Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47591
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林坤佑
dc.contributor.authorJen-Chu Wuen
dc.contributor.author吳仁鉅zh_TW
dc.date.accessioned2021-06-15T06:07:32Z-
dc.date.available2013-08-18
dc.date.copyright2010-08-18
dc.date.issued2010
dc.date.submitted2010-08-13
dc.identifier.citation[1] J. Mikkonen, C. Corrado, C. Evci, and M. Progler, “Emerging wireless broadband networks,” IEEE Commun. Mag., vol. 36, no. 2, pp. 112–117, Feb. 1998.
[2] H. Ogawa, “Millimeter-wave wireless personal area network systems,” in Proc. Radio Frequency Integrated Circuits Symp., Jun. 2006, pp. 11–13.
[3] A. Hajimiri, H. Hashemi, A. Natarajan, X. Guan, and A. Komijani,“Integrated phased array system in silicon,” Proc. IEEE, vol. 93, no. 9,pp. 1637–1655, Sep. 2005.
[4] A. Natarajan, A. Komijani, and A. Hajimiri, “A fully integrated 24-GHz phased-array transmitter in CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2502–2514, Dec. 2005.
[5] Sanggeun Jeon, Yu-Jiu Wang, Hua Wang, F. Bohn , A. Natarajan, A. Babakhani, and A. Hajimiri, “A scalable 6-to-18 GHz concurrent dual-band quad-beam phased-array receiver in CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2660–2673, Dec. 2008.
[6] M. Fakharzadeh, M-R. Nezhad-Ahmadi, B. Biglarbegian, J. Ahmadi-Shokouh, and S. Safavi-Naeini, “CMOS phased array transceiver technology for 60 GHz wireless applications,” IEEE Trans. Antennas Propag., vol. 58, no. 4, pp. 1093-1104, April 2010.
[7] Ali M. Niknejad and Hossein Hashemi, MM-Wave Silicon Technology 60 GHz and Beyond. New York: Springer Science, 2008.
[8] Frank Ellinger, Heinz Jäckel, and Werner Bächtold, “Varactor-loaded transmission-line phase shifter at C-band using lumped elements,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1135-1140, April 2003.
[9] Frank Ellinger, Rolf Vogt, and Werner Bachtold, “Ultracompact reflective-type phase shifter MMIC at C-band with 360 phase-control range for smart antenna combining,” IEEE Journal of Solid-State Circuits, vol. 37, no. 4, pp. 481-486, April 2002.
[10] Behzad Biglarbegian, Mohammad Reza Nezhad-Ahmadi, Mohammad Fakharzadeh, and Safieddin Safavi-Naeini, “Millimeter-Wave reflective-type phase shifter in CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 560-562, Sept. 2009.
[11] Byung-Wook Min and Gabriel M. Rebeiz, “Single-ended and differential Ka-band BiCMOS phased array front-ends,” IEEE Journal of Solid-State Circuits, vol. 43, no. 10, pp. 2239-2250, Oct. 2008.
[12] Chao-Hsiung Tseng and Chih-Lin Chang, “A broadband quadrature power splitter using metamaterial transmission line, ” IEEE Microwave and Wireless Components Letters, vol.18, no. 1, pp. 25-27, Jan. 2009.
[13] Kwang-Jin Koh and Gabriel M. Rebeiz, “0.13-μm CMOS phase shifters for X-, Ku-, and K-Band phased arrays,” IEEE Journal of Solid-State Circuits, vol. 42, no. 11, pp. 2535-2546, Nov. 2007.
[14] I. Sarkas, M. Khanpour, A. Tomkins, P. Chevalier, P. Garcia, and S. P. Voinigescu, “W-band 65-nm CMOS and SiGe BiCMOS transmitter and receiver with lumped I-Q phase shifters,” in IEEE RFIC Symp. Dig., June. 2009, pp. 441-444.
[15] T. Yu and G. M. Rebeiz, “A 24 GHz 6-Bit CMOS phased array receiver,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 6, pp. 422–424, Jun. 2008.
[16] Yikun Yu, Peter Baltus, Arthur van Roermund, Anton de Graauw, Edwin van der Heijden, Manel Collados, and Cicero Vaucher, “A 60GHz digitally controlled RF-beamforming receiver front-end in 65nm CMOS” in IEEE RFIC Symp. Dig., June. 2009, pp. 211-214.
[17] Ming-Da Tsai and Arun Natarajan, “60GHz passive and active RF-path phase shifters in silicon,” in IEEE RFIC Symp. Dig., June. 2009, pp. 223-226.
[18] Pei-Si Wu, Hong-Yeh Chang, Ming-Fong Lei, Bo-Jr Huang, Huei Wang, Cheng-
Ming Yu, and John G. J. Chern, “A 40–74 GHz amplitude/phase control MMIC using 90-nm CMOS technology,” in European Microwave Integrated Circuits Conference, Oct. 2007, pp. 115–118.
[19] Jeng-Han Tsai and Tian-Wei Huang, “35–65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 10, pp. 2075-2085, Oct. 2007.
[20] Farbod Behbahani, Yoji Kishigami, John Leete, and Asad A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE Journal of Solid-State Circuits, vol. 36, no. 6, pp. 873-887, June 2001.
[21] David M. Pozar, Microwave Engineering, 3rd ed. Hoboken, NJ: John Wiley and Sons, 2005.
[22] Stephen H. Hall, Howard L. Heck, Advanced Signal Integrity for High-Speed Digital Designs. Hoboken, NJ: John Wiley and Sons, 2009.
[23] B. Razavi, Design of Integrated Circuits for Optical Communications. New York: McGraw-Hill, 2002.
[24] Jri Lee and K.-C. Wu, “A 20-Gb/s full-rate linear clock and data recovery circuit with automatic frequency acquisition,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 3590-3602, Dec. 2009.
[25] Steven C. Chan, Kenneth L. Shepard, and Phillip J. Restle, “Distributed differential oscillators for global clock networks,” IEEE Journal of Solid-State Circuits, vol. 41, no. 9, pp. 2083–2094, Sep. 2006.
[26] A. P. Jose and K. L. Shepard, “Distributed loss-compensation techniques for energy-efficient low-latency on-chip communication,” IEEE Journal of Solid-State Circuits, vol. 42, no. 6, pp. 1415–1424, Jun. 2007.
[27] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
[28] C.-M. Lo, C.-S. Lin, and H. Wang, “A miniature V -band 3-stage cascode LNA in 0.13 μm CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2006, pp. 1254–1263.
[29] H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang, C.-L. Chang, and J.G. J. Chern, “Design and analysis of CMOS broadband compact high-linearity modulators for gigabit microwave/millimeter-wave applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 20–30, Jan. 2006.
[30] Sonnet User’s Manual, Release 9.0, Sonnet Software Inc., North Syracuse, NY, May 2003.
[31] http://www.agilent.com
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47591-
dc.description.abstract本論文為使用90-nm 1P9M CMOS製程設計一個應用於60-GHz相位陣列接收機之向量合成式相移器。該向量合成式相移器結合了向量產生器、可調增益放大器及向量調變器達到360度相位合成,而且該相移器同時在接收機前端扮演單端輸入轉成差動輸出之轉換器角色。
該向量產生器採用四相位功率分配器實現,在寬頻範圍內具有低損耗及相同輸出阻抗的特性,用來產生向量內插時所需要的正交基底。為了合成出任意相位,需要有向量調變器根據所要合成出來之信號所在象限,選擇出正交向量的極性,並且需要有可調增益放大器來調整兩個正交向量的權重,以達到向量合成,該可調增益放大器是由一級用來達到寬頻輸入阻抗匹配的共閘級放大器及兩級用來調整增益的差動對所組成之三級放大器結構。
在此設計當中,利用主動元件及電感器來達到級與級之間的阻抗匹配,並且配合巧妙的佈局規劃,大幅減少晶片面積。所有電路都是以對稱方式佈局,使輸出信號有好的對稱性,根據作者所知,對於設計一個差動輸出的向量合成式相移器而言,這是第一個提出對電路佈局對稱性分析及實驗證明的研究。
zh_TW
dc.description.abstractIn this thesis, a 60-GHz vector sum phase shifter for phased array receiver was designed and fabricated in 90-nm 1P9M CMOS technology. This vector sum phase shifter incorporates a vector generator with a variable gain amplifier (VGA) and a vector modulator to achieve full-360° phase synthesizing. And the vector sum phase shifter is also a single-ended-to-differential converter at the receiver front end.
The vector generator generates the required orthogonal bases for vector interpolation, and is realized by a four-way quadrature power divider which has the advantages of low loss and identical output port impedance over wide operation bandwidth. To synthesize a signal with an arbitrary phase, two quadrature vectors are needed, and the polarities of quadrature-phased signals for vector interpolating are selected by the vector modulator according to the quadrant where the required signal locates. Furthermore, to control the weightings of the quadrature signals, a VGA is needed. The VGA is in a three-stage configuration which is composed of a common-gate amplifier as the input stage for wideband input impedance matching and two stage differential pairs for the orthogonal vector weighted control.
In this design, using active devices and inductors for inter-stage impedance matching and ingenious floor plan substantially reduce the chip size. To achieve good signal balance, all circuits are arranged in symmetric layouts. To the author’s best knowledge, this is the first analysis of symmetry of the circuit layout and the first demonstration of signal balance of the differential outputs in the design of a differential-output vector sum phase shifter.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T06:07:32Z (GMT). No. of bitstreams: 1
ntu-99-R97942011-1.pdf: 5347391 bytes, checksum: 5aeb5e6eb00dd0d8451cc27fc5bf8417 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Literature Survey 2
1.3 Contributions 4
1.4 Thesis Organization 6
Chapter 2 Principle of Phased Array and Phase Shifter 8
2.1 Introduction 8
2.2 Phased Array Architectures 9
2.3 Performance of Phase shifters 11
2.4 Types of Phase Shifter 13
2.4.1 Varactor-loaded Transmission Line Type Phase Shifter [8], [21] 13
2.4.2 Reflection Type Phase Shifter [9]-[10] 14
2.4.3 Switching Type Phase Shifter [11] 15
2.4.4 Vector Sum Phase Shifter [7], [13] 16
2.5 Differential and Quadrature Phase Generation 17
2.5.1 Differential Phase Generation 17
2.5.2 Quadrature Phase Generation 18
Chapter 3 A 60 GHz Single-to-differential Vector Sum Phase Shifter 23
3.1 Introduction 23
3.1.1 A single-ended-to-differential phase shifter for phased array receiver 23
3.2 Design of Single-ended-to-differential Vector Sum Phase Shifter 25
3.2.1 Operation Principle 25
3.2.2 Architecture and Schematic 26
3.2.2.1 Vector Generator 26
3.2.2.2 Variable Gain Amplifier (VGA) 31
3.2.2.3 Vector Modulator 42
3.2.3 Simulation Results 48
3.2.3.1 Vector Generator 48
3.2.3.2 Variable Gain Amplifier 57
3.2.3.3 Vector Generator with VGA Cascaded Behind 63
3.2.3.4 The Overall Phase Shifter 67
3.2.3.5 Layout Considerations and the Circuit Layout 75
3.3 Experimental Considerations and Experimental Results 87
3.3.1 Experimental Considerations 87
3.3.2 Experimental Results 89
3.4 Discussion and Summary 97
Chapter 4 Conclusions 105
REFERENCE 109
dc.language.isoen
dc.subject可變增益放大器zh_TW
dc.subject相位陣列zh_TW
dc.subject相移器zh_TW
dc.subject單端轉差動轉換器zh_TW
dc.subject向量內插器zh_TW
dc.subject向量調變器zh_TW
dc.subjectPhased arraysen
dc.subjectvariable gain amplifiersen
dc.subjectvector modulatorsen
dc.subjectvector interpolatoren
dc.subjectsingle-ended-to-differential converteren
dc.subjectphase shiftersen
dc.title60-GHz單端轉差動向量合成式相移器之研製zh_TW
dc.titleDesign of A 60-GHz Single-ended-to-differential Vector Sum Phase Shifteren
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王暉,張鴻埜,蔡政翰,王毓駒
dc.subject.keyword相位陣列,相移器,單端轉差動轉換器,向量內插器,向量調變器,可變增益放大器,zh_TW
dc.subject.keywordPhased arrays,phase shifters,single-ended-to-differential converter,vector interpolator,vector modulators,variable gain amplifiers,en
dc.relation.page112
dc.rights.note有償授權
dc.date.accepted2010-08-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
5.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved