請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47441完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王暉(Huei Wang) | |
| dc.contributor.author | Yi-Ching Wu | en |
| dc.contributor.author | 吳依靜 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:59:59Z | - |
| dc.date.available | 2013-09-18 | |
| dc.date.copyright | 2011-09-18 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-26 | |
| dc.identifier.citation | [1] http://www.almaobservatory.org/
[2] http://science.nrao.edu/alma/index.shtml [3] http://www.eso.org/sci/facilities/alma/system/frontend/ [4] R. Hartley, “Modulation system,” U.S. Patent 1,666,206, Apr. 1928. [5] 林士凱撰,應用於微波與毫米波混波器之研製,國立臺灣大學電信工程學研究所碩士論文,2009年。 [6] WIN Semiconductors GaAs 0.15 μm pHEMT Model Handbook, WIN Inc., Taipei, Taiwan, 2003 [7] K. W. Chang, E. W. Lin, H. Wang, K. L. Tan, and W. H. Ku, “A W-band monolithic, singly balanced resistive mixer with low conversion loss,” IEEE Microw. Guided Wave Lett., vol. 4, no. 9, pp. 301–302, Sep. 1994. [8] K. Kanaya, K. Kawakami, T. Hisaka, T. Ishikawa, and S. Sakamoto, “A 94 GHz high performance quadruple sub-harmonic mixer MMIC,” in International Microwave Symposium, Jun. 2002, pp. 1249–1252. [9] Marcus Gavell, Mattias Ferndahl, Sten E. Gunnarsson, Morteza Abbasi, Herbert Zirath, ‘’An image reject mixer for high-speed E-band (71-76, 81-86 GHz) wireless communi-cation,’’ in 2009 Compound Semiconductor Integrated Circuit Symposium, pp, 1-4. [10] Ming-Fong Lei, Pei-Si Wu, Tian-Wei Huang , and Huei Wang, “Design and analysis of a miniature W-band MMIC subharmonically pumped resistive mixer,” in International Microwave Symposium, Jun. 2004, vol. 1, pp. 235 - 238. [11] T. N. Ton, T. H. Chen, K. W. Chang, H. Wang, K. L. Tan, G. S. Dow, G. M. Hayashibara, B. Allen, and J. Berenz, “A W-band monolithic InGaAs/GaAs HEMT Schottky diode image reject mixer,“ in 14th IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, Oct., 1992. [12] Yuh-Jing Hwang, Huei Wang, and Tah-Hsiung Chu, “A W-band subharmonically pumped monolithic GaAs-based HEMT gate mixer,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 7, pp. 313-315, July 2004. [13] Oya Sevimli and John W. Archer, “An 80-120 GHz sub-harmonically pumped image-reject integrated circuit mixer, ” Microwave Conference, 1999. 29th European [14] Kwo Wei Chang, Huei Wang, Thuy-Nhung Ton, Tzu-hung Chen, Kin L. Tan, Gee Samuel Dow, G. M. Hayashibara, Barry R. Allen, John Berenz, Po-Hsin Liu, Dwight C. Streit, and Louis C. T. Liu, “A W-band image-rejection downconverter” in IEEE Trans. Microw. Theory Tech., vol. 40, pp. 2332–2337, Dec. 1992. [15] Huei Wang, Kwo Wei Chang, Thuy Nhung Ton, Michael Biedenbender, Sian Tek Chen, Jane Lee, Gee S. Dow, Kin L. Tan, and Barry R. Allen, “ High-yield W-Band monolithic HEMT low-noise amplifier and image rejection downconverter chips,” Microwave and Guided Wave Letters, vol. 3, pp. 281-283. [16] IHP SG13 Process Specification Rev. 0.7, 2009 [17] 'Sonnet User's Manual, Release 11.52, ' Sonnet Software, Inc, 2007. [18] S.T. Nicolson, A. Tomkins, K. W. Tang, A. Cathelin, D. Belot, and S. P. Voinigescu, “ A 1.2V, 140 GHz receiver with on-die antenna in 65nm CMOS,” in Radio Frequency Integrated Circuits Symposium, pp. 229-232, 2008. [19] M. Seo, B. Jagannathan, C. Carta, J. Pekarik, L. Chen, C.P. Yue, M. Rodwell, “ A 1.1V 150GHz amplifier with 8dB gain and +6dBm saturated output power in standard digital 65nm CMOS using dummy-prefilled microstrip lines,” Digest of Technical Papers, ISSCC 2009, pp. 484-485 [20] Ekaterina Laskin, Pascal Chevalier, Alain Chantre, Bernard Sautreuil, and Sorin P. Voinigescu, “ 165-GHz transceiver in SiGe technology, ” IEEE J. Solid-State Circuits, vol.43, pp. 1087-1100, 2008. [21] B. Heydari, et al., “Low-power mm-wave components up to 104GHz in 90nm CMOS,” Digest of Technical Papers, ISSCC 2007, pp. 200-201. [22] Zhiwei Xu , Qun Jane Gu, Ining Ku, and Mau-Chung Frank Chang, “A compact, fully differential D-band CMOS amplifier in 65nm CMOS ,” IEEE A-SSCC 2010, pp. 1-4 [23] E. Laskin, K.W. Tang, K.H.K. Yau, P. Chevalier, A. Chantre, B. Sautreuil, S.P. Voinigescu, “170-GHz transceiver with on-chip antennas in SiGe technology ,” in RFIC Symp. Dig., pp. 637-640, 2008 [24] S. Emami, C. H. Doan, A. M. Niknejad, and R. W. Brodersen, “A 60 GHz down-converting CMOS single-gate mixer,” in IEEE MTT-S Int. Dig., Jun. 2005, pp. 163–166. [25] I. C. H. Lai, Y. Kambayashi, and M. Fujishima, “ 60-GHz CMOS down-conversion mixer with slow-wave matching transmission lines,” in IEEE Asian Solid-State Circuits Conf. Dig., Nov. 2006, pp. 195–198. [26] F. Zhang, E. Skafidas, and W. Shieh, “A 60-GHz double-balanced Gilbert cell down-conversion mixer on 130 nm CMOS,” in IEEE RFIC Symp. Dig., Jun. 2007, pp. 141–144. [27] C.-H. Lien, C.-H. Wang, P.-S. Wu, K.-Y. Lin, and H. Wang, “Analysis and design of reduced-size Marchand-rat-race hybrid for millimeter-wave compact balanced mixers in 130-nm CMOS process, ” IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1966–1977, Aug. 2009. [28] Chun-Hsien Lien; Pin-Cheng Huang; Kun-Yao Kao; Kun-You Lin; Huei Wang, “ 60 GHz double-balanced gate-pumped down-conversion mixers with a combined hybrid on 130 nm CMOS processes, ” Microwave and Wireless Components Letters, IEEE vol.20 , Issue: 3 ,2010 , pp. 160 – 162 [29] J.-H. Tsai, P.-S. Wu, C.-S. Lin, T.-W. Huang, J. G. J. Chern, and W.-C. Huang, “A 25–75 GHz broadband Gilbert-cell mixer using 90-nm CMOS technology, ” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 247–249, Apr. 2007. [30] Mingquan Bao, Harald Jacobsson, Lars Aspemyr,Geert Carchon, and Xiao Sun, “A 9–31-GHz Subharmonic Passive Mixer in 90-nm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 41, no. 10, Oct. 2006 [31] R.-N Simons and R.-Q. Lee, “On-wafer characterization of millimeter-wave antennas for wireless applications,” in IEEE Trans. Microw. Theory Tech. , vol. 47, pp. 92–96, Jan. 1999. [32] K.-V. Caekenberghe, K. M. Brakora, W. Hong, K. Jumani, D. Liao, M. Rangwala, Y.-Z. Wee, X. Zhu, and K. Sarabandi, “A 2-40 GHz Probe Station Based Setup for On-Wafer Antenna Measurements,” in IEEE Trans. Antennas Propagat. , vol. 56, no. 10, pp. 3241-3247, Oct. 2008 [33] T. Zwick, C. Baks, U.-R. Pfeiffer, D. Liu, and B.-P. Gaucher, “Probe based MMW antenna measurement setup,” in IEEE AP-S Int. Symp. Digest., Monterey, CA, vol. 1, pp. 747–750, Jun., 2004 [34] W. Lee, J. Kim. C.-S. Cho, and Y.-J. Yoon, “Beamforming lens antenna on a high resistivity silicon wafer for 60 GHz WPAN, ” in IEEE Trans. Ant. Prop. , vol. 58, pp. 706-713, March 2010. [35] I-Shan Chen, Hwann-Kaeo Chiou, and Nan-Wei Chen, ” V-band on-chip dipole-based antenna,” in IEEE Trans. Antennas Propagat., vol. 57, no. 10, pp. 28532861, Oct., 2009 [36] S. Cheng, H. Yousef, and H. Kratz, “79 GHz slot antennas based on substrate integrated waveguides (SIW) in a flexible printed circuit board,” in IEEE Trans. Ant. Prop., vol. 57, pp. 64-70, January 2009. [37] Demetrius T. Paris, W. Marshall Leach, JR., and Edward B. Joy, 'Basic Theory of Probe-Compensated Near-Field Measurements,' in IEEE Trans. Ant. Prop. , vol. AP-26, NO. 3, pp. 373-379, May 1978. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47441 | - |
| dc.description.abstract | 本論文主要分三個部份,第一個部分是毫米波鏡像消除式混頻器。第二部份,是關於毫米波異質接面雙極性電晶體放大器。第三部分,是毫米波晶片天線的量測架設。
第一部分為毫米波混頻器的研製,內容為應用於天文觀測的W頻段鏡像消除式混頻器。由於鏡像消除式混頻器電路係使用藍基耦合器產生90°相位,而此藍基耦合器所產生的兩路訊號相位及增益差會影響鏡像信號消除的程度。現今實現藍基耦合器的方式在高頻的情況下,會產生嚴重的增益及相位落差。於是本論文使用一種新的藍基耦合器,於高頻的增益及相位誤差可達成比以往文獻發表的藍基耦合器還要接近理想值,也因此殘留的鏡像信號較一般藍基耦合器還低。 第二部分為異質接面雙極性電晶體設計於D頻段的放大器。近年來發表於D頻段的文獻不多,因此本論文研製此放大器,希望能以130-GHz為電路設計的中心頻、頻寬設計為20 GHz,在此頻段達到好的放大增益,並克服量測上的障礙量到此電路的小訊號參數。 第三部分為毫米波晶片天線量測架設。現今發表文獻關於晶片天線量測有部分的探討,但不是成本過高就是礙於儀器設備或架設方式,導致量測到的角度有限,因此,此論文提供一種可得到較寬角度的量測方式,除了所需設備較少,量測得到的數據也不失精準度。 | zh_TW |
| dc.description.abstract | This thesis consists of three parts. First part is millimeter-wave mixers included image rejection mixer. Second part is a HBT amplifier. Third part is millimeter-wave chip antenna measurement and setup.
In this thesis, first part is to design a W-band image rejection mixer for astronomy application. It is composed of a 90° Lange coupler in image rejection mixer. The phase error and gain imbalance of Lange coupler will dominate the elimination of image signal. However, for conventional Lange couplers, it is hard to get perfect consistency both in gain and phase performance especially in high frequency. Therefore, by modifying the layout of the conventional Lange coupler which is applied in a MMIC W-band image reject mixer, the performance of image rejection is improved. The second part is to implement a D-band HBT amplifier. To design high gain in this band is main purpose. Third part is millimeter-wave chip antenna measurement and setup. A low cost measurement approach is proposed to measure the antenna performances. The measured angle is wider than that of the conventional approach with better accuracy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:59:59Z (GMT). No. of bitstreams: 1 ntu-100-R98942006-1.pdf: 4578188 bytes, checksum: 7310b31ba318e640343f5ca8f65b51e1 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 iv ABSTRACT v CONTENTS vi LIST OF FIGURES viii LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Survey 2 1.2.1 W-band Image Rejection Mixer 2 1.2.2 D-band Amplifier 3 1.2.3 On-wafer Antenna Measurement 4 1.3 Contribution 5 1.4 Thesis Organization 6 Chapter 2 Millimeter-wave Image Rejection Diode Mixer 8 2.1 Introduction to Hartley Image Rejection Mixer 8 2.1.1 Application of W-band Image Rejection Mixer 9 2.2 WIN power pHEMT 0.15 μm Process Descriptions 10 2.3 W-band Image Rejection Diode Mixer 11 2.3.1 Modified Lange Coupler Design 12 2.3.2 One-single-to-two-differential Power Divider Design 15 2.3.3 Measurement Setup 19 2.3.4 Experiment Results 20 2.3.5 Comparison Table 24 2.4 Summary 25 Chapter 3 D-band HBT Amplifier 26 3.1 Introduction to HBT Amplifier 26 3.2 IHP SiGe .13-μm BiCMOS Process Description 26 3.3 130-GHz HBT Amplifier 26 3.3.1 Circuit Design 26 3.3.2 Measurement Setups 32 3.3.3 Experiment Results 32 3.3.4 Comparison Table 39 3.4 Summary 40 Chapter 4 Novel Probe Station Based Setup for On-wafer Antenna Measurement 41 4.1 Introduction to On-Wafer Antenna Measurement 41 4.2 Probe Station Based On-wafer Antenna Pattern Measurement Setup and Approach 42 4.3 Experimental Results 48 4.4 Summary 54 Chapter 5 Conclusion 55 REFERENCE 56 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鏡像消除式混頻器 | zh_TW |
| dc.subject | D頻段放大器 | zh_TW |
| dc.subject | 晶片天線量測 | zh_TW |
| dc.subject | D-band amplifier | en |
| dc.subject | on chip antenna measurement | en |
| dc.subject | image rejection mixer | en |
| dc.title | 毫米波之異質接面雙極性電晶體放大器與二極體混波器製作和晶片天線量測方法 | zh_TW |
| dc.title | Design of Millimeter-Wave HBT Amplifier, Diode Mixers, and On-Wafer Antenna Measurement | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林坤佑(Kun-You Lin),陳士元(Shih-Yuan Chen),蔡作敏(Zuo-Min Tsai),章朝聖(Chau-Ching Chiong) | |
| dc.subject.keyword | 鏡像消除式混頻器,D頻段放大器,晶片天線量測, | zh_TW |
| dc.subject.keyword | image rejection mixer,D-band amplifier,on chip antenna measurement, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 4.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
