Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47358
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林唯芳(Wei-Fang Su)
dc.contributor.authorYing-Da Wangen
dc.contributor.author王英達zh_TW
dc.date.accessioned2021-06-15T05:56:24Z-
dc.date.available2011-08-18
dc.date.copyright2010-08-18
dc.date.issued2010
dc.date.submitted2010-08-17
dc.identifier.citation1. C. N. Cascaval*, A. Mititelu-Mija and P. Navard, “Liquid crystalline epoxy thermosets with naphthyl mesogen”, 2005, Designed Monomers and Polymers, 8, 487-499.
2. R. Cervini, G. P. Simon, M. Ginic-Markovic, J. G. Matisons, C. Huynh and S. Hawkins, “Aligned silane-treated MWCNT/liquid crystal polymer films,” 2008, Nanotechnology, 19, 175602.
3. E. Chiellini*, L. Lestel, G. Galli nad M. Laus, “Thermal and dynamic-mechanical properties of new chiral smectic networks,” 1994, Polymer Bulletin, 32, 669-674.
4. J. V. Crivello, D. Bi and M. Fan, “The synthesis of novel silicon-containing epoxy monomers and oligomers polymer preprints,” 1991, A.C.S. Polym. Preprints, 32, 173.
5. J. V. Crivello, K-Y. Song and R. Ghoshal, “Synthesis and Photoinitiated Cationic Polymerization of Organic-Inorganic Hybrid Resins,” 2001, Chem. Mater., 13, 1932-1942.
6. R. E. Cuthrell*, “Macrostructure and Enviroment-Influenced Surface Layer in Epoxy Polymers,” 1967, J. Appl. Polym. Sci., 11, 949-952.
7. C. Decker, “The Use of UV Irradiation in Polymerization,” 1998, Polymer International, 45, 133-141.
8. E. P. Douglas, J. Gavrin and C. L. Curts, “High-Temperature Stability of a Novel Phenylethynyl Liquid-Crystalline Thermoset,” 1999, J. Poly. Sci., Pt. A, Poly. Chem., 37, 4184–4190.
9. B. Dunn*, J. M. Miller, B.C. Dave, J. S. Valentine and J. I. Zink, “Strategies for encapsulating biomolecules in sol-gel matrice,” 1998, Acta Materialia, 46, 737-741.
10. C. Fromen, “Final Project,” 2009, Optics, 307.
11. M. Harada, M. Ochi, M. Tobita, T. Kimura, T. Ishigaki, N. Shimoyama and H. Aoki, “Thermomechanical Properties of Liquid-Crystalline Epoxy Networks Arranged by a Magnetic Field,”2004, J. Poly. Sci., Pt. B, Poly. Phys., 42, 758–765.
12. F-M. Hsieh, H. Fang and J-H. Liu, “Color Tunable Novel Amphotropic Liquid Crystalline Acrylate End-capped with a Cholesteryl Group,” 2010, Chem. Lett., 39, 485-487.
S-H. Hwang* and J-C. Jung, “Curing Kinetics and Thermal Properties of Diglycidylether of Bisphenol A with Various Diamines,” 2001, J. Appl. Polym. Sci., 81, 279–284.
13. T. Kyu, H. Duran, S. Meng, N. Kim, J. Hu, L. V. Natarajan, V. P. Tondiglia and T. J. Bunning, “Kinetics of photopolymerization-induced phase separation and morphology development in mixtures of a nematic liquid crystal and multifunctional acrylate,” 2007, Polymer, 49, 534-545.
14. J-Y. Lee* and J. Jang, “Synthesis and Curing of Liquid Crystalline Epoxy Resin Based on Naphthalene Mesogen”, 1999, Journal of Polymer Science: Part A: Polymer Chemistry, 37, 419-425.
15. J. Livage* , F. Beteille , C. Roux, M. Chatry and P. Davidson, “Sol-Gel synthesis of oxide materials,” 1998, Acta Materialia, 46, 743-750.
16. M. C. Laia*, K. C. Changa, W. C. Huanga, S. C. Hsua and J. M. Yeha, “Effect of swelling agent on the physical properties of PET–clay nanocomposite materials prepared from melt intercalation approach,” 2008, Journal of Physics and Chemistry of Solids 69, 1371–1374.
17. J-Y. Lee* and J. Jang, “Curing Behavior of Liquid Crystalline Epoxy/DGEBA Blend,” 2007, J. Appl. Polym. Sci., 106, 2198–2203.
18. M. H. Litt, W-T. Wang, K-T, Yen and X-J Qian, “Crosslinked Liquid Crystal Polymers from Liquid Crystal Monomers: Synthesis and Mechanical Properties,” 1993, J. Poly. Sci., Pt. A, Poly. Chem., 31, 183-191.
19. Q. Liu*, J. Ding, D. E. Chambers, S. Debnath, S. L. Wunder and G. R. Baran, “Filler-coupling agent-matrix interactions in silica/polymethylmethacrylate composites,” 2001, Journal of Biomedical Materials Research, 57, 384-393.
20. J. Livage* , F. Beteille , C. Roux, M. Chatry and P. Davidson, “Sol-Gel synthesis of oxide materials,” 1998, Acta Materialia 46, 743-750.
21. C. K. Ober and G. G. Barclay, “Liquid crystalline and rigid-rod networks, ” 1993, Prog. Polvm. Sci., 18, 899-945.
22. M. Ochi, M. Harada, Y. Watanabe and Y. Tanaka, “Thermal Properties and Fracture Toughness of a Liquid-Crystalline Epoxy Resin Cured with an Aromatic Diamine Crosslinker Having a Mesogenic Group,”2006, J. Poly. Sci., Pt. B, Poly. Phys., 44, 2486–2494.
23. J. Odian, “Priciples of Polymerization, ” 2004, Wiley Interscience, 4th Edition.
L. Serrano and L. Oriol, “Metallomesogenic Polymers,” 1995, Adv. Mater., 7, 348-369.
24. V. Smits*, P. Chevalier, D. Deheunynuck, S. Miller,“A new filler dispersion technology,” 2008, Reinforced Plastics, Dec., 37–43.
25. W-F. A. Su*, “Thermoplastic and Thermoset Main Chain Liquid Crystal Polymers Prepared from Biphenyl Mesogen,” 1993, J. Poly. Sci., Pt. A, Poly. Chem., 31, 3251-3256.
26. W-F. A. Su*, K-C Chen and S-Y Tseng, “Effects of Chemical Structure Changes on Thermal, Mechanical, and Crystalline Properties of Rigid Rod Epoxy Resins,” 2000, Journal of Applied Polymer Science, 78, 446-451.
27. W-F. A. Su*, “Thermoplastic and Thermoset Main Chain Liquid Crystal Polymers Prepared from Biphenyl Mesogen,” 1993, J. Poly. Sci., Pt. A, Poly. Chem., 31, 3251-3256.
28. W-F. A. Su*, K-F Schoch, Jr. and J-D B. Smith, “Comparison of Cure Conditions for a Rigid Rod Epoxy and a Bisphenol A Epoxy Using Thermomechanical Analysis,” 1998, J. Appl. Polym. Sci., 70, 2163-2167.
29. K. I. Suresh*, J. R. Tamboli1, B. S. Rao1, S. Verma and G. Unnikrishnan, “Effect of core group substituents on the monomer mesophase, photocuring, and film viscoelastic properties of mesogenic diacrylates,” 2008, Polym. Adv. Technol., 19, 1323–1333.
30. H. Weller*, P. D. Cozzoli, A. Kornowski, “Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods,” 2003, J. Am. Chem. Soc. 125, 14539.
31. D. Wu, S. B. Mitra, and S. N. Holmes, “An application of nanotechnology in advanced dental materials,” 2003, J Am Dent Assoc., 134, 1382-1390.
32. B-Y. Zhang*, J-S. Hu, Y. Wang and Y-H. Li, “Liquid Crystalline Thermosets 1. Synthesis and Characterization of Liquid Crystalline Thermosets' Precursor Polymers,” 2003, Polymer Journal, 35, 728-733.
33. 許勝豪,“有機無機惨合壓克力牙科填補奈米複合材料,” 2005, 國立台灣大學材料科學與工程學系暨研究所碩士論文
34. 黃建睿,“液晶型環氧樹脂硬化反應動力學與性質研究,” 2007, 國立台灣大學高分子科學與工程學研究所碩士論文
35. 林函廷,“高穿透度低透濕性紫外光聚合之有機/無機奈米複合材料,” 2009, 國立台灣大學高分子科學與工程學研究所碩士論文
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47358-
dc.description.abstract本研究合成並使用一種液晶壓克力4,4'-bis(3-hydroxyalkyloxy) biphenyl diacrylates (B3A),使其在具有液晶形態及完全熔融的狀態下照光聚合並比較其性質的差異。液晶型態下照光聚合的壓克力相對於非液晶型態下聚合的壓克力的機械性質有顯著的提升,硬度提高20%。因此我們可將液晶結構的形成視為一種自增強(self-reinforced)效應,此效應帶來的好處就是不需額外添加無機填料就可達到相當高的機械強度。
接著我們探討混摻無機奈米粒子後性質的改變。第一部分混入不同比例以矽烷偶合劑3-(Trimethoxysilyl) propylmethacrylate (MPS)改質的二氧化矽奈米粒子,可有效提升材料的硬度且提高其熱裂解溫度(Td)、儲存模數及玻璃轉化溫度(Tg)。但隨著二氧化矽的固含量增加,液晶形態在機械強度提升上有平緩的趨勢。利用XRD研究後發現液晶特徵峰有越來越寬的趨勢,顯示液晶形成範圍受到奈米粒子多寡的影響而越來越小。第二部分我們使用不同長寬比的二氧化鈦粒子,觀察混摻後對液晶排列的自增強現象的影響。混摻二氧化鈦奈米桿(長寬比約為4)的複材,在添加量超過2%之後複合材料的液晶行為就無法使用偏光顯微鏡做簡易的觀察,因為添加了更多量的奈米桿,將使得液晶形成範圍受到限制而變小,影響到可見光的觀察範圍。而混摻二氧化鈦奈米粒子的複材,在偏光顯微鏡下不會觀察到和二氧化鈦奈米桿相同的情況。
因此複合材料的性質除了取決於填入高分子基材中的無機奈米顆粒本身的性質、形狀及表面改質的不同有所差異外,也會受到高分子基材的排列而有所不同。
zh_TW
dc.description.abstractIn this research, we have synthesized and utilized a liquid crystalline(LC) acrylate, 4,4'-bis(3-Hydroxy- alkyloxy) biphenyl diacrylates(B3A). We have photo cured the B3A either at LC state or at isotropic state and compared the difference of cured properties between two state. Hardness of the sample with LC structure after photocure exhibits 20% higher than the amorphous one. The result is due to the self reinforcing effect from the LC structure remained in the sample after cured.
We further improved the physical properties of the B3A by incorporating nanofiller to from nanocomposite. We studied the effect of nanofiller on the formation of LC state in the cured sample. In the first part of this work, we added SiO2 particle which modified with 3-(Trimethoxysilyl) propylmethacrylate (MPS) in acrylate resin. SiO2 enhances its decomposition temperature (Td), storage modulus and glass transition temperature (Tg) effectively. But when the content of SiO2 is further increased, the increase in mechanical property is less significant. In the XRD study, the peak of LC structure is broader as increasing the content of SiO2. It shows that the increased amount of SiO2 decrease the domain size of LC structure. In the second part, nanofillers with different aspect ratios, TiO2 nanorod(TNR) and TiO2 nanoparticle(TNP) are added to acrylate resin to investigate their effect on the LC structure formation and self-reinforcing effect. In TNR nanocomposite series, when we increase TNR contain to 2wt%, that is difficult to find large domain LC structure under POM analysis. Due to the increased amount of TNR limit the formation of LC structure. The trend in TNP nanocomposite series matched up with the trend in SiO2 composite series, but the effect on the physical properties by TNP is less obvious.
In conclusion, we observe that the nanocomposites are dependent on the inorganic nanofiller’s shape and the interface interaction of polymer-inorganic. Additionally, the properties of nanocomposites are also affected by the presence of LC structure.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:56:24Z (GMT). No. of bitstreams: 1
ntu-99-R97527047-1.pdf: 2134057 bytes, checksum: 7c72e1de71ab8f53abf16265553eea08 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents目 錄
摘 要 IV
Abstract IV
目 錄 VI
圖目錄 X
表目錄 X
第一章 緒 論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 研究方向 2
第二章 文獻回顧 3
2.1 液晶簡介 3
2.2 壓克力樹酯 7
2.2.1 壓克力樹酯的聚合反應 7
2.2.2 近期發展 9
2.3 光起始劑 11
2.3.1 自由基光起始劑 11
2.4 有機無機混成奈米複合材料 12
2.4.1 溶膠凝膠法製備奈米複合材料 [B. Dunn 1998, J. Livage 1998] 12
2.4.2 矽烷類表面改質劑 [V. Smits 2002] 13
2.4.3 有機相與無機相間無化學鍵結 15
2.4.4 有機相與無機相間以物理作用力結合 15
2.4.5 有機相與無機相間以化學共價鍵結合 15
第三章 實 驗 17
3.1 實驗藥品 17
3.2 實驗儀器 18
3.3 實驗步驟 21
3.3.1 實驗流程 21
3.3.2 合成4,4'-bis(3-Hydroxypropyloxy) biphenyl, B3OH 與鑑定 [M. H. Litt 1993] 21
3.3.3 合成4,4'-bis(3-Hydroxyalkyloxy)biphenyl diacrylate, B3A與鑑定 [M. H. Litt 1993] 23
3.3.4 SiO2奈米粒子的改質與鑑定 25
3.3.5 TiO2奈米桿的合成與鑑定 [H.Weller] 26
3.3.6 TiO2奈米粒子的合成與鑑定 27
3.4 光聚合壓克力製備 29
3.4.1 B3A/SiO2奈米複合材料 29
3.4.2 B3A/TiO2奈米柱奈米複合材料 29
3.4.3 B3A/TiO2奈米粒子奈米複合材料 29
3.5 光聚合壓克力樣品製備 30
3.5.1 聚合溫度的選定 30
3.5.2 塊材樣品製備 30
3.5.3 薄膜樣品製備 30
3.6 實驗測試項目、原理及條件 32
3.6.1 微差掃瞄熱卡計 Differential Scanning Calorimetry (DSC) 32
3.6.2 熱重分析儀 Thermal Gravimetric Analyzer(TGA) 32
3.6.3 動態機械分析儀 Dynamic Mechanical Analysis(DMA) 32
3.6.4 微硬度試驗 Microhardness Test 33
3.6.5 光學微差掃瞄熱卡計 Differential Scanning Calorimetry (DSC) 34
3.6.6 偏光顯微鏡 Polarized Optical Microscope (POM) 34
第四章 結果與討論 35
4.1 壓克力的液晶行為觀察 35
4.2 液晶奈米複合材料的熱性質及機械性質 36
4.2.1 B3A/SiO2奈米複合材料 36
4.2.2 機械性質分析 39
4.2.3 熱性質分析 40
4.3 不同長寬比的奈米粒子對液晶奈米複合材料型態的影響 44
4.3.1 B3A/TiO2奈米柱複合材料 44
4.3.2 B3A/TiO2奈米粒子複合材料 47
第五章 結 論 51
第六章 未來方向與建議 52
參考文獻 53

圖目錄
Figure 2.1 Molecular structure of nematic liquid crystal. 4
Figure 2.2 Molecular structure of smectic liquid crystal. 4
Figure 2.3 Molecular structure of cholesteric liquid crystal. 5
Figure 2.4 Reaction of polymerization of acrylic monomer. 8
Figure 2.5 hardness increase of an acrylated polyisoprene containing 20 wt% ofdiacrylate upon UV exposure. (I=600mWcm-2). 9
Figure 2.6 Microhardness of five commercial restorative acrylated reins changes with different curing time. 9
Figure 2.7 LC acrylate monomer of Table 2.1. 10
Figure 2.8 Products from radical recombination of Irgacure 651. 11
Figure 2.9 Simplified picture of Organic and Inorganic coupling. 12
Figure 2.10 Hydrolysis and condensation reaction of alkoxysilanes bonding to an inorganic surface. 14
Figure 3.1 Scheme of experiment proceduress. 21
Figure 3.2 Scheme of B3OH synthesis. 21
Figure 3.3 NMR spectrum of B3OH. 22
Figure 3.4 IR spectrum of B3OH. 23
Figure 3.5 Scheme of B3A synthesis 23
Figure 3.6 NMR spectrum of B3A. 24
Figure 3.7 IR spectrum of B3A. 24
Figure 3.8 IR spectrum comparison of B3A and B3OH. 25
Figure 3.9 Scheme of SiO2 surface modifid by MPS. 25
Figure 3.10 TEM image of MPS-SiO2. 26
Figure 3.11 TEM image of TiO2 nanorod. 27
Figure 3.12 TEM image of TiO2 nanoparticle(1). 28
Figure 3.13 TEM image of TiO2 nanoparticle(2). 28
Figure 3.14 Photo-cure lamp box. 31
Figure 4.1 POM image of B3A at liquid crystalline state. 35
Figure 4.2 XRD patterns of B3A cured at different state. 36
Figure 4.3 POM images of different SiO2 content nanocomposites at liquid crystalline state (a)10wt% , (b)20wt% , (c)30wt%. 37
Figure 4.4 XRD patterns of different SiO2 content nanocomposites 37
Firgue 4.5 Thermogram of post-cured sample (S10). 38
Figure 4.6 Hardness of different SiO2 content nanocomposites at different curing state. 39
Figure 4.7 Hardness comparison of SiO2 nanocomposite series. 40
Figure 4.8 TGA thermograms comparison of SiO2 nanocomposite series. 41
Figure 4.9 TGA thermogram of MPS modified SiO2. 42
Figure 4.10 DMA thermograms(storage modulus) of B3A at different curing state. 42
Figure 4.11 DMA thermograms comparison of SiO2 nanocomposite series. 43
Figure 4.12 DMA thermograms(Tan Delta) of SiO2 nanocomposite series cured at different state. 44
Figure 4.13 POM images of different TiO2 nanorod content nanocomposites at liquid crystalline state (a)1wt%, (b)2wt%, (c)5wt%, (d) 10wt%. 45
Figure 4.14 XRD patterns of different TiO2 nanorod content nanocomposites. 46
Figure 4.15 DSC thermograms of different TiO2 nanorod content nanocomposites 46
Figure 4.16 POM images of different TiO2 nanoparticle content nanocomposites at liquid crystalline state (a)1wt%, (b)2wt%, (c)5wt%, (d) 10wt%. 48
Figure 4.17 XRD patterns of different TiO2 nanoparticle content nanocomposites. 49
Figure 4.18 DSC thermograms of different TiO2 nanoparticle content nanocomposites. 49

表目錄
Table 2.1 LC behavior of LC acrylate network. 10
Table 3.1 Specification of UV lamp box. 31
Table 4.1 Hardness difference of nanocoposite between before and after thermal post-cure. 38
Table 4.2 Compositions of SiO2 nanocomposite series. 39
Table 4.3 Hardness of SiO2 nanocomposite series. 40
Table 4.4 Td of SiO2 nanocomposites serie. 41
Table 4.5 Storage modulus of SiO2 nanocomposite series. 43
Table 4.6 Tg of SiO2 series nanocomposites. 44
Table 4.7 Heatflow of per gram TiO2 nanorod nanocomposites. 47
Table 4.8 Heatflow of per gram B3A monomer in TiO2 nanorod nanocomposites. 47
Table 4.9 Heatflow of per gram TiO2 nanoparticle nanocomposites. 49
Table 4.10 Heatflow of per gram B3A monomer in TiO2 nanorod nanocomposites. 50
Table 4.11 Heatflow of per gram B3A monomer in TiO2 nanorod and nanoparticle nanocomposites.. 50
dc.language.isozh-TW
dc.subject奈米桿zh_TW
dc.subject奈米粒子zh_TW
dc.subject光聚合zh_TW
dc.subject熱性質zh_TW
dc.subject二氧化鈦zh_TW
dc.subject二氧化矽zh_TW
dc.subject液晶壓克力zh_TW
dc.subject自增強效應zh_TW
dc.subject奈米複材zh_TW
dc.subject機械性質zh_TW
dc.subjectself-reinforcingen
dc.subjectmechanical propertyen
dc.subjectphoto-cureen
dc.subjectTiO2en
dc.subjectSiO2en
dc.subjectnanocompositesen
dc.subjectliquid crystallineen
dc.subjectacrylic resinen
dc.title光聚合之液晶壓克力奈米複合材料合成與物性研究zh_TW
dc.titleSynthesis and Physical Properties of UV Curable Liquid-Crystalline Acrylate Nanocompositesen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡豐羽(Feng-Yu Tsai),趙基揚(Chi-Yang Chao),鄭國忠(Kuo-Chung Cheng)
dc.subject.keyword自增強效應,液晶壓克力,二氧化矽,二氧化鈦,奈米複材,光聚合,奈米粒子,奈米桿,機械性質,熱性質,zh_TW
dc.subject.keywordself-reinforcing,acrylic resin,liquid crystalline,nanocomposites,SiO2,TiO2,photo-cure,mechanical property,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2010-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  未授權公開取用
2.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved