”, Thin Solid Films 165 (1988) 163-172. 93.J.A. Taylor, “An XPS study of the oxidation of AlAs thin films grown by MBE”, J. Vac. Sci. Technol. 20 (1982) 751-755. 94.C.D. Wagner, D.E. Passoja, H.F. Hillery, T.G. Kinisky, H.A. Six, W.T. Jansen, and J.A. Taylor, “Auger and photoelectron line energy relationships in aluminum–oxygen and silicon–oxygen compounds”, J. Vac. Sci. Technol. 21 (1982) 933-944. 95.J.R. Lindsay, H.J. Rose, W.E. Swartz, P.H. Watts, and K.A. Rayburn, “X-ray photoelectron spectra of Aluminum oxides: structural effects on the chemical shift, Appl. Spectrosc. 27 (1973) 1-5. 96.T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, “Binary Alloy Phase Diagrams”, ASM International, vol.1, 1990, pp. 168. 97.T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, “Binary Alloy Phase Diagrams”, ASM International, vol.3, 1990, pp. 2445. 98.T. M. Mayer, J. W. Elam, S. M. George, P. G. Kotula, R. S. Goeke, “Atomic-layer deposition of wear-resistant coatings for microelectromechanical devices”, Appl. Phys. Lett. 82 (2003) 2883-2885. 99.G. Wu, X. Zeng, G. Li, S. Yao, X. Wang, “Preparation and characterization of ceramic/metal duplex coatings deposited on AZ31 magnesium alloy by multi-magnetron sputtering”, Materials Letters 60 (2006) 674-678. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/48096 | - |
| dc.description.abstract | 本研究針對AZ80N (AZ80+2wt%Li)和LZ101 (Mg-10Li-0.5Zn)鎂合金探討其微結構、析出行為、與機械性質等相關特性,同時分別利用原子沉積技術沉積LiAlO2薄膜和磁控濺鍍技術與原子沉積技術沉積Al/Al2O3薄膜於LZ101基材,將針對其化學成份、微結構、抗腐蝕、磨耗和坑穴沖蝕進行研究。
實驗結果顯示,擠型材AZ80N鎂合金相對於AZ80有較佳的延展性與韌性。AZ80N合金經400°C固溶處理後,於170°C-100小時與250°C-8小時時效處理,分別析出AlLi+Mg17Al12和Mg17Al12析出物,且皆呈現明顯的析出強化現象,其強度分別達370MPa和350MPa。同時,擠型材AZ80N鎂合金於170°C-48小時與250°C-3小時時效處理,也皆呈現明顯的析出強化效果,其強度分別達350MPa和340MPa。另外,AZ80N合金經400°C固溶處理後,藉由不同輥壓量與擠製溫度變化,與固溶材比較鎂合金基地有再結晶發生,呈現晶粒細化之效果,60%輥壓量強度可達375MPa。然而AZ80N-T6和AZ80N輥壓材有較差的延展性乃由於大量析出物導致差排與雙晶不易滑移,使之延展性較差。而AZ80N-T5有較佳的延展性,此結果將可有效提昇工程應用。 此外,鎂鋰合金有良好的成形性與較低密度,但是強度較低,不利工程應用。因此本研究探討Mg-10Li-0.5Zn (LZ101)鎂鋰合金施以熱處理,針對其析出行為深入探討。然而,由於鎂鋰合金有極差之抗腐蝕、磨耗及坑穴沖蝕限制其應用。因此本研究亦利用原子層沈積技術(ALD)於鎂鋰合金上鍍上65-200nm 的Al2O3 薄膜,由於鋰原子的擴散,將使原子沉積LiAlO2薄膜於鎂鋰合金,而非Al2O3薄膜。實驗結果顯示,LiAlO2薄膜為非晶質結構,且原子比為Li:Al:O = 1:1:2。LiAlO2薄膜有好的抗腐蝕性,較低的磨擦係數,高的H/E比,強的附著性,平整度。然而,由於鋰原子擴散,使之不易瞭解原子沉積Al2O3薄膜對鎂鋰合金之抗腐蝕等特性,因此本研究亦藉由R.F.濺鍍技術於鎂鋰合金先鍍上一層Al薄膜,之後也藉由原子層積技術鍍上一層Al2O3薄膜,結果顯示相對於單層,雙層亦有更佳的抗腐蝕特性,也更能提升Mg-10Li-0.5Zn 鎂鋰合金之工業上發展與應用。 | zh_TW |
| dc.description.abstract | In the present study, we study microstructures, precipitation behaviors and mechanical properties of as-extruded AZ80N (AZ80+2wt.%Li) and LZ101 (Mg-10Li-0.5Zn) Mg alloy. Meanwhile, a monolayer of LiAlO2 and a dual-layer of Al/Al2O3 films were deposited on the LZ101 substrates using atomic layer deposition (ALD) and both techniques of magnetron sputtering and atomic layer deposition (ALD), respectively. Their chemical compositions, microstructures, corrosion, wear and cavitation-erosion behaviors will be carefully examined.
Experimental results show adding 2wt.% Li to AZ80 alloy can obviously increase the ductility and impact toughness. The 400°C solution-treated AZ80N specimens produce the AlLi+Mg17Al12 and Mg17Al12 precipitates after aging at 170°C and 250°C, respectively. The T6-170°C and T6-250°C aged specimens have maximum tensile strengths of 370MPa and 350MPa and with corresponding aging times of 100 hours and 8 hours, respectively. Besides, the as-extruded AZ80N specimens also produce the AlLi+Mg17Al12 and Mg17Al12 precipitates after aging at 170°C and 250°C, respectively. The 170°C and 250°C aged AZ80N specimens have maximum tensile strengths of 350MPa and 340MPa and with corresponding aging times of 48 hours and 3 hours, respectively. On the other hand, the 400°C solution-treated AZ80N specimens with subsequent hot rolling at 300°C exhibit a fine grain structure with a high density of twinning defects. The 60% hot rolled AZ80N specimen has a tensile strength of 375MPa. However, the T6-treated and hot-rolled AZ80N specimens exhibit poor ductility (elongation~2-4%) due to the high amounts of particle-type and lamellar precipitates, which hinder the movement of dislocations and twins. On the contrary, T5-treated AZ80N alloy could exhibit excellent elongation, and can be applied for the engineering components. In addition, the Mg-Li alloy has excellent formability, as well as their extra-low density. But, these alloys exhibit a low mechanical strength and are not very useful for engineering application. Hence, the Mg-10Li-0.5Zn (LZ101) alloy is prepared in the present study, and its crystal structure, mechanical property and aging behavior are systematically investigated. However, the Mg-Li alloys have disadvantage of poor corrosion, wear, cavitation-erosion resistances. The poor corrosion, wear, cavitation-erosion resistances limits the application of Mg-Li alloys and needs to be resolved effectively. Therefore, the ALD technique was employed to deposit protective Al2O3 films on the Mg-Li alloys. It is believed that the Li atoms within the Mg-Li substrate will diffuse out to react with Al and/or O atoms during the ALD process. Hence, the LiAlO2 films, instead of Al2O3 films, are deposited on the Mg-Li substrates. The ALD-deposited LiAlO2 films exhibit an amorphous structure and have an atomic ratios of Li:Al:O = 1:1:2. The ALD-deposited LiAlO2 films show properties of good corrosion resistance, low friction coefficient, high hardness/elastic (H/E) ratio, strong adhesion, smooth surface roughness and conformable coverage. These excellent properties of ALD-deposited LiAlO2 films can significantly improve the corrosion, wear performance and cavitation–erosion resistance of LZ101 alloy. Besides, to obstruct diffusion of Li atom, and then understand effects of Al2O3 films on corrosion resistance of Mg-Li substrate, an interlayer deposited onto the Mg-Li alloy plays an important role. In this study, Al interlayer with a thickness of 200nm was pre-sputtered on the LZ101 substrates. Afterwards, Al2O3 films were deposited by the atomic layer deposition (ALD) technique on these LZ101 substrates with pre-sputtered Al interlayer. The potentio-dynamic polarization measurement shows that the LZ101 specimen with Al/Al2O3 dual films exhibits a better corrosion resistance than those specimens with a single film of sputtered Al or ALD-deposited Al2O3. The much thinner multilayer can provide a good instance for reducing weight and cost of thin protective films as shown in this study. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:46:08Z (GMT). No. of bitstreams: 1 ntu-100-F95527029-1.pdf: 14886702 bytes, checksum: b3ba0cd221a1e684eeab7a7747f0b28a (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要.......................................................i
Abstract.................................................iii Contents..................................................vi List of Figures............................................x List of Tables.........................................xviii Chapter One 1.1 Introduction and research motive.......................1 Chapter Two Literatures Review.........................................7 2.1 Preface................................................7 2.2 Compositions and designations of Magnesium alloys......8 2.3 Effects of added elements on mechanical properties.....8 2.3.1 Common alloying elements.............................9 2.3.2 Impurity elements...................................13 2.4 Microstructures and properties of AZ series magnesium alloy....................................................13 2.5 Precipitation hardening..............................14 2.5.1 Precipitation hardening mechanism..................14 2.5.2 Precipitation mechanism and morphology of AZ series magnesium. alloys........................................15 2.6 Introduction of Magnesium-Lithium-based alloy........20 2.7 Surface coating techniques...........................21 Chapter Three Experimental Procedure...................................34 3.1 Sample preparation...................................34 3.2 ICP-AES composition analysis.........................36 3.3 Microstructure observation...........................36 3.4 X-ray diffraction analysis...........................37 3.5 DSC analysis.........................................37 3.6 Hardness test........................................38 3.7 Tensile and Charpy impact testers....................38 3.8 ALD and sputtering processes.........................38 3.9 XPS and TEM analyses.................................39 3.10 Potentio-dynamic polarization test..................40 3.11 Mechanical characteristic of LiAlO2 film............41 3.12 Cavitation-erosion test.............................42 Chapter Four Effects of thermo-mechanical treatments on AZ80N (AZ80+2Li wt.%) alloy..............................................46 4.1 Comparison of AZ80 and AZ80N alloy...................46 4.2 T6-treated AZ80N alloy...............................47 4.3 T5-treated AZ80N alloy...............................66 4.4 Hot rolling of AZ80N alloy...........................80 4.5 Conclusion...........................................91 Chapter Five Effects of aging treatments and surface coatings on Mg-10Li-0.5Zn (LZ101) alloy..................................94 5.1 The aging treatment on LZ101 magnesium-lithium alloy.94 5.2 Effects of atomic layer deposited LiAlO2 films on LZ101 alloy...................................................104 5.2.1 The microstructure and composition of LiAO2 films.105 5.2.2 Corrosion behavior of the LZ101 specimens with ALD-deposited LiAlO2 films..................................108 5.2.3 Wear behavior of the LZ101 specimens with ALD-deposited LiAlO2films...................................109 5.2.4 Cavitation erosion of the LZ101 specimens with ALD-depositedLiAlO2 films...................................111 5.3 Effects of pre-sputtered Al interlayer on the atomic layer deposition of Al2O3films on LZ101 alloy...........123 5.4 Conclusion..........................................135 Future Work.............................................137 Reference...............................................138 List of Publications....................................151 | |
| dc.language.iso | en | |
| dc.subject | 原子沉積 | zh_TW |
| dc.subject | AZ80 | zh_TW |
| dc.subject | LZ101 | zh_TW |
| dc.subject | 鎂合金 | zh_TW |
| dc.subject | 熱機處理 | zh_TW |
| dc.subject | atomic layer deposition | en |
| dc.subject | AZ80 | en |
| dc.subject | LZ101 | en |
| dc.subject | Magnesium alloy | en |
| dc.subject | thermo-mechanical treatment | en |
| dc.title | AZ80N與LZ101鎂合金之熱機處理與表面鍍膜 | zh_TW |
| dc.title | The Thermo-Mechanical Treatments and Surface Coatings of AZ80N and LZ101 Mg Alloys | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳錫侃(Shyi-Kaan Wu),薛人愷(Ren-Kae Shiue),林昆明(Kun-Ming Lin),葉明堂(Ming-Tang Yeh) | |
| dc.subject.keyword | AZ80,LZ101,鎂合金,熱機處理,原子沉積, | zh_TW |
| dc.subject.keyword | AZ80,LZ101,Magnesium alloy,thermo-mechanical treatment,atomic layer deposition, | en |
| dc.relation.page | 157 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-06-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 14.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
