請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47576完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅翊禎(Yi-Chen Lo) | |
| dc.contributor.author | Reu-Ben Wang | en |
| dc.contributor.author | 王如邦 | zh_TW |
| dc.date.accessioned | 2021-06-15T06:06:46Z | - |
| dc.date.available | 2013-08-17 | |
| dc.date.copyright | 2010-08-17 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-15 | |
| dc.identifier.citation | Ahmad, A., Syed, F.A., Singh, S., and Hadi, S.M. (2005). Prooxidant activity of resveratrol in the presence of copper ions: Mutagenicity in plasmid DNA. Toxicology Letters 159, 1-12.
Ahmad, K.A., Clement, M.V., Hanif, I.M., and Pervaiz, S. (2004). Resveratrol inhibits drug-induced apoptosis in human leukemia cells by creating an intracellular milieu nonpermissive for death execution. Cancer Res 64, 1452-1459. Almeida, L., Vaz-da-Silva, M., Falcao, A., Soares, E., Costa, R., Loureiro, A.I., Fernandes-Lopes, C., Rocha, J.F., Nunes, T., Wright, L., et al. (2009). Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol Nutr Food Res 53 Suppl 1, S7-15. Aylon, Y., and Kupiec, M. (2004). DSB repair: the yeast paradigm. DNA Repair 3, 797-815. Bartkova, J., Horejsi, Z., Koed, K., Kramer, A., Tort, F., Zieger, K., Guldberg, P., Sehested, M., Nesland, J.M., Lukas, C., et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864-870. Baur, J.A., and Sinclair, D.A. (2006). Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5, 493-506. Bertelli, A.A.E. (2007). Wine, research and cardiovascular disease: Instructions for use. Atherosclerosis 195, 242-247. Bode, A.M., and Dong, Z. (2005). Inducible covalent posttranslational modification of histone H3. Sci STKE 2005, re4. Bove, K., Lincoln, D.W., and Tsan, M.F. (2002). Effect of resveratrol on growth of 4T1 breast cancer cells in vitro and in vivo. Biochem Biophys Res Commun 291, 1001-1005. Brachmann, C.B., Sherman, J.M., Devine, S.E., Cameron, E.E., Pillus, L., and Boeke, J.D. (1995). The Sir2 Gene Family, Conserved from Bacteria to Humans, Functions in Silencing, Cell-Cycle Progression, and Chromosome Stability. Gene Dev 9, 2888-2902. Bronner, C.E., Baker, S.M., Morrison, P.T., Warren, G., Smith, L.G., Lescoe, M.K., Kane, M., Earabino, C., Lipford, J., Lindblom, A., et al. (1994). Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368, 258-261. Burns, J., Yokota, T., Ashihara, H., Lean, M.E., and Crozier, A. (2002). Plant foods and herbal sources of resveratrol. J Agric Food Chem 50, 3337-3340. Chen, C., and Kolodner, R.D. (1999). Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet 23, 81-85. Chen, M.L., Li, J., Xiao, W.R., Sun, L., Tang, H., Wang, L., Wu, L.Y., Chen, X., and Xie, H.F. (2006). Protective effect of resveratrol against oxidative damage of UVA irradiated HaCaT cells. Zhong Nan Da Xue Xue Bao Yi Xue Ban 31, 635-639. Christman, M.F., Morgan, R.W., Jacobson, F.S., and Ames, B.N. (1985). Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41, 753-762. Cignarella, A., Minici, C., Bolego, C., Pinna, C., Sanvito, P., Gaion, R.M., and Puglisi, L. (2006). Potential pro-inflammatory action of resveratrol in vascular smooth muscle cells from normal and diabetic rats. Nutrition, Metabolism and Cardiovascular Diseases 16, 322-329. Collinge, J., and Clarke, A.R. (2007). A general model of prion strains and their pathogenicity. Science 318, 930-936. Cox, M.M. (2002). The nonmutagenic repair of broken replication forks via recombination. Mutat Res-Fund Mol M 510, 107-120. Dani, C., Bonatto, D., Salvador, M., Pereira, M.D., Henriques, J.o.A.P., and Eleutherio, E. (2008). Antioxidant Protection of Resveratrol and Catechin in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry 56, 4268-4272. de la Lastral, C.A., and Villegas, I. (2007). Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem Soc T 35, 1156-1160. Doetsch, P.W., Morey, N.J., Swanson, R.L., and Jinks-Robertson, S. (2001). Yeast base excision repair: Interconnections and networks. Prog Nucleic Acid Re 68, 29-39. Drakulic, T., Temple, M.D., Guido, R., Jarolim, S., Breitenbach, M., Attfield, P.V., and Dawes, I.W. (2005). Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res 5, 1215-1228. Fernandez-Capetillo, O., Lee, A., Nussenzweig, M., and Nussenzweig, A. (2004). H2AX: the histone guardian of the genome. DNA Repair 3, 959-967. Fiore, M., Festa, F., Cornetta, T., Ricordy, R., and Cozzi, R. (2005). Resveratrol affects X-ray induced apoptosis and cell cycle delay in human cells in vitro. Int J Mol Med 15, 1005-1012. Fishel, R., Lescoe, M.K., Rao, M.R., Copeland, N.G., Jenkins, N.A., Garber, J., Kane, M., and Kolodner, R. (1993). The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75, 1027-1038. Fuggetta, M.P., Lanzilli, G., Tricarico, M., Cottarelli, A., Falchetti, R., Ravagnan, G., and Bonmassar, E. (2006). Effect of resveratrol on proliferation and telomerase activity of human colon cancer cells in vitro. J Exp Clin Cancer Res 25, 189-193. Galluzzi, L., Joza, N., Tasdemir, E., Maiuri, M.C., Hengartner, M., Abrams, J.M., Tavernarakis, N., Penninger, J., Madeo, F., and Kroemer, G. (2008). No death without life: vital functions of apoptotic effectors. Cell Death Differ 15, 1113-1123. Garber, K. (2004). Energy boost: the Warburg effect returns in a new theory of cancer. J Natl Cancer Inst 96, 1805-1806. Gatz, S.A., and Wiesmueller, L. (2008). Take a break - resveratrol in action on DNA. Carcinogenesis 29, 321-332. Girard, P.M., and Boiteux, S. (1997). Repair of oxidized DNA bases in the yeast Saccharomyces cerevisiae. Biochimie 79, 559-566. Golstein, P., Aubry, L., and Levraud, J.P. (2003). Cell-death alternative model organisms: why and which? Nat Rev Mol Cell Biol 4, 798-807. Golstein, P., and Kroemer, G. (2007). A multiplicity of cell death pathways. Symposium on apoptotic and non-apoptotic cell death pathways. EMBO Rep 8, 829-833. Griffiths, L.M., Doudican, N.A., Shadel, G.S., and Doetsch, P.W. (2009). Mitochondrial DNA oxidative damage and mutagenesis in Saccharomyces cerevisiae. Methods Mol Biol 554, 267-286. Hadi, S.M., Ullah, M.F., Azmi, A.S., Ahmad, A., Shamim, U., Zubair, H., and Khan, H.Y. (2010a). Resveratrol mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for chemoprevention of cancer. Pharm Res 27, 979-988. Hadi, S.M., Ullah, M.F., Azmi, A.S., Ahmad, A., Shamim, U., Zubair, H., and Khan, H.Y. (2010b). Resveratrol Mobilizes Endogenous Copper in Human Peripheral Lymphocytes Leading to Oxidative DNA Breakage: A Putative Mechanism for Chemoprevention of Cancer. Pharm Res-Dordr 27, 979-988. Halazonetis, T.D., Gorgoulis, V.G., and Bartek, J. (2008). An oncogene-induced DNA damage model for cancer development. Science 319, 1352-1355. Hartwell, L.H. (2004). Yeast and cancer. Biosci Rep 24, 523-544. Heiss, E.H., Schilder, Y.D., and Dirsch, V.M. (2007). Chronic treatment with resveratrol induces redox stress- and ataxia telangiectasia-mutated (ATM)-dependent senescence in p53-positive cancer cells. J Biol Chem 282, 26759-26766. Hoeijmakers, J.H.J. (2001). Genome maintenance mechanisms for preventing cancer. Nature 411, 366-374. Hong, S.P., Leiper, F.C., Woods, A., Carling, D., and Carlson, M. (2003). Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci U S A 100, 8839-8843. Huang, D., and Koshland, D. (2003). Chromosome integrity in Saccharomyces cerevisiae: the interplay of DNA replication initiation factors, elongation factors, and origins. Genes Dev 17, 1741-1754. Hughes, A.L., Powell, D.W., Bard, M., Eckstein, J., Barbuch, R., Link, A.J., and Espenshade, P.J. (2007). Dap1/PGRMC1 binds and regulates cytochrome P450 enzymes. Cell Metab 5, 143-149. Hughes, A.L., Todd, B.L., and Espenshade, P.J. (2005). SREBP pathway responds to sterols and functions as an oxygen sensor in fission yeast. Cell 120, 831-842. Indraccolo, S., Favaro, E., and Amadori, A. (2006). Dormant tumors awaken by a short-term angiogenic burst: the spike hypothesis. Cell Cycle 5, 1751-1755. Infanger, D.W., Sharma, R.V., and Davisson, R.L. (2006). NADPH oxidases of the brain: distribution, regulation, and function. Antioxid Redox Signal 8, 1583-1596. Inoue, K., Wen, R., Rehg, J.E., Adachi, M., Cleveland, J.L., Roussel, M.F., and Sherr, C.J. (2000). Disruption of the ARF transcriptional activator DMP1 facilitates cell immortalization, Ras transformation, and tumorigenesis. Genes Dev 14, 1797-1809. Inoue, T., Hirano, K., Yokoiyama, A., Kada, T., and Kato, H. (1977). DNA repair enzymes in ataxia telangiectasia and Bloom's syndrome fibroblasts. Biochim Biophys Acta 479, 497-500. Irwin, B., Aye, M., Baldi, P., Beliakova-Bethell, N., Cheng, H., Dou, Y., Liou, W., and Sandmeyer, S. (2005). Retroviruses and yeast retrotransposons use overlapping sets of host genes. Genome Res 15, 641-654. Jackson, A.L., Newcomb, T.G., and Loeb, L.A. (1998). Origin of multiple mutations in human cancers. Drug Metab Rev 30, 285-304. James, T.J., Hughes, M.A., Cherry, G.W., and Taylor, R.P. (2003). Evidence of oxidative stress in chronic venous ulcers. Wound Repair Regen 11, 172-176. Jang, M., Cai, L., Udeani, G.O., Slowing, K.V., Thomas, C.F., Beecher, C.W., Fong, H.H., Farnsworth, N.R., Kinghorn, A.D., Mehta, R.G., et al. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275, 218-220. Jo, J.Y., Gonzalez de Mejia, E., and Lila, M.A. (2005). Effects of grape cell culture extracts on human topoisomerase II catalytic activity and characterization of active fractions. J Agric Food Chem 53, 2489-2498. Johnson, F.B., Marciniak, R.A., McVey, M., Stewart, S.A., Hahn, W.C., and Guarente, L. (2001). The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase. EMBO J 20, 905-913. Jung, E.G., and Bantle, K. (1971). Xeroderma pigmentosum and pigmented xerodermoid. Birth Defects Orig Artic Ser 7, 125-128. Kaeberlein, M. (2010). Lessons on longevity from budding yeast. Nature 464, 513-519. Kaeberlein, M., Burtner, C.R., and Kennedy, B.K. (2007). Recent developments in yeast aging. PLoS Genet 3, e84. Kaeberlein, M., McVey, M., and Guarente, L. (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Gene Dev 13, 2570-2580. Kim, D., Nguyen, M.D., Dobbin, M.M., Fischer, A., Sananbenesi, F., Rodgers, J.T., Delalle, I., Baur, J.A., Sui, G., Armour, S.M., et al. (2007). SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J 26, 3169-3179. Kolodner, R.D., and Marsischky, G.T. (1999). Eukaryotic DNA mismatch repair. Curr Opin Genet Dev 9, 89-96. Kolodner, R.D., Putnam, C.D., and Myung, K. (2002). Maintenance of genome stability in Saccharomyces cerevisiae. Science 297, 552-557. Kops, G.J., Weaver, B.A., and Cleveland, D.W. (2005). On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5, 773-785. Lanzilli, G., Fuggetta, M.P., Tricarico, M., Cottarelli, A., Serafino, A., Falchetti, R., Ravagnan, G., Turriziani, M., Adamo, R., Franzese, O., et al. (2006). Resveratrol down-regulates the growth and telomerase activity of breast cancer cells in vitro. Int J Oncol 28, 641-648. Lee, K., Zhang, Y., and Lee, S.E. (2008). Saccharomyces cerevisiae ATM orthologue suppresses break-induced chromosome translocations. Nature 454, 543-546. Li, J., Qin, Z., and Liang, Z. (2009). The prosurvival role of autophagy in Resveratrol-induced cytotoxicity in human U251 glioma cells. BMC Cancer 9, 215. Lin, S.J., Defossez, P.A., and Guarente, L. (2000). Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126-2128. Lindahl, T., and Wood, R.D. (1999). Quality control by DNA repair. Science 286, 1897-1905. Madeo, F., Herker, E., Wissing, S., Jungwirth, H., Eisenberg, T., and Frohlich, K.U. (2004). Apoptosis in yeast. Curr Opin Microbiol 7, 655-660. Mao, Q.Q., Bai, Y., Lin, Y.W., Zheng, X.Y., Qin, J., Yang, K., and Xie, L.P. (2010). Resveratrol confers resistance against taxol via induction of cell cycle arrest in human cancer cell lines. Mol Nutr Food Res. Masoro, E.J. (2005). Overview of caloric restriction and ageing. Mech Ageing Dev 126, 913-922. Milne, J.C., Lambert, P.D., Schenk, S., Carney, D.P., Smith, J.J., Gagne, D.J., Jin, L., Boss, O., Perni, R.B., Vu, C.B., et al. (2007). Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712-716. Morrison, A.J., Highland, J., Krogan, N.J., Arbel-Eden, A., Greenblatt, J.F., Haber, J.E., and Shen, X. (2004). INO80 and [gamma]-H2AX Interaction Links ATP-Dependent Chromatin Remodeling to DNA Damage Repair. Cell 119, 767-775. Nagy, R., Sweet, K., and Eng, C. (2004). Highly penetrant hereditary cancer syndromes. Oncogene 23, 6445-6470. Nurse, P.M. (2002). Nobel Lecture. Cyclin dependent kinases and cell cycle control. Biosci Rep 22, 487-499. Ouellette, M.M., McDaniel, L.D., Wright, W.E., Shay, J.W., and Schultz, R.A. (2000). The establishment of telomerase-immortalized cell lines representing human chromosome instability syndromes. Hum Mol Genet 9, 403-411. Outeiro, T.F., and Muchowski, P.J. (2004). Molecular genetics approaches in yeast to study amyloid diseases. J Mol Neurosci 23, 49-60. Ovesna, Z., and Horvathova-Kozics, K. (2005). Structure-activity relationship of trans-resveratrol and its analogues. Neoplasma 52, 450-455. Pearce, V.P., Sherrell, J., Lou, Z., Kopelovich, L., Wright, W.E., and Shay, J.W. (2008). Immortalization of epithelial progenitor cells mediated by resveratrol. Oncogene 27, 2365-2374. Perocchi, F., Mancera, E., and Steinmetz, L.M. (2008). Systematic screens for human disease genes, from yeast to human and back. Mol Biosyst 4, 18-29. Perrone, G., Nicoletti, I., Pascale, M., Rossi, A.D., Girolamo, A.D., and Visconti, A. (2007). Positive correlation between high levels of ochratoxin A and resveratrol-related compounds in red wines. J Agric Food Chem 55, 6807-6812. Perrone, G.G., Tan, S.-X., and Dawes, I.W. (2008). Reactive oxygen species and yeast apoptosis. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1783, 1354-1368. Pervaiz, S., and Clement, M.V. (2007). Superoxide anion: oncogenic reactive oxygen species? Int J Biochem Cell Biol 39, 1297-1304. Poolman, T.M., Ng, L.L., Farmer, P.B., and Manson, M.M. (2005). Inhibition of the respiratory burst by resveratrol in human monocytes: correlation with inhibition of PI3K signaling. Free Radic Biol Med 39, 118-132. Poon, P.K., Parker, J.W., and O'Brien, R.L. (1975). Faulty DNA repair following ultraviolet irradiation in Fanconi's anemia. Basic Life Sci 5B, 821-824. Powers, R.W., 3rd, Kaeberlein, M., Caldwell, S.D., Kennedy, B.K., and Fields, S. (2006). Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20, 174-184. Qian, Y.P., Cai, Y.J., Fan, G.J., Wei, Q.Y., Yang, J., Zheng, L.F., Li, X.Z., Fang, J.G., and Zhou, B. (2009). Antioxidant-based lead discovery for cancer chemoprevention: the case of resveratrol. J Med Chem 52, 1963-1974. Queiroz, A.N., Gomes, B.A., Moraes, W.M., Jr., and Borges, R.S. (2009). A theoretical antioxidant pharmacophore for resveratrol. Eur J Med Chem 44, 1644-1649. Quincozes-Santos, A., Andreazza, A.C., Nardin, P., Funchal, C., Goncalves, C.A., and Gottfried, C. (2007). Resveratrol attenuates oxidative-induced DNA damage in C6 Glioma cells. Neurotoxicology 28, 886-891. Ragu, S., Faye, G., Iraqui, I., Masurel-Heneman, A., Kolodner, R.D., and Huang, M.E. (2007). Oxygen metabolism and reactive oxygen species cause chromosomal rearrangements and cell death. Proc Natl Acad Sci U S A 104, 9747-9752. Rebora, A., and Crovato, F. (1987). PIBI(D)S syndrome--trichothiodystrophy with xeroderma pigmentosum (group D) mutation. J Am Acad Dermatol 16, 940-947. Renaud, S., and de Lorgeril, M. (1992). Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339, 1523-1526. Rogakou, E.P., Nieves-Neira, W., Boon, C., Pommier, Y., and Bonner, W.M. (2000). Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem 275, 9390-9395. Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S., and Bonner, W.M. (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273, 5858-5868. Rogina, B., and Helfand, S.L. (2004). Sir2 mediates longevity in the fly through a pathway related to calorie restriction. P Natl Acad Sci USA 101, 15998-16003. Rowe, L.A., Degtyareva, N., and Doetsch, P.W. (2008). DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radical Biology and Medicine 45, 1167-1177. Sachdev, S., and Davies, K.J. (2008). Production, detection, and adaptive responses to free radicals in exercise. Free Radic Biol Med 44, 215-223. Salmon, T.B., Evert, B.A., Song, B., and Doetsch, P.W. (2004). Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res 32, 3712-3723. Seve, M., Chimienti, F., Devergnas, S., Aouffen, M., Douki, T., Chantegrel, J., Cadet, J., and Favier, A. (2005). Resveratrol enhances UVA-induced DNA damage in HaCaT human keratinocytes. Med Chem 1, 629-633. Siino, J.S., Nazarov, I.B., Zalenskaya, I.A., Yau, P.M., Bradbury, E.M., and Tomilin, N.V. (2002). End-joining of reconstituted histone H2AX-containing chromatin in vitro by soluble nuclear proteins from human cells. FEBS Lett 527, 105-108. Slupphaug, G., Kavli, B., and Krokan, H.E. (2003). The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res-Fund Mol M 531, 231-251. Sobolev, V.S., and Cole, R.J. (1999). trans-resveratrol content in commercial peanuts and peanut products. J Agric Food Chem 47, 1435-1439. Stich, H.F. (1975). Response of homozygous and heterozygous xeroderma pigmentosum cells to several chemical and viral carcinogens. Basic Life Sci 5B, 773-784. Stivala, L.A., Savio, M., Carafoli, F., Perucca, P., Bianchi, L., Maga, G., Forti, L., Pagnoni, U.M., Albini, A., Prosperi, E., et al. (2001). Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J Biol Chem 276, 22586-22594. Storz, G., and Imlay, J.A. (1999). Oxidative stress. Current Opinion in Microbiology 2, 188-194. Strauss, B.S. (1995). DNA-Repair and Mutagenesis - Friedberg,Ec, Walker,Gc, Siede,W. Science 270, 1511-&. Subramanian, M., Shadakshari, U., and Chattopadhyay, S. (2004). A mechanistic study on the nuclease activities of some hydroxystilbenes. Bioorg Med Chem 12, 1231-1237. Swanson, R.L., Morey, N.J., Doetsch, P.W., and Jinks-Robertson, S. (1999). Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. Molecular and Cellular Biology 19, 2929-2935. Szilard, R.K., Jacques, P.-E., Laramee, L., Cheng, B., Galicia, S., Bataille, A.R., Yeung, M., Mendez, M., Bergeron, M., Robert, F., et al. (2010). Systematic identification of fragile sites via genome-wide location analysis of [gamma]-H2AX. Nat Struct Mol Biol 17, 299-305. Tanaka, T.U., Stark, M.J., and Tanaka, K. (2005). Kinetochore capture and bi-orientation on the mitotic spindle. Nat Rev Mol Cell Biol 6, 929-942. Taneja, N., Davis, M., Choy, J.S., Beckett, M.A., Singh, R., Kron, S.J., and Weichselbaum, R.R. (2004). Histone H2AX phosphorylation as a predictor of radiosensitivity and target for radiotherapy. J Biol Chem 279, 2273-2280. Tennyson, R.B., Ebran, N., Herrera, A.E., and Lindsley, J.E. (2002). A novel selection system for chromosome translocations in Saccharomyces cerevisiae. Genetics 160, 1363-1373. Tessitore, L., Davit, A., Sarotto, I., and Caderni, G. (2000). Resveratrol depresses the growth of colorectal aberrant crypt foci by affecting bax and p21(CIP) expression. Carcinogenesis 21, 1619-1622. Tissenbaum, H.A., and Guarente, L. (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227-230. Tyagi, A., Singh, R.P., Agarwal, C., Siriwardana, S., Sclafani, R.A., and Agarwal, R. (2005). Resveratrol causes Cdc2-tyr15 phosphorylation via ATM/ATR-Chk1/2-Cdc25C pathway as a central mechanism for S phase arrest in human ovarian carcinoma Ovcar-3 cells. Carcinogenesis 26, 1978-1987. Usha, S., Johnson, I.M., and Malathi, R. (2005). Interaction of resveratrol and genistein with nucleic acids. J Biochem Mol Biol 38, 198-205. Usha, S., Johnson, I.M., and Malathi, R. (2006). Modulation of DNA intercalation by resveratrol and genistein. Mol Cell Biochem 284, 57-64. Vincent, R.A., Jr., Sheridan, R.B., 3rd, and Huang, P.C. (1975). DNA strained breakage repair in ataxia telangiectasia fibroblast-like cells. Mutat Res 33, 357-366. Walle, T., Hsieh, F., DeLegge, M.H., Oatis, J.E., and Walle, U.K. (2004). High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32, 1377-1382. Wang, J., Dai, J., Jung, Y., Wei, C.L., Wang, Y., Havens, A.M., Hogg, P.J., Keller, E.T., Pienta, K.J., Nor, J.E., et al. (2007). A glycolytic mechanism regulating an angiogenic switch in prostate cancer. Cancer Res 67, 149-159. Wang, T.T., Hudson, T.S., Wang, T.C., Remsberg, C.M., Davies, N.M., Takahashi, Y., Kim, Y.S., Seifried, H., Vinyard, B.T., Perkins, S.N., et al. (2008). Differential effects of resveratrol on androgen-responsive LNCaP human prostate cancer cells in vitro and in vivo. Carcinogenesis 29, 2001-2010. Weaver, B.A., Silk, A.D., Montagna, C., Verdier-Pinard, P., and Cleveland, D.W. (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11, 25-36. Wenzel, E., and Somoza, V. (2005). Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res 49, 472-481. Williams, L.D., Burdock, G.A., Edwards, J.A., Beck, M., and Bausch, J. (2009). Safety studies conducted on high-purity trans-resveratrol in experimental animals. Food Chem Toxicol 47, 2170-2182. Workman, C.T., Mak, H.C., McCuine, S., Tagne, J.B., Agarwal, M., Ozier, O., Begley, T.J., Samson, L.D., and Ideker, T. (2006). A systems approach to mapping DNA damage response pathways. Science 312, 1054-1059. Wu, M., Kang, M.M., Schoene, N.W., and Cheng, W.H. (2010). Selenium Compounds Activate Early Barriers of Tumorigenesis. Journal of Biological Chemistry 285, 12055-12062. Yamada, M., Hayashi, K., Hayashi, H., Tsuji, R., Kakumoto, K., Ikeda, S., Hoshino, T., Tsutsui, K., Ito, T., Iinuma, M., et al. (2006). Nepalensinols D-G, new resveratrol oligomers from Kobresia nepalensis (Cyperaceae) as potent inhibitors of DNA topoisomerase II. Chem Pharm Bull (Tokyo) 54, 354-358. Ying, W. (2008). NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10, 179-206. Zhou, R., Fukui, M., Choi, H.J., and Zhu, B.T. (2009). Induction of a reversible, non-cytotoxic S-phase delay by resveratrol: implications for a mechanism of lifespan prolongation and cancer protection. Br J Pharmacol 158, 462-474. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47576 | - |
| dc.description.abstract | 白藜蘆醇為植物用來抵禦外來侵害的抗菌物質,主要存在於葡萄皮、花生芽及藍莓。白藜蘆醇因有抗氧化、調節細胞週期、抗老化及對高熱量攝食老鼠之健康有正面功效而受各界矚目。為此,本實驗以酵母菌為模式,評估白藜蘆醇對經過氧化氫傷害後細胞基因體穩定性之影響及可能機制。實驗顯示,白藜蘆醇濃度於0.5~200 μM皆不影響酵母菌株BY4741 WT在八小時內生長曲線。同時於菌株BY4741 WT及RDKY3615 WT存活率測試中,白藜蘆醇濃度分別在5~100 μM及10~50 μM下,也不影響細胞存活率。另外,過氧化氫傷害效力測試中,以3 mM過氧化氫處理BY4741 WT 30及60分鐘後,存活率由70 %降為35 %;相同條件下,也可增加RDKY3615 WT之DNA受損修復訊息發送者磷酸化組蛋白2A (γ H2A)表現量。又不同濃度之白藜蘆醇 (10 μM及50 μM),與相同過氧化氫 (3 mM,60分鐘)傷害條件處理細胞時,菌株存活率因白藜蘆醇濃度增高而有明顯下降;相同條件也增加RDKY3615 WT之DNA受損修復之訊息發送者γ H2A表現,顯示白藜蘆醇與過氧化氫對酵母菌磷酸化組蛋白2A表現量之調控具有加乘效應;此外,以白藜蘆醇 (50 μM)處理受損後細胞,會使細胞週期停滯在S期。為探討白藜蘆醇抗氧化之自由基捕捉能力,與過氧化氫所造成之氧化型DNA破壞基因體不穩定性關係,本實驗也測試白藜蘆醇對過氧化氫傷害後,酵母菌細胞內活性氧物質之含量。結果顯示,單獨使用白藜蘆醇時可降低RDKY3615 WT內生性過氧化物質;然而,細胞經過氧化氫 (3 mM,60分鐘)傷害後,並立即測定活性氧物質含量,無論過氧化氫傷害前有無添加白藜蘆醇 (10 μM或50 μM),皆無法降低過氧化氫所造成活性氧物質含量增加的結果;但若提供酵母菌傷害後之修復時間 (1、2及3小時)並伴隨著修復時間中加入的50 μM的白藜蘆醇或不加入白藜蘆醇時,細胞中的活性氧含量皆會於修復一小時下降至最低。進一步以GCR ( gross chromosomal rearrangement )測試RDKY3615 WT之基因體穩定性發現,受損細胞持續培養在50 μM白藜蘆醇,可明顯降低過氧化氫所造成的基因不穩定的現象。綜合上述,白藜蘆醇可維持酵母菌於過氧化氫傷害後之基因穩定性,其機制可能是透過降低細胞內ROS含量,同時提高細胞受損後細胞週期S期的比例以延長修復時間,並藉由調節磷酸化組蛋白2A的表現量來達到總體促進細胞基因修復及維持基因穩定之效應。 | zh_TW |
| dc.description.abstract | Resveratorl (trans-3,4,5-trihydorxystilbene), a phytoalexin found mainly in grape peels, peanuts, and berries, has numerous well known features, such as antioxidation, cell cycle regulation, and antiageing properties. Resveratrol has opposing effects on the health of high calorie diet mice. Recently, scientist have drawn attention to the biological functions of resveratrol. In this study, we investigate the effect and the mecahisms of resveratrol on the maintenance of genome stability in hydrogen peroxide damaged yeasts. Our results show that resveratrol (0~200 μM) does not affect the cell growth in yeast during eight hours of incubation. At the same time, the cell survival rate does not affected in the presence of resveratrol (10~50 μM). However, the survival rates were 70% and 35% when treated with 3 mM of hydrogen peroxide for 30 min and 60 min respectively. When cells are both treated with resveratrol and hydrogen peroxide, can lead to yeast H2A phosphorylation. The dose dependent phosphorylation levels of H2A with resveratrol (0~50 μM) also shows synergistic effect when combined with hydrogen peroxide treatment (3 mM, 60 min).Unexpectly, pre-incubation of resveratrol (50 μM) overnight before hydrogen peroxide damage (3 mM, 60 min) resulted in the decrease of cell viability. Resveratrol (50 μM) also enhances S phase arrest in cells treated with hydrogen peroxide. In order to elucidate the effects of resveratrol on the free radical scavenging properties and the maintenance of genome stability, we measure the intracellular ROS (reactive oxygen species) content and GCR (gross chromosomal rearragement) mutation rates of cells. Results show resveratrol (10 μM and 50 μM) treatment alone can reduce intracellular ROS contents. Nevertheless, the ROS contents remained unaffected when cells are both treated with resveratrol (50 μM) and hydrogen peroxide (3 mM, 60 min). Interestinly, cells that have been treated by long term incubation of resveratrol (50 μM) followed by hydrogen peroxide damage, exerts the lowest ROS levels at 1 hour during recovery. In addition, cells recover from resveratrol containing medium after hydrogen peroxide damage showed the lowest mutation rates. In conclusion, our results suggested that resveratrol can decrease intracellular ROS levels and possibly facilitate DNA repair through S phase arrest and increase H2A phosphoryation, which leads to the suppression on gene mutation as well as promoting genome stability in hydrogen peroxide damged yeast. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T06:06:46Z (GMT). No. of bitstreams: 1 ntu-99-R97641002-1.pdf: 4279458 bytes, checksum: 23765792e59a6aa54628889ec4d8ed13 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 目 錄
口試委員會審定書.............................I 謝誌.........................................II 中文摘要 ....................................III Abstract......................................V 縮 寫 對 照 表................................XI 圖目錄........................................XII 表目錄........................................XIV 第一章 緒論...................................1 第二章 文獻回顧...............................3 2.1白藜蘆醇...................................3 2.1.1白藜蘆醇之種類與結構.....................3 2.1.2白藜蘆醇之化學特性.......................4 2.1.3白藜蘆醇與飲食的關係.....................4 2.2自由基與活性氧物質的傷害...................7 2.2.1超氧陰離子 (superoxide,O2 –.)..........7 2.2.2過氧化氫 ( hydrogen peroxide,H2O2)......7 2.2.3氫氧自由基( hydroxyl radical,. OH)......8 2.2.4氧化壓力與酵母菌抗氧化酵素反應...........9 2.2.5氧化壓力與酵母菌基因修復反應 (也請參考2.4.3)....12 2.3 白藜蘆醇之生物化學特性....................15 2.3.1白藜蘆醇對細胞氧化還原狀態影響...........15 2.3.2白藜蘆醇與DNA受損........................17 2.3.3白藜蘆醇與DNA受損反應....................21 2.3.4白藜蘆醇與細胞生命期的關係...............23 2.3.5白藜蘆醇之抗癌症特性.....................24 2.4以酵母菌為生物模式應用人類疾病的研究.......26 2.4.1 酵母菌生物模式與人類相關疾病之關係與例子.......27 2.4.2 酵母菌基因穩定性測試....................30 2.4.3酵母菌去氧核醣核酸之修復機制.............33 2.4.4酵母菌之細胞週期.........................37 第三章 研究架構與動機.........................38 3.1 研究動機..................................38 3.2 研究架構..................................39 3.2.1 過氧化氫與白藜蘆醇處理對酵母菌之影響....39 3.2.2 過氧化氫及白藜蘆醇共同處理對酵母菌之影響.......40 3.2.3過氧化氫及白藜蘆醇共同處理對酵母菌之基因穩定性測試..41 3.2.4過氧化氫及白藜蘆醇共同處理對酵母菌之細胞存活率測試..43 第四章 實驗材料與方法.........................44 4.1 不同濃度白藜蘆醇對細胞生曲線的影響 (細胞毒性測試-1)..44 4.1.1 實驗藥品與材料..........................44 4.1.2 實驗方法................................44 4.2 酵母菌對白藜蘆醇處理後之細胞存活率 (細胞毒性測試-2)..45 4.2.1 實驗藥品與材料..........................45 4.2.2 實驗方法................................45 4.3 過氧化氫誘導酵母菌傷害測試................46 4.3.1 實驗藥品與材料..........................46 4.3.2 實驗方法................................46 4.4 白藜蘆醇與過氧化氫處理後酵母菌磷酸化組蛋白2A之影響..47 (西方點墨法) 4.4.1 實驗藥品與材料..........................47 4.3.2 實驗方法................................48 細胞前處理....................................48 蛋白萃取與西方點墨法..........................48 4.5 白藜蘆醇對過氧化氫傷害後酵母菌內活性氧物質之影響....50 (無修復時間)............................................50 4.5.1 實驗藥品與材料....................................50 4.5.2 實驗方法..........................................50 4.6 白藜蘆醇與過氧化氫傷害後酵母菌內活性氧物質之影響....52 (提供修復時間)..........................................52 4.6.1 實驗藥品與材料....................................52 4.6.2 實驗方法..........................................52 4.7 白藜蘆醇與過氧化氫傷害後酵母菌細胞週期之影響........54 4.7.1 實驗藥品與材料....................................54 4.7.2 實驗方法..........................................54 細胞前處理..............................................54 細胞固定及染色..........................................56 4.8 白藜蘆醇與過氧化氫傷害後酵母菌基因穩定性之影響......57 4.8.1 實驗藥品與材料....................................57 4.8.2 實驗方法..........................................57 數據處理................................................58 4.9 不同濃度的白藜蘆醇對過氧化氫傷害後酵母菌細胞存活率之影響......................................................60 4.9.1 實驗藥品與材料....................................60 4.9.2 實驗方法..........................................60 4.10基本實驗方法........................................61 4.10.1酵母菌體之活化....................................61 4.10.2酵母菌之冷凍菌株保存方法..........................61 第五章 結論與討論.......................................62 5.1過氧化氫與白藜蘆醇處理對酵母菌之影響.................62 5.1.1 不同濃度白藜蘆醇對細胞生長曲線的影響..............62 5.1.2 酵母菌對白藜蘆醇處理後之細胞存活率................64 5.1.3 過氧化氫誘導酵母菌傷害測試........................67 5.2 過氧化氫及白藜蘆醇共同處理對酵母菌之影響............69 5.2.1 白藜蘆醇與過氧化氫傷害後酵母菌組蛋白磷酸化之影響 (西方點墨法).................................................69 5.2.2 白藜蘆醇對過氧化氫傷害後酵母菌內ROS之影響 (未提供修復時間)...................................................74 5.2.3 白藜蘆醇與過氧化氫傷害後細胞內活性氧物質之影響 (提供修復時間).................................................78 5.2.4 白藜蘆醇與過氧化氫傷害後酵母菌細胞週期之影響......82 5.3 過氧化氫及白藜蘆醇共同處理對酵母菌之基因穩定性測試..86 5.3.1 白藜蘆醇對過氧化氫傷害後細胞基因穩定性之影響 (未提供修復時間).................................................86 5.3.2 白藜蘆醇與過氧化氫傷害後細胞基因穩定性之影響 (提供修復時間)...................................................88 5.4 不同濃度的白藜蘆醇對過氧化氫傷害後酵母菌細胞存活率之影響......................................................90 第六章 結論.............................................93 第七章 參考文獻........................................95 附錄一..................................................105 附錄二..................................................107 附錄 三.................................................109 | |
| dc.language.iso | zh-TW | |
| dc.subject | 去氧核醣核酸修復 | zh_TW |
| dc.subject | 酵母菌 | zh_TW |
| dc.subject | 白藜蘆醇 | zh_TW |
| dc.subject | 磷酸化組蛋白2A | zh_TW |
| dc.subject | 細胞週期 | zh_TW |
| dc.subject | 活性氧物質 | zh_TW |
| dc.subject | 過氧化氫 | zh_TW |
| dc.subject | DNA repair | en |
| dc.subject | resveratrol | en |
| dc.subject | yeast | en |
| dc.subject | hydrogen peroxide | en |
| dc.subject | histone 2A phosphorylation | en |
| dc.subject | cell cycle | en |
| dc.subject | reactive oxygen species | en |
| dc.title | 探討白藜蘆醇對過氧化氫傷害後酵母菌基因體穩定性的影響 | zh_TW |
| dc.title | The effect of resveratrol on genome stability in hydrogen peroxide damaged yeast cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 何其儻,潘敏雄,高承福,謝淑貞 | |
| dc.subject.keyword | 白藜蘆醇,酵母菌,過氧化氫,磷酸化組蛋白2A,細胞週期,活性氧物質,去氧核醣核酸修復, | zh_TW |
| dc.subject.keyword | resveratrol,yeast,hydrogen peroxide,histone 2A phosphorylation,cell cycle,reactive oxygen species,DNA repair, | en |
| dc.relation.page | 132 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2010-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 4.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
