Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47341
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳敏璋(Miin-Jang Chen)
dc.contributor.authorChe-Wei Changen
dc.contributor.author張哲瑋zh_TW
dc.date.accessioned2021-06-15T05:55:42Z-
dc.date.available2015-08-20
dc.date.copyright2010-08-20
dc.date.issued2010
dc.date.submitted2010-08-17
dc.identifier.citation[1] M. A. Green, “Crystalline and thin-film silicon solar cells: state of the art and
future potential”, Solar Energy 74 (2003) 181–192.
[2] Y. Tsunomura, Y. Yoshiminea, M. Taguchia, T. Babaa, T. Kinoshitaa, H. Kannoa,
H. Sakataa, E. Maruyamaa and M. Tanakaa, “Twenty-two percent efficiency HIT
solar cell”, Solar Energy Materials and Solar Cells 93 (2009) 670-673.
[3] J. Luschitz, B. Siepchen, J. Schaffner, K. Lakus-Wollny, G. Haindl, A. Klein, W.
Jaegermann, “CdTe thin film solar cells: Interrelation of nucleation, structure,
and performance”, Thin Solid Films 517 (2009) 2125–2131.
[4] J. Y. Lee, S.W. Glunz, “Investigation of various surface passivation schemes for
silicon solar cells”, Solar Energy Materials & Solar Cells 90 (2006) 82-92.
[5] Hussam Eldin A. Elgamel, “High-efficiency polycrystalline silicon film solar
cells”, Solar Energy Materials and Solar Cells 53 (1998) 269-275.
[6] B. Hoex, J. Schmidt, R. Bock, P. P. Altermatt, M. C. M. van de Sanden, W. M. M.
Kessels, “Excellent passivation of highly doped p-type Si surfaces by the
negative-charge-dielectric Al2O3“, Applied Physics Letters 91 (2007) 112107
[7] B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, W. M. M. Kessels,
“Ultralow surface recombination of c-Si substrates passivated by plasma-assisted
atomic layer deposited Al2O3” , Applied Physics Letters 89 (2006) 042112
[8] G. Agostinelli,A. Delabie, P. Vitanovb, Z. Alexievab, H.F.W. Dekkers, S. De Wolf,
G. Beaucarne, “Very low surface recombination velocities on p-type silicon wafers
passivated with a dielectric with fixed negative charge”, Solar Energy Materials &
Solar Cells 90 (2006) 3438–3443
[9] J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, W. M. M.
Kessels, “Surface Passivation of High-efficiency Silicon Solar Cells by
Atomic-layer-deposited Al2O3 ¬¬¬“, Progress in Photovoltaics: Research and
Applications 16 (2008) 461-466.
[10] J. Benick, B. Hoex, M. C. M. van de Sanden, W. M. M. Kessels, O. Schultz, and
S. W. Glunz, “High efficiency n-type Si solar cells on Al2O3-passivated boron
emitters”, Applied Physics Letters 92 (2008) 253504.
[11] R. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedov, R. A.
Rabadanov, “Highly conductive and transparent Ga-doped epitaxial ZnO films on
sapphire by CVD”, Thin Solid Films 260 (1995) 19 -20.
[12] H. Agura, A. Suzuki, T. Matsushita, T. Aoki, M. Okuda, “Low resistivity
transparent conducting Al-doped ZnO films prepared by pulsed laser deposition”,
Thin Solid Films 445 (2003) 263–267
[13] G. Fang, D. Li and B. L. Yao, “Magnetron sputtered AZO thin films on
commercial ITO glass for application of a very low resistance transparent
electrode”, Journal of Physics D: Applied Physics 35 (2002) 3096–3100.
[14] T. Y. Ma, S. C. Lee, “Effects of aluminum content and substrate temperature on
the structural and electrical properties of aluminum-doped ZnO films prepared by
ultrasonic spray pyrolysis”, Journal of Materials Science: Materials in Electronics
11 (2000) 305-309.
[15] S. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanaka, S. Motokoshi, “Optical thin
films consisting of nanoscale laminated layers”, Applied Physics Letters 80
(2002) Number 14.
[16] J. Nelson, “The physics of solar cells”, Imperial College Press, p1~p16, 2003
[17] 蕭錫鍊 “半導體太陽電池元件原理” , 五南圖書出版公司, p16-p136, 2008 12
月
[18] T. Markvart, L. Castaner, “Solar cells: materials, manufacture and operation”,
Elsevier, p6~p21, 2003
[19] J. Y. Lee, “Rapid Thermal Processing of Silicon Solar Cells -Passivation and
Diffusion”, Institut für Solare Energiesysteme (ISE), p3~p12, 2003
[20] J. Schmidt, A. Merkle, B. Hoex, M.C.M. van de Sanden, W.M.M. Kessels, R.
Brendel, “Atomic-Layer-Deposited Aluminum Oxide for the Surface Passivation
of High-efficiency silicon solar cells”, Institut für Solarenergieforschung Hameln
(ISFH), p1~p5
[21] J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, W. M. M.
Kessels, “Surface Passivation of High-efficiency Silicon Solar Cells by
Atomic-layer-deposited Al2O3 ¬¬¬“, Progress in Photovoltaics: Research and
Applications 16 (2008) 461-466.
[22] H.C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, H. M. Branz,
“Efficient black silicon solar cell with a density-graded nanoporous
surface:Optical properties, performance limitations, and design rules”, Applied
Physics Letters 95 (2009) 123501.
[23] J. Y. Lee, S.W. Glunz, “Investigation of various surface passivation schemes for
silicon solar cells”, Solar Energy Materials & Solar Cells 90 (2006) 82-92
[24] A. G. Aberle, “Surface Passivation of Crystalline Silicon Solar Cells: A Review”,
Progress in Photovoltaics: Research and Applications 8 (2000) 473-487.
[25] P. Campell, S. R.Wwnham, M. A. Green, “Light trapping and reflection control
with tilted pyramids grooves”, 20th IEEE Photovoltaics Special Conference p713
(1998)
[26] Y. Tsai, Master Thesis, “Application of Atomic layer Deposition on
Nano-textured Black Silicon Solar Cells”, p16, 2009 July.
[27] Y. Taur, T. H. Ning, “Fundamentals of Modern VLSI Devices”, Cambridge
University Press, p44-p49, (1998)
[28] R. Hull, “Properties of Crystalline Silicon”, Inspec, p677, 1999.
[29] A.G. Aberle, “Surface Passivation of Crystalline Silicon Solar Cells A Review”,
Progress in Photovoltaics: Research and Applications 8 (2000) 473-487
[30] M. J. Chen, Y. T. Shih, M. K. Wu, F. Y. Tsai, “Enhancement in the efficiency of
light emission from silicon by a thin Al2O3 surface passivating layer by ALD”,
Journal of Applied Physics 101 (2007) 033130.
[31] A. G. Aberle, “Surface Passivation of Crystalline Silicon Solar Cells: A Review”,
Progress in Photovoltaics: Research and Applications 8 (2000) 473-487.
[32] B. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, W. M. M. Kessels, “On the c-Si
surface passivation mechanism by the negative-charge dielectric Al2O3”, Journal
of Applied Physics 104 (2008) 113703.
[33] H. Jin, K. J. Weber, N. C. Dang, W. E. Jellett, “Defect generation at the Si–SiO2
interface following corona charging”, 90 (2007) 262109.
[34] J. Nelson, “The physics of solar cells”, Imperial College Press, p106~p109, 2003.
[35] C. Leguij, P. Lolgen, J.A. Eikelboom, A.W. Weeber, F. M. Schuurmans, W. C.
Sinke, P. F. A. Alkemade, P. M. Sarro, C.H.M. Marte, L. A. Verhoef, “Low
temperature surface passivation for silicon solar cells”, Solar Energy
Materials and Solar Cells 40 (1996) 297-345.
[36] J. Y. Lee, S.W. Glunz, “Investigation of various surface passivation schemes for
silicon solar cells”, Solar Energy Materials & Solar Cells 90 (2006) 82-92.
[37] J. Yoo, S. K. Dhungel, J. Yi, “Annealing optimization of silicon nitride film for
solar cell application”, Thin Solid Films 515 (2007) 7611–7614.
[38] J. Schmidt, A. Merkle, B. Hoex, M.C.M. van de Sanden, W.M.M. Kessels, R.
Brendel, “Atomic-Layer-Deposited Aluminum Oxide for the Surface Passivation
of High-efficiency silicon solar cells ”, Institut für Solarenergieforschung Hameln
(ISFH), p1~p5.
[39] B. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, W. M. M. Kessels, “Silicon
surface passivation by atomic layer deposited Al2O3” , Journal of Applied Physics
104 (2008) 044903.
[40] J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, W. M. M.
Kessels, “Surface Passivation of High-efficiency Silicon Solar Cells by
Atomic-layer-deposited Al2O3 ¬¬¬“, Progress in Photovoltaics: Research and
Applications 16 (2008) 461-466.
[41] J. J. H. Gielis, B. Hoex, M. C. M. van de Sanden, W. M. M. Kessels, “Negative
charge and charging dynamics in Al2O3 films on Si characterized by
second-harmonic generation”, Journal of Applied Physics 104 (2008) 073701.
[42] J. Benick, B. Hoex, M. C. M. van de Sanden, W. M. M. Kessels, O. Schultz, and
S. W. Glunz, “High efficiency n-type Si solar cells on Al2O3-passivated boron
emitters”, Applied Physics Letters 92 (2008) 253504.
[43] S. Dauwe, L. Mittelstadt, A. Metz, R. Hezel, “Experimental evidence of parasitic
shunting in silicon nitride rear surface passivated solar cells”, Progress in
Photovoltaics: Research and Applications 10 (2002) 271.
[44] Y. Tsai, Master Thesis, “Application of Atomic layer Deposition on
Nano-textured Black Silicon Solar Cells”, p18, 2009 July.
[45] M. D. Groner, F. H. Fabreguette, J. W. Elam, S. M. George, “Low-Temperature
Al2O3 Atomic Layer Deposition”, Chem. Mater., 16 (2004) 639-645.
[46] S. C. Ha, E. Choi, S. H. Kim, J. S. Roh, “Influence of oxidant source on the
property of atomic layer deposited Al2O3 on hydrogen-terminated Si substrate”,
Thin Solid Films 476 (2005) 252– 257.
[47] J. W. Limz, S. J. Yun, “Electrical Properties of Alumina Films by
Plasma-Enhanced Atomic Layer Deposition”, Electrochemical and Solid-State
Letters 7 (2004) F45-F48.
[48] Q. Xie, J. Musschoot, D. Deduytsche, R. L. Van Meirhaeghe, C. Detavernier, S.
Van den Berghe, Y. L. Jiang, G. P. Ru, B. Z. Li, and X. P. Qu, “Growth Kinetics
and Crystallization Behavior of TiO2 Films Prepared by Plasma Enhanced Atomic
Layer Deposition”, Journal of the Electrochemical Society, 155 9 (2008)
H688-H692.
[49] Q. Xie, Y.L. Jiang, C. Detavernier, D. Deduytsche, R. L. Van Meirhaeghe, G. P.
Ru, B. Z. Li, and X. P. Qu, “Atomic layer deposition of TiO2 from
tetrakis-dimethyl-amido titanium or Ti isopropoxide precursors and H2O”,
Journal of Applied Physics 102 (2007) 083521.
[50] L. Niinistö, J. Päiväsaari, J. Niinistö, M. Putkonen, M. Nieminen ,”Advanced
electronic and optoelectronic materials by Atomic Layer Deposition: An overview
with special emphasis on recent progress in processing of high-k dielectrics and
other oxide materials”, physica status solidi 201 (2004) 1443-1452.
[51] J. C. Hackley, T. Gougousi, “Properties of atomic layer deposited HfO2 thin
films”, Thin Solid Films (2009).
[52] B. Lee, K.J. Choi, A. Hande, M.J. Kim, R.M. Wallace, J. Kim, Y. Senzaki, D.
Shenai, H. Li,M. Rousseau, J. Suydam, “A novel thermally-stable zirconium
amidinate ALD precursor for ZrO2 thin films”, Microelectronic Engineering 86
(2009) 272–276.
[53] H. C. Liao, Master Thesis, “Study of Zinc Oxide Thin Films Deposited on Silicon
Substrate by ALD”, p17, 2007 July.
[54] J. Y. Lee, “Rapid Thermal Processing of Silicon Solar Cells -Passivation and
Diffusion”, Institut für Solare Energiesysteme (ISE), p13~p24, 2003.
[55] Y. Tsai, Master Thesis, “Application of Atomic layer Deposition on
Nano-textured Black Silicon Solar Cells”, p22-p28, 2009 July.
[56] Technical Note WT2000, SEMILAB, “The Theory of μ-PCD for Measuring
Lifetime”.
[57] C. Fufihira, M. Morin, H. Hashizume, J. Friedt, Y. Nakai, M. Hirose, “Carrier
Lifetime Measurements by Microwave Photoconductive Decay Method at Low
Injection Levels”, Japanese Journal of Applied Physics 32 (1993) L1362-L1364.
[58] R.K. Ahrenkiel, S.W. Johnston, “Lifetime analysis of silicon solar cells by
microwave reflection”, Solar Energy Materials & Solar Cells 92 (2008) 830–835.
[59] J. Schmidt, A. G. Aberle, “Easy-to-use Surface Passivation Technique for Bulk
Carrier Lifetime Measurements on Silicon Wafers”, Progress Photovoltaics:
Research Applications 6 (1998) 259-263.
[60] H. Kang, S. Kim, J. Choi, J. Kim, H. Jeon, C. Bae, “Effects of Remote Plasma
Pre-oxidation of Si Substrates on the Characteristics of ALD-Deposited HfO2
Gate Dielectrics”, Electrochemical and Solid-State Letters, 9 (6) (2006)
G211-G214.
[61] R. Puthenkovilakam, M. Sawkar, J. P. Chang, “Electrical characteristics of
postdeposition annealed HfO2 on silicon”, Applied Physics Letters 86 (2005)
202902.
[62] D. A. Neamen, “Semiconductor Physics and Devices”, Mcgraw Hill, p450-483.
[63] D. K. Schroder, “Semiconductor Material and Device Characterization”, A
JOHN WILEY & SONS, INC. p319-338, p350.
[64] S. Abermann, “High-k/Metal-gate Devices for Future CMOS Technology”, VDM
Verlag Dr. Muller, p21-27, p47-80.
[65] C. Y. Chang, S. M. Sze, “ULSI Devices”, John Wiley & Sons.
[66] E. H. Nicollian, J. R. Brews, “MOS(Metal Oxide Semiconductor) Physics and
Technology”, John Wiley & Sons. ch1-2.
[67] H. Fischer, R. Gereth, “Electrochemically Passivated Contacts for Silicon Solar
Cells”, IEEE Transactions on Electron Devices 18 (1971) 8.
[68] J. Lindmayer, “Solar Cell with Multiple-Metal Contacts”, United States Patent 11
(1978) 4082568.
[69] 李正中, “薄膜光學與鍍膜技術”, 藝軒圖書出版社, p55~p57,1999 12月
[70] H. C. Liao, Master Thesis, “Study of Zinc Oxide Thin Films Deposited on Silicon
Substrate by Atomic Layer Deposition”, p34~p50, 2007 July
[71] D. Pysch, A. Mettez, A. Filipovic, S. W. Glunz, ” Comprehensive Analysis of
Advanced Solar Cell Contacts Consisting of Printed Fine-line Seed Layers
Thickened by Silver Plating”, Prog. Photovolt: Res. Appl. 17 (2009) 101–114.
[72] A. F. Carroll, D. E. Poser, R. J. S. Young, J. Raby, M. Rose,
“Advances-in-PV-Metallization-Technology”, 20th European Photovoltaic Solar
Energy Conference.
[73] T. Sun, J. Miao, R. Lin, Y. Fu, ” The effect of baking conditions on the effective
contact areas of screen-printed silver layer on silicon substrate”, Solar Energy
Materials & Solar Cells 85 (2005) 73–83.
[74] S. Narasimha, A. Rohatgi, “An Optimized Rapid Aluminum Back Surface
Field Technique for Silicon Solar Cells”, IEEE Transactions on Electron Devices,
46 (1999) 7.
[75] J. A. Amick, F. J. Bottari, J. I. Hanoka, “The Effect of Aluminum Thickness on
Solar Cell Performance”, Mobil Solar Energy Corporation.
[76] A. Rohatgi, “Understanding and Implementation of Rapid Thermal Technologies
for High-Efficiency Silicon Solar Cells”, IEEE Transactions on Electron Devices,
46 (1999) 10.
[77] H.C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, H. M. Branz,
“Efficient black silicon solar cell with a density-graded nanoporous surface:
Optical properties, performance limitations, and design rules”, Applied Physics
Letters 95 (2009) 123501.
[78] Y. F. Huang, “Improved broadband and quasi-omnidirectional anti-reflection
properties with biomimetic silicon nanostructures”, nature nanotechnology (2007)
[79] H. Fang, Y. Wu, J.H. Zhao and J. Zhu, “Silver catalysis in the fabrication of
silicon nanowires arrays”, Nanotechnology 17 (2006) 3768–3774.
[80] M.J. Kerr, J. Schmidt, A. Cuevas,” Comparison of High Quality Surface
Passivation Schemes for Phosphorous Diffused Emitters”.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47341-
dc.description.abstract由於近年來地球暖化的情況不斷惡化,所以發展再生能源變成是一個重要的課題,其中太陽能電池是其中一個引人注目的焦點。隨著材料技術的發展,太陽能電池逐漸多樣化,但是目前太陽能電池還是以矽晶太陽能電池為大宗。在矽晶太陽能電池中,有不少提升效率的關鍵技術,例如效能良好的表面保護層(surface passivation layer)、背面表面電場(back surface field)、抗反射層(anti-reflection coating)以及好的電極結構。本論文將從太陽能電池的基本原理開始,進一步討論使用原子層沉積技術(Atomic layer deposition)成長不同的薄膜,利用Photoluminescence和microwave photoconductivity decay(μ-PCD)量測技術研究其表面鈍化的效果,並利用電容電壓量測系統來比較不同薄膜有無退火處理的電性,再探討利用原子層沉積技術成長氧化層作為表面鈍化層以及抗反射層於不同結構太陽能電池之應用。從實驗結果得知利用原子層沉積技術所成長的氧化層具有良好的表面鈍化效果,可有效提升矽晶太陽能電池的效率。zh_TW
dc.description.abstractRecently, energy crisis and the awareness of environmental protection have gained much attention. Therefore, green-energy related technologies were developed rapidly; solar cell is one of the prominent renewable energy sources. In many kinds of solar cells, most fabricated solar cells are made of crystalline silicon (c-Si) wafers..In order to enhance the efficiency of c-Si solar cells, many structures in the solar cell, such as a surface passivation layer on the emitter of solar cells, back surface field (BSF), anti-reflection coating, and low resistance metal contact, had been used. In this thesis, the fundamental physics of solar cells are discussed first. The effect of surface passivation layers grown by atomic layer deposition (ALD) is also studied.. Photoluminescence and microwave photoconductivity decay (μ-PCD) measurements are conducted to investigate the effect of surface passivation layers. We also utilized capacitance vs. voltage measurement to characterize the surface passivation layers with/without the post-annealing treatment. Finally, we applied these films to the fabrication of Si solar cells. The efficiency of c-Si solar cells were effectively enhanced by the surface passivation layers grown by the ALD tecnnique.en
dc.description.provenanceMade available in DSpace on 2021-06-15T05:55:42Z (GMT). No. of bitstreams: 1
ntu-99-R97527058-1.pdf: 3073547 bytes, checksum: ec0ac84d1ee0d29ad133d33ecfd5cd20 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsAbstract i
摘要 ii
Contents iii
Figure contents viii
Table contents xiv
Chapter 1 1
Introduction 1
1-1 Motivation 1
1-2 Atomic Layer Deposition (ALD) 2
1-3 Reference 7
Chapter 2 11
Fundamentals of Solar Cells and PC1D Simulation Program 11
2-1 Introduction 11
2-2 The Ideal Solar Cells 11
2-2-1 Solar Cell Efficiency 14
2-3 Equivalent Circuits of Real Solar Cells 15
2-4 Effects of Series Resistance and Shunt Resistance on Solar Cell Efficiency 17
2-4-1 Series Resistance 17
2-4-2 Shunt Resistance 18
2-5 PC1D Solar Cell Simulation Program 20
2-5-1 Device Part of PC1D Solar Cell Simulation Program 22
2-5-2 Region Part of PC1D Solar Cell Simulation Program 23
2-5-3 Excitation Part of PC1D Solar Cell Simulation Program 28
2-6 Results of PC1D Simulation 28
2-6-1 Effect of Reflectance 28
2-6-2 Effect of Front and Rear Recombination 31
2-7 Summary 34
2-8 Reference 35
Chapter 3 37
Growth of High-Quality Thin Films as Surface Passivation Layer by ALD 37
3-1 Introduction 37
3-2 Experiment of Different Thin Films as Surface Passivation Layer 39
3-2-1 Growth of Different Thin Films on Polished Silicon 39
3-2-2 PL (Photoluminescence) Measurement 45
3-2-3 μ-PCD (microwave photoconductive decay) Measurement 48
3-2-4 Pre Oxidation and Forming Gas Annealing Treatment 52
3-2-5 Results and Discussion 53
3-3 Oxide and Interface Charges 56
3-4 MOS Structure and C-V Measurements 58
3-5 Influence of Qf and Dit on High-Frequency C-V Characteristics 67
3-5-1 Influence of Qf on High-Frequency C-V Characteristics 67
3-5-2 Influence of Dit on High-Frequency C-V Characteristics 69
3-5-3 Simulation of C-V Curves by Mathematica 72
3-6 Experiments and Results 75
3-6-1 Experiment of Al2O3, HfO2 and ZrO2 MOS Capacitors 75
3-6-2 C-V Measurement on Thermal Mode Al2O3 77
3-6-3 C-V Measurement on Plasma Mode Al2O3 78
3-6-4 C-V Measurement on Thermal Mode HfO2 79
3-6-5 C-V Measurement on Thermal Mode ZrO2 80
3-7 Summary 82
3-8 Reference 82
Chapter 4 89
Fabrication of c-Silicon and Black Silicon Solar Cell with the Surface Passivation Layers by ALD 89
4-1 Introduction 89
4-2 Comparison of the Solar Cells Fabricated by Different Process 89
4-2-1 Measurements 94
4-2-2 Results and Discussion 95
4-3 The Screen Printed Ag Paste Solar Cell Fabrication Process 96
4-4 The Optimized Solar Cell Fabrication Process 100
4-5 Black Silicon Solar Cells 102
4-5-1 Fabrication of Black Silicon 102
4-5-2 Fabrication of Black Silicon Solar Cells 106
4-6 Summary 108
4-7 Reference 109
Chapter 5 113
Conclusion 113
dc.language.isoen
dc.title利用原子層沉積技術成長表面鈍化層於矽晶太陽能電池之應用zh_TW
dc.titleApplication of Surface Passivation Layer Grown by Atomic Layer Deposition on Silicon Solar Cellsen
dc.typeThesis
dc.date.schoolyear98-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭永楨(Yung-Chen Cheng),徐文慶(Wen-Ching Hsu),何志浩(Jr-Hau He),李敏鴻(Min-Hung Lee)
dc.subject.keyword原子層沉積技術,太陽能電池,表面鈍化層,抗反射層,zh_TW
dc.subject.keywordAtomic layer deposition,solar cell,surface passivation layer,anti-reflection coating (ARC),en
dc.relation.page114
dc.rights.note有償授權
dc.date.accepted2010-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved