請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4764完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王俊能 | |
| dc.contributor.author | Li-Yaung Kuo | en |
| dc.contributor.author | 郭立園 | zh_TW |
| dc.date.accessioned | 2021-05-14T17:46:43Z | - |
| dc.date.available | 2019-10-12 | |
| dc.date.available | 2021-05-14T17:46:43Z | - |
| dc.date.copyright | 2015-10-12 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-10-07 | |
| dc.identifier.citation | Adjie B, Masuyama S, Ishikawa H, Watano Y (2007) Independent origins of tetraploid cryptic species in the fern Ceratopteris thalictroides. Journal of Plant Research, 120, 129–138.
Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723. Arrigo N, Barker MS (2012) Rarely successful polyploids and their legacy in plant genomes. Current Opinion in Plant Biology, 15, 140–146. Bainard JD, Henry TA, Bainard LD, Newmaster SG (2011) DNA content variation in monilophytes and lycophytes: large genomes that are not endopolyploid. Chromosome Research, 19, 763–775. Barker MS, Wolf PG (2010) Unfurling fern biology in the genomics age. BioScience, 60, 177–185. Bogonovich MD (2012) Broad-scale geographical evolution of ferns. Ph.D thesis, Indiana University, U.S.A. Bouckaert R, Heled J, Kühnert D et al. (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Ccomputational Biology, 10, e1003537. Buggs RJA, Wendel JF, Doyle JJ et al. (2014) The legacy of diploid progenitors in allopolyploid gene expression patterns. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, Doi: 10.1098/rstb.2013.0354. Chen CW, Ngan LT, Hidayat A et al. (2014) First insights into the evolutionary history of the Davallia repens complex. Blumea, 59, 49–58. Chen YG, Wu WS, Chen CH, Liu TK (2001) A date for volcanic eruption inferred from a siltstone xenolith. Quaternary Science Reviews, 20, 869–873. Cheng X, Zhang SZ (2010) Index to chromosome numbers of Chinese Pteridophyta (1969-2009). Journal of Fairylake Botanical Garden, 9, 1–58. Clark JR, Ree RH, Alfaro ME et al. (2008) A comparative study in ancestral range reconstruction methods: retracing the uncertain histories of insular lineages. Systematic Biology, 57, 693–707. Collinson M (2001) Cainozoic ferns and their distribution. Brittonia, 53, 173–235. Comai L (2005) The advantages and disadvantages of being polyploid. Nature Reviews Genetics, 6, 836–846. D’Errico J (2005) Surface Fitting using gridfit (http://www.mathworks. com/matlabcentral/fileexchange/8998), MATLAB Central File Exchange. Retrieved May 18, 2006. DeSoto L, Quintanilla LG, Méndez M (2008) Environmental sex determination in ferns: effects of nutrient availability and individual density in Woodwardia radicans. Journal of Ecology, 96, 1319–1327. Driscoll H, Barrington D (2007) Origin of Hawaiian Polystichum (Dryopteridaceae) in the context of a world phylogeny. American Journal of Botany, 94, 1413–1424. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973. Dufresne F, Stift M, Vergilino R, Mable BK (2014) Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools. Molecular Ecology, 23, 40–69. Ebihara A (2011) RbcL phylogeny of Japanese pteridophyte flora and implications on infrafamilial systematics. Bulletin of the National Museum of Nature and Science. Series B, Botany, 37, 63–74. Ebihara A, Ishikawa H, Matsumoto S et al. (2005) Nuclear DNA, chloroplast DNA, and ploidy analysis clarified biological complexity of the Vandenboschia radicans complex (Hymenophyllaceae) in Japan and adjacent areas. American Journal of Botany, 92, 1535–1547. Ebihara A, Matsumoto S, Ito M (2009) Hybridization involving independent gametophytes in the Vandenboschia radicans complex (Hymenophyllaceae): a new perspective on the distribution of fern hybrids. Molecular Ecology, 18, 4904–4911. ESRI (2011) ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564–567. Farrar D, Dassler C, Watkins Jr JE, Skelton C (2008) Gametophyte ecology. In: Biology and Evolution of ferns and Lycophytes (eds. Ranker TA, Haufler CH), pp. 222–256. Cambridge University Press, New York. Fawcett JA, Maere S, Van de Peer Y (2009) Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proceedings of the National Academy of Sciences of the United States of America, 106, 5737–5742. Flinn K (2006) Reproductive biology of three fern species may contribute to differential colonization success in post-agricultural forests. American Journal of Botany, 93, 1289–1294. Glennon KL, Ritchie ME, Segraves KA (2014) Evidence for shared broad-scale climatic niches of diploid and polyploid plants. Ecology Letters, 17, 574–582. Godsoe W, Larson M, Glennon KL, Segraves K (2013) Polyploidization in Heuchera cylindrica (Saxifragaceae) did not result in a shift in climatic requirements. American Journal of Botany, 100, 496–508. Goldberg EE, Lancaster LT, Ree RH (2011) Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Systematic Biology, 60, 451–465. Greer G, Curry D (2004) Pheromonal interactions among cordate gametophytes of the lady fern, Athyrium filix-femina. American Fern Journal, 94, 1–8. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98. Harbert RS, Brown AHD, Doyle JJ (2014) Climate niche modeling in the perennial Glycine (Leguminosae) allopolyploid complex. American Journal of Botany, 101, 710–721. Harrison SP, Yu G, Takahara H, Prentice IC (2001) Diversity of temperate plants in east Asia. Nature, 413, 129–130. Haufler CH (2002) Homospory 2002: an odyssey of progress in pteridophyte genetics and evolutionary biology. BioScience, 52, 1081–1093. Haufler CH (2014) Ever since Klekowski: testing a set of radical hypotheses revives the genetics of ferns and lycophytes. American Journal of Botany, 101, 2036–2042. Henry TA, Bainard JD, Newmaster SG (2014) Genome size evolution in Ontario ferns (Polypodiidae): evolutionary correlations with cell size, spore size, and habitat type and an absence of genome downsizing. Genome, 57, 1–12. Hori K, Tono A, Fujimoto K et al. (2014) Reticulate evolution in the apogamous Dryopteris varia complex (Dryopteridaceae, subg. Erythrovariae, sect. Variae) and its related sexual species in Japan. Journal of Plant Research, 127, 661–684. Huang SF (2011) Historical biogeography of the flora of Taiwan. Journal of the National Taiwan Museum, 64, 33–63. Huang YM, Chou HM, Hsieh TC, Wang JC, Chiou WL (2006) Cryptic characteristics distinguish diploid and triploid varieties of Pteris fauriei (Pteridaceae). Canadian Journal of Botany, 84, 261–268. Huelsenbeck JP, Ronquis F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 3, 754–755. Husband BC, Schemske D (2000) Ecological mechanisms of reproductive isolation between diploid and tetraploid Chamerion angustifolium. Journal of Ecology, 88, 689–701. Janssen T, Bystriakova N, Rakotondrainibe F et al. (2008) Neoendemism in Madagascan scaly tree ferns results from recent, coincident diversification bursts. Evolution, 62, 1876–1889. Jiao Y, Paterson A (2014) Polyploidy-associated genome modifications during land plant evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, DOI: 10.1098/rstb.2013.0355. Jiao Y, Wickett NJ, Ayyampalayam S et al. (2011) Ancestral polyploidy in seed plants and angiosperms. Nature, 473, 97–100. Jiménez A, Quintanilla LG, Pajarón S, Pangua E (2008) Reproductive and competitive interactions among gametophytes of the allotetraploid fern Dryopteris corleyi and its two diploid parents. Annals of Botany, 102, 353–359. Kato M (1984) A taxonomic study of the athyrioid fern genus Deparia with main reference to the Pacific species. Journal of the Faculty of Science Section Ⅲ, 13, 371–430. Kato M (1993a) Biogeography of ferns: dispersal and vicariance. Journal of Biogeography, 20, 265–274. Kato M (1993b) Deparia and Athyrium. In: Flora of North America, Vol. 2., pp. 254–258. Oxford University Press, New York. Kato M (2001) Deparia cataracticola (Woodsiaceae), a new species from Hawaii. Acta Phytotaxonomica et Geobotanica, 52, 1–9. Kato M, Ebihara A (2011) A book series from the National Museum of Nature and Science No. 11 Endemic plants of Japan. Takai University Press, Kanagawa. Kato M, Nakato N, Cheng X, Iwatsuki K (1992) Cytotaxonomic study of ferns of Yunnan, southwestern China. The Botanical Magazine, 105, 105–124. Kessler M (2000) Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecology, 149, 181–193. Kimura M (2000) Paleogeography of the Ryukyu Islands. Tropics, 10, 5–24. Kodandaramaiah U (2009) Use of dispersal-vicariance analysis in biogeography - a critique. Journal of Biogeography, 37, 3–11. Korall P, Pryer KM (2014) Global biogeography of scaly tree ferns (Cyatheaceae): evidence for Gondwanan vicariance and limited transoceanic dispersal. Journal of Biogeography, 41, 402–413. Kreft H, Jetz W, Mutke J, Barthlott W (2010) Contrasting environmental and regional effects on global pteridophyte and seed plant diversity. Ecography, 33, 408–419. Kuo LY, Chiou WL, Wang CN (2008) Cytogeography and polyploidy evolution in Deparia lancea group. Poster in conference Botany 2008, Vancouver, Canada. Kuo LY, Li FW, Chiou WL, Wang CN (2011) First insights into fern matK phylogeny. Molecular Phylogenetics and Evolution, 59, 556–566. Laporte V, Cuguen J, Couvet D (2000) Effective population sizes for cytoplasmic and nuclear genes in a gynodioecious species: the role of the sex determination system. Genetics, 154, 447–458. Lemey P, Rambaut A, Welch JJ, Suchard M a (2010) Phylogeography takes a relaxed random walk in continuous space and time. Molecular Biology and Evolution, 27, 1877–1885. Li FW, Kuo LY, Rothfels CJ et al. (2011) RbcL and matK earn two thumbs up as the core DNA barcode for ferns. PLoS one, 6. Lin SJ, Iwatsuki K (2010) A new sexual diploid of Dryopteris erythrosora complex (Dryopteridaceae) from Oki Islands, Japan. Bulletin of the Faculty of Life and Environmental Science, Shimane University, 15, 11–13. Linder HP, Barker NP (2014) Does polyploidy facilitate long-distance dispersal? Annals of Botany, 113, 1175–1183. Lu JM, Li DZ, Lutz S et al. (2011) Biogeographic disjunction between eastern Asia and North America in the Adiantum pedatum complex (Pteridaceae). American Journal of Botany, 98, 1680–1693. Masuyama S (1979) Reproductive biology of the fern Phegopteris decursive-pinnata I. The dissimilar mating systems of diploids and tetraploids. The Botanical Magazine, Tokyo, 92, 275–289. Masuyama S, Watano Y (1990) Trends for inbreeding in polyploid pteridophytes. Plant Species Biology, 5, 13–17. Matsumoto S (2003) Species ecological study on reproductive systems and speciation of Cyrtomium falcatum complex (Dryopteridaceae) in Japanese archipelago. Annals of the Tsukuba Botanical Garden, 1–141. Matsumoto S, Nakaike T (1990) Cytological observations of some ferns in Nepal (1). On the related taxa in Japan. Cryptogams of the Himalayas, 2, 163–178 Mayer M, Soltis P (1994) Chloroplast DNA phylogeny of Lens (Leguminosae): origin and diversity of the cultivated lentil. Theoretical and Applied Genetics, 87, 773–781. Mayrose I, Barker MS, Otto SP (2010) Probabilistic models of chromosome number evolution and the inference of polyploidy. Systematic Biology, 59, 132–144. Mayrose I, Zhan SH, Rothfels CJ et al. (2011) Recently formed polyploid plants diversify at lower rates. Science, 333, 1257. Mayrose I, Zhan SH, Rothfels CJ et al. (2015) Methods for studying polyploid diversification and the dead end hypothesis: a reply to Soltis et al. (2014). New Phytologist, 206, 27–35. Mickel JT, Smith AR. 2004. The pteridophytes of Mexico. The New York Botanical Garden Press, New York. Näf U (1979) Atheridiogens and antheridial development. In: The Experimental Biology of Ferns (eds. Dyer AF), pp. 436–456. Academic Press, New York. Nakato N, Mitui K (1979) lntraspecific polyploidy in Diplazium subsinuatum (Wall.) Tagawa. Journal of Japanese Botany, 54, 129–140. Nakazato T, Jung MK, Housworth EA, Rieseberg LH, Gastony GJ (2006) Genetic map-based analysis of genome structure in the homosporous fern Ceratopteris richardii. Genetics, 173, 1585–1597. Nakazato T, Barker MS, Rieseberg LH, Gastony GJ (2008) Evolution of the nuclear genome of ferns and lycophytes. In: Biology and evolution of ferns and lycophytes (eds. Ranker TA, Haufler CH), pp. 175–197, Cambridge University Press, New York. Neall VE, Trewick S a (2008) The age and origin of the Pacific islands: a geological overview. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 3293–3308. Near TJ, Sanderson MJ (2004) Assessing the quality of molecular divergence time estimates by fossil calibrations and fossil-based model selection. Philosophical Transactions: Biological Sciences, 359, 1477–1483. Neiman M, Kay A, Krist A (2013) Can resource costs of polyploidy provide an advantage to sex? Heredity, 110, 152–159. Nitta JH, Ebihara A, Ito M (2011) Reticulate evolution in the Crepidomanes minutum species complex (Hymenophyllaceae). American Journal of Botany, 98, 1782–1800. Osozawa S, Shinjo R, Armid A et al. (2012) Palaeogeographic reconstruction of the 1.55 Ma synchronous isolation of the Ryukyu Islands, Japan, and Taiwan and inflow of the Kuroshio warm current. International Geology Review, 54, 1369–1388. Osozawa S, Shinjo R, Armid A et al. (2012) Palaeogeographic reconstruction of the 1.55 Ma synchronous isolation of the Ryukyu Islands, Japan, and Taiwan and inflow of the Kuroshio warm current. International Geology Review, 54, 1369–1388. Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annual Review of Genetics, 34, 401–437. Pangua E, Quintanilla LG., Sancho A, Pajarón S (2003) A comparative study of the gametophytic generation in the Polystichum aculeatum group. International Journal of Plant Sciences, 164, 295–303. Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New phytologist, 186, 5–17. Patiño J, Carine M, Fernández-Palacios JM et al. (2014) The anagenetic world of spore-producing land plants. New Phytologist, 201, 305–311. Patiño J, Sólymos P, Carine M et al. (2015) Island floras are not necessarily more species poor than continental ones. Journal of Biogeography, 42, 8–10. Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2006) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102–117. Phillips S, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161–175. Provan J, Powell W, Dewar H et al. (1999) An extreme cytoplasmic bottleneck in the modern European cultivated potato (Solanum tuberosum) is not reflected in decreased levels of nuclear diversity. Proceedings of the Royal Society B: Biological Sciences, 266, 633–639. Qian H (2009) Beta diversity in relation to dispersal ability for vascular plants in North America. Global Ecology and Biogeography, 18, 327–332. Qian H, Ricklefs R (2000) Large-scale processes and the Asian bias in species diversity of temperate plants. Nature, 407, 12–14. Raghavan V (1989) Developmental biology of fern gametophytes. Cambridge University Press, New York. Rambaut A, Drummond AJ (2007) Tracer v1.5. http://beast.bio.ed.ac.uk/ Tracer Ramsey J (2011) Polyploidy and ecological adaptation in wild yarrow. Proceedings of the National Academy of Sciences of the United States of America, 108, 7096–7101. Ramsey J, Ramsey T (2014) Ecological studies of polyploidy in the 100 years following its discovery. Proceedings of the Royal Society B: Biological Sciences, 369, Doi: 10.1098/rstb.2013.0352. Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics, 29, 467–501. Ranker TA, Geiger JMO (2008) Population genetics. In: Biology and evolution of ferns and lycophytes (eds. Ranker TA, Haufler CH), pp. 107–133. Cambridge University Press, New York. Ree RH, Smith SA (2008) Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology, 57, 4–14. Ree R, Moore B, Webb C, Donoghue M (2005) A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution, 59, 2299–2311. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574. Rothfels CJ, Larsson A, Kuo LY et al. (2012a) Overcoming deep roots, fast rates, and short internodes to resolve the ancient rapid radiation of eupolypod II ferns. Systematic Biology, 61, 490–509. Rothfels CJ, Sundue MA, Kuo L-Y et al. (2012b) A revised family-level classification for eupolypod II ferns (Polypodiidae: Polypodiales). Taxon, 61, 515–533. Rothfels CJ, Windham MD, Pryer KM (2013) A plastid phylogeny of the cosmopolitan fern family Cystopteridaceae (Polypodiopsida). Systematic Botany, 38, 295–306. Rothwell GW, Stockey R A. (1991) Onoclea sensibilis in the Paleocene of North America, a dramatic example of structural and ecological stasis. Review of Palaeobotany and Palynology, 70, 113–124. Sano R, Takamiya M, Ito M, Kurita S, Hasebe M (2000a) Phylogeny of the lady fern group, tribe Physematieae (Dryopteridaceae), based on chloroplast rbcL gene sequences. Molecular Phylogenetics and Evolution, 15, 403–413. Sano R, Takamiya M, Kurita S, Ito M, Hasebe M (2000b) Diplazium subsinuatum and Di. tomitaroanum should be moved to Deparia according to molecular, morphological, and cytological characters. Journal of Plant Research, 113, 157–163. Scarpino SV, Levin DA, Meyers LA (2014) Polyploid formation shapes flowering plant diversity. The American Naturalist, 184, 456–465. Schneider H, Ranker T a, Russell SJ et al. (2005) Origin of the endemic fern genus Diellia coincides with the renewal of Hawaiian terrestrial life in the Miocene. Proceedings of the Royal Society B: Biological Sciences, 272, 455–460. Schneller J (1979) Biosystematic investigations on the lady fern (Athyrium filix-femina). Plant Systematics and Evolution, 277, 255–277. Schneller JJ (2008) Atheridiogens. In: Biology and Evolution of ferns and Lycophytes (eds. Ranker TA, Haufler CH), pp. 134–151. Cambridge University Press, New York. Schoener T (1968) The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology, 49, 704–726. Schuettpelz E, Pryer KM (2009) Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy. Proceedings of the National Academy of Sciences of the United States of America, 106, 11200–11205. Sharma HC (1982) A technique for somatic counts from root tips of cereal seedlings raised by embryo culture. Current Science, 51, 143–144. Shinohara W, Hsu TW, Moore SJ, Murakami N (2006) Genetic analysis of the newly found diploid cytotype of Deparia petersenii (Woodsiaceae: Pteridophyta): evidence for multiple origins of the tetraploid. International Journal of Plant Sciences, 167, 299–309. Sigel EM, Windham MD, Pryer KM (2014) Evidence for reciprocal origins in Polypodium hesperium (Polypodiaceae): a natural fern model system for investigating how multiple origins shape allopolyploid genomes. American Journal of Botany, 101, 1476–1485. Šmarda P, Hejcman M, Březinová A et al. (2013) Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long‐term grassland fertilization experiment. New Phytologist, 200, 911–921. Soltis D, Soltis P, Bennett D, Leitch I (2003) Evolution of genome size in the angiosperms. American Journal of Botany, 90, 1596–1603. Soltis D, Segovia-Salcedo M, Jordon-Thaden I et al. (2014a) Are polyploids really evolutionary dead‐ends (again)? A critical reappraisal of Mayrose et al. (2011). New Phytologist, 202, 1105–1117. Soltis DE, Visger CJ, Soltis PS (2014b) The polyploidy revolution then...and now: Stebbins revisited. American Journal of Botany, 101, 1057–1078. Takamiya M (1996) Index to chromosomes of Japanese Pteridophyta (1910-1996). Japan Pteridological Society, Tokyo. Tanaka J, Yano K, Aya K et al. (2014) Antheridiogen determines sex in ferns via a spatiotemporally split gibberellin synthesis pathway. Science, 346, 469–473. te Beest M, Le Roux JJ, Richardson DM et al. (2012) The more the better? The role of polyploidy in facilitating plant invasions. Annals of Botany, 109, 19–45. Testo W, Watkins Jr J, Barrington D (2015) Dynamics of asymmetrical hybridization in North American wood ferns: reconciling patterns of inheritance with gametophyte reproductive biology. New Phytologist, 206, 785–795. Thompson J, Merg K (2008) Evolution of polyploidy and the diversification of plant-pollinator interactions. Ecology, 89, 2197–2206. Thompson KA, Husband BC, Maherali H (2014) Climatic niche differences between diploid and tetraploid cytotypes of Chamerion angustifolium (Onagraceae). American Journal of Botany, 101, 1868–1875. Tiffney BH, Manchester SR (2001) The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the northern hemisphere Tertiary. International Journal of Plant Sciences, 162, S3–17. Tindale M, Roy S (2002) A cytotaxonomic survey of the Pteridophyta of Australia. Australian Systematic Botany, 15, 839–937. Trewick S, Morgan‐Richards M, Russell SJ et al. (2002) Polyploidy, phylogeography and Pleistocene refugia of the rockfern Asplenium ceterach: evidence from chloroplast DNA. Molecular Ecology, 11, 2003–2012. Tsai JL, Shieh WC (1984) A cytotaxonomic survey of the pteridophytes in Taiwan (2).Chromosome and spore characteristics. Journal of Science and Engineering, 21, 47–69. Vanneste K, Baele G, Maere S, Peer Y Van de (2014a) Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Research, 24, 1334–1347. Vanneste K, Maere S, Peer Y Van de (2014b) Tangled up in two: a burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution. Philosophical Transactions of the Royal Society B, 369, Doi: 10.1098/rstb.2013.0353. Verma SC (2003) Some aspects of reproductive biology of the gametophyte generation of homosporous ferns. In: Pteridophyte in the New Millennium (eds. Chandra S, Srivastava M), pp. 455–484. Kluwer Academic Publishers, the Netherlands. Visser V, Molofsky J (2015) Ecological niche differentiation of polyploidization is not supported by environmental differences among species in a cosmopolitan grass genus. American Journal of Botany, 102, 36–49. Vogel J, Rumsey F, Schneller J, Barrett J, Gibby M (1999) Where are the glacial refugia in Europe? Evidence from pteridophytes. Biological Journal of the Linnean Society, 66, 23–37. Wade M, Goodnight C (2006) Cyto-nuclear epistasis: two-locus random genetic drift in hermaphroditic and dioecious species. Evolution, 60, 643–659. Wagner JW (1995) Evolution of Hawaiian ferns and fern allies in relation to their conservation status. Pacific Science, 49, 31–41. Walker TG (1984) Chromosomes and evolution in pteridophytes. In: Chromosomes in evolution of eukaryotic groups. Vol. 2, pp. 103–141. CRC Press, Boca Raton. Wang CR, He ZR, Kato M (2013) Athyriaceae. In: Flora of China Vol. 2-3., pp. 418–534. Science Press, Beijing. Wang L, Schneider H, Zhang XC, Xiang QP (2012) The rise of the Himalaya enforced the diversification of SE Asian ferns by altering the monsoon regimes. BMC Plant Biology, 12, 210. Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 33, 607–611. Wen CK, Smith R, Banks J (1999) ANI1: a sex pheromone–induced gene in Ceratopteris gametophytes and its possible role in sex determination. The Plant Cell, 11, 1307–1317. Wen J (1999) Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annual Review of Ecology and Systematics, 30, 421–455. Wen J, Ree R, Ickert-Bond S, Nie Z, Funk V (2013) Biogeography: where do we go from here? Taxon, 62, 912–927. Weng RF (1990) Cytological observations on some Chinese ferns. Acta Phytotaxonomica Sinica, 28, 27–33. Wood TE, Takebayashi N, Barker MS et al. (2009) The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences of the United States of America, 106, 13875–13879. Xiang JY, Wen J, Peng H (2015) Evolution of the eastern Asian-North American biogeographic disjunctions in ferns and lycophytes. Journal of Systematics and Evolution, 53, 2–32. Yamamoto K, Murakami N, Ebihara A (2010) The distribution of Dryopteris caudipinna (Dryopteridaceae), a sexually reproducing counterpart of the apogamous D. erythrosora, in Japan. Acta Phytotaxonomica et Geobotanica, 61, 109–114. Yamane H (1998) Fern antheridiogens. International Review of Cyrology, 184, 1–32. Yang CY (1992) Magma evolution of north Luzon Arc and the tectonic implication. Master thesis, National Taiwan University. Yu Y, Harris AJ, He XJ (2010) S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution, 56, 848–850. Zhang WY, Kuo LY, Li FW, Wang CN, Chiou WL (2014) The hybrid origin of Adiantum meishanianum (Pteridaceae): a rare and endemic species in Taiwan. Systematic Botany, 39, 1034–1041. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph. D thesis, The University of Texas, Austin. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/4764 | - |
| dc.description.abstract | 多倍體化(polyploidization)是一種真核生物中普遍的現象。在維管束植物中,多倍體化在蕨類演化中扮演非常特殊的角色,創造現生蕨類基因與物種多樣性。除了蕨類中常見的多倍體事件,相較於開花植物蕨類的核基因組有偏好多倍體演化的趨勢。此外,過去研究暗示多倍體類群在蕨類中有較高的拓殖能力。然而,關於蕨類多倍體的演化建立與生物地理研究相當之少。就族群建立與擴展的角度來說,成功的多倍體演化可能與歷史因子(如:年輕的演化歷史)、生態因子(如:氣候棲位偏移)、生殖因子(如:自交)有關,其中可能伴隨相關的演化適應降低了多倍體類群與二倍體親本之競爭而被滅絕的風險。為了回答蕨類多倍體如何建立與擴展族群的一系列問題,本研究論文使用對囊蕨屬(Deparia, Athyriaceae, Eupolypod Ⅱ, Polypodiales)的多倍體類群做為研究對象。尤其是單葉對囊蕨(Deparia lancea)的六倍體,本論文針對其相關因子之效應做深入的探討。對囊蕨屬的生物歷史地理與多倍體化演化重建顯示-種內的地理擴展的案例皆與多倍體化有關;但在同屬物種間的尺度,多倍體與二倍體類群的遠離散播速率並無發現有顯著之差異。在單葉對囊蕨的多倍體中(即有性的四倍體與六倍體),歷史因子包括年輕的演化歷史與更新世氣候變遷與地質事件並非這些多倍體地理擴展的限制因子。反之,更新世早期的東亞島弧的海洋隔閡的建立可能為這些多倍體建立的促進因子。此外,這兩個有性之多倍體推斷皆有高於二倍體之傳播速率,暗示這些多倍體都要較高之拓殖能力。在單葉對囊蕨的廣泛六倍體類群中,提升的自交能力是來至於配子器自交之偏向表現與高自交容忍度;相較於氣候棲位擴張,此自交能力的提升應為推動其族群建立與地理擴展的主要角色。此自交能力的提升讓這些六倍體拓殖能力提高,並幫助其氣候區位與實際生態區位的探索擴張。最後,依據推斷之地理分布與起源,提出單葉對囊蕨多倍體形成與建立之生物地理假說此假說,相似於“從源至匯” (source-to-sink)之種化過程。 | zh_TW |
| dc.description.abstract | Polyploidization is a universal phenomenon among eukaryotes. Among vascular plants, polyploidy in ferns play an especially important role greatly contributing to their current genetic and species diversity. This is not only because there is a high occurrence of polyploidy speciation in ferns, but also, at genomic aspects, they have evolved under a much polyploid-preferred manner than flowering plants. In addition, fern polyploids are potentially better colonizers with higher dispersal ability than diploids as implied by many previous studies. Despite these, there has scarce empirical study understanding evolutionary establishment and biogeography of fern polyploids. Regarding to establishment and subsequent expansion, the evolutionary success of a polyploid taxon should be related to different factors that are reproductive (e.g. inbreeding), ecological (e.g. climatic niche shift), in which some adaptation can reduce their extinction risk due to outcompeting by the diploid progenitors, and historical (e.g. young evolutionary age). To answer a series of questions about how ferns polyploids naturally establish and subsequently expand their population, this thesis focused on the polyploid taxa in a terrestrial fern genus Deparia (Athyriaceae, Eupolypod II, Polypodiales), and surveyed the relating factors associating with polyploid establishment and expansion in Deparia lancea, especially for its hexaploids. The reconstructions of historical biogeogeophy and polyploidy evolution based on the whole Deparia phylogeny revealed that all species exhibited infraspecific range expansions concurrent with polyploidization. At the species level, no significant differences of long-distance dispersal rates was detected between polyploid and diploid lineages. In Deparia lancea polyploids (sexual tetraploid and hexaploid), the historical factors, including young evolutionary age and recent climatic/geographical event, seem less limit their range expansion. Instead, I implied the historical event of sea barrier formation isolating East Asia Archipelago during the Early Pleistocene had possibly facilitated their successful establishments. In addition, both sexual polyploidy cytotypes were inferred with higher dispersal rates than diploids suggesting an increased colonization ability in these polyploids. In the widespread line hexaploid of D. lancea, I further demonstrated that an increased inbreeding ability, including inbreeding tending gender expression and higher inbreeding tolerance, rather than broaden climatic niche might play a rather important and primary role for their successful population establishment and subsequent expansion. This increased inbreeding ability should be the major cause contributing to the high oversea colonization ability in these hexaploids, and, thus, assist their exploration in climatic niche as well as potential distribution. Finally, based on inferred distribution and origins, I proposed a biogeographical scenario for the polyploidy formation/establishment in Deparia lancea, which was hypothesized to be similar as a source-to-sink speciation process. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-14T17:46:43Z (GMT). No. of bitstreams: 1 ntu-104-F97b44008-1.pdf: 6509175 bytes, checksum: 77d9502f371ab0f5452fda17230daa5d (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENTS i ii
ABSTRACT (Chinese) iii iv ABSTRACT (English) v vi CONTENTS vii viii Chapter 1. General introduction of polyploidy evolution and dispersal in ferns........…………………………………………..…….1 Polyploidy in plants……………………………………………………1 Dispersal and polyploidy in ferns……………………...………………2 Aims in this thesis…………………………………………………...4 References……………………...……………………………………...5 Chapter 2. Historical biogeography and polyploidy evolution in the genus Deparia……………………………………………………...….9 Abstract……………………………………………………………...…9 Introduction…………………………………………………………....9 Materials and methods……………………………………………….10 Results………………………………………………………………..14 Discussion…………………………………………………………….16 References…………………………………………………………....19 Figures………………………………………………………………..25 Tables………………………………………………………………....34 Chapter 3. The rapid geographical range expansions and oversea dispersals of polyploid lineages in Deparia lancea………………...43 Abstract……………………………………………………………….43 Introduction…………………………………………………………..43 Materials and methods……………………………………………….44 Results………………………………………………………………..49 Discussion…………………………………………………………….51 References……………………………………………………………57 Figures………………………………………………………………..62 Tables…………………………………………………………………70 Chapter 4. The phylogeography and population genetics of the Deparia lancea hexaploids…………………………………………..74 Abstract……………………………………………………………….74 Introduction…………………………………………………………..74 Materials and methods……………………………………………….75 Results……………………………………………………………..…79 Discussion…………………………………………………………….83 References…………………………………………………………....87 Figures……………………………………………………………......88 Tables………………………………………………………………....95 Chapter 5. Inbreeding reproductive biology associating with autopolyploidization in the Deparia lancea hexaploids……….…104 Abstract………………………………………………..…………….108 Introduction…………………………………………………………108 Materials and methods……………………………………….……..110 Results……………………………………………………………....112 Discussion………………………………………………………...…115 References…………………………………………………………..121 Figures………………………………………………………………124 Tables………………………………………………………………..130 Chapter 6. Do climatic niche shifts facilitate geographical range expansions in the Deparia lancea hexaploids?...............................134 Abstract……………………………………………………………...134 Introduction…………………………………………………………134 Materials and methods……………………………………………...136 Results………………………………………………………………139 Discussion…………………………………………………………...141 References…………………………………………………………..143 Figures……………………………………………………………....147 Tables………………………………………………………………..153 Chapter 7. Summary and synthesis…………………………..……..157 Establishment and range expansion of Deparia polyploids………....157 Historical factor and formation/establishment of Deparia lancea polyploids……………………………………………………………158 Biogeography of Deparia lancea polyploid formation/establishment ….............…..………………..……………………………………...160 References………………………………………………………...…162 Protocols……………………………………………………………....165 | |
| dc.language.iso | zh-TW | |
| dc.subject | 多倍體 | zh_TW |
| dc.subject | 生物地理 | zh_TW |
| dc.subject | 氣候棲位偏移 | zh_TW |
| dc.subject | 對囊蕨屬 | zh_TW |
| dc.subject | 單葉對囊蕨 | zh_TW |
| dc.subject | 東亞 | zh_TW |
| dc.subject | 傳播 | zh_TW |
| dc.subject | 自交 | zh_TW |
| dc.subject | 蕨類 | zh_TW |
| dc.subject | 遠距傳播 | zh_TW |
| dc.subject | inbreeding | en |
| dc.subject | Deparia | en |
| dc.subject | Deparia lancea | en |
| dc.subject | East Asia | en |
| dc.subject | dispersal | en |
| dc.subject | ferns | en |
| dc.subject | long-distance dispersal | en |
| dc.subject | polyploid | en |
| dc.subject | biogeography | en |
| dc.subject | climatic niche shift | en |
| dc.title | 對囊蕨屬與單葉對囊蕨多倍體化之生物地理及親緣地理學研究 | zh_TW |
| dc.title | Polyploidy and biogeography in genus Deparia and phylogeography in Deparia lancea | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 邱文良 | |
| dc.contributor.oralexamcommittee | 胡哲明,徐嘉君,廖培鈞,黃俊霖,劉少倫 | |
| dc.subject.keyword | 生物地理,氣候棲位偏移,對囊蕨屬,單葉對囊蕨,東亞,傳播,自交,蕨類,遠距傳播,多倍體, | zh_TW |
| dc.subject.keyword | biogeography,climatic niche shift,Deparia,Deparia lancea,East Asia,dispersal,ferns,inbreeding,long-distance dispersal,polyploid, | en |
| dc.relation.page | 171 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2015-10-08 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf | 6.36 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
