請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46778
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 段維新(Wei-Hsing Tuan) | |
dc.contributor.author | Yin-Hua Chen | en |
dc.contributor.author | 陳盈樺 | zh_TW |
dc.date.accessioned | 2021-06-15T05:41:25Z | - |
dc.date.available | 2011-07-29 | |
dc.date.copyright | 2010-07-29 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-07-28 | |
dc.identifier.citation | 1. G. Arlt, D. Hennings and G. de With, “Dielectric Properties of Fine-grained Barium Titanate Ceramics,” J. Appl. Phys., 58 [1], 1619-1625 (1985).
2. M. Bȁurer, S.-J. Shih, C. Bishop, M.P. Harmer, D. Cockayne and M.J. Hoffmann, “Abnormal Grain Growth in Undoped Strontium and Barium Titanate,” Acta Mater., 58, 290–300 (2010). 3. Pedro Duran, Dionisio Gutierrez, Jesus Tartaj and Carlos Moure, “Densification Behaviour, Microstructure Development and Dielectric Properties of Pure BaTiO3 Prepared by Thermal Decomposition of (Ba,Ti)-citrate Polyester Resins,” Ceramics International, 28, 283–292 (2002). 4. E. T. Park, “Grain Growth of BaTiO3.” J. Mater. Sci. Lett., 18, 163-165 (1999). 5. B. W. Lee and K. H. Auh, “Effect of Grain Size and Mechanical Processing on the Dielectric Properties of BaTiO3,” J. Mater. Res., 10 [6], 1418-1423 (1995). 6. K. Kinoshita and A. Yamaji, “Grain-size Effects on Dielectric Properties in Barium Titanate Ceramics,” J. Appl. Phys., 47 [1], 371-373 (1976). 7. S. J. Zheng, K. Du and X. L. Ma, “Abnormal Grain Growth of BaTiO3 by 2D Nucleation and Later Growth,” J. Eur. Ceram. Soc., 28 [9], 1821-1825 (2008). 8. H. Y. Lee, J. S. Kim, N. M. Hwang and D. Y. Kim, “Effect of Sintering Temperature on the Secondary Abnormal Grain Growth of BaTiO3,” J. Eur. Ceram. Soc., 20, 731-737 (2000). 9. Y-I. Jung, S-Y, Choi, S-J. L. Kang, “Effect of Oxygen Partial Pressure on the Grain Boundary Structure and Grain Growth Behavior in BaTiO3”, Acta Mater., 54, 2849-2855 (2006). 10. B. K. Lee and S. J. L. Kang, “Second-Phase Assisted Formation of {111} Twins in Barium Titanate,” Acta Mater., 49, 1373-1381 (2001). 11. J-K. Lee and K-S. Hong, “Roles of Ba/Ti Ratios in the Dielectric Properties of BaTiO3 Ceramics,” J. Am. Ceram. Soc., 84 [9], 2001-2006 (2001) 12. J-S. Chun, N-M Huang and D-Y. Kim, “Abnormal Grain Growth Occurring at the Surface of a Sintered BaTiO3 Specimen,” J. Am. Ceram. Soc., 87 [9], 1779-1781 (2004). 13. M-K. Kang, D-Y. Kim and N. M. Hwang, “Ostwald Ripening Kinetics of Angular Grains Dispersed in a Liquid Phase by Two-Dimensional Nucleation and Abnormal Grain Growth,” J. Eur. Ceram. Soc., 22, 603-612 (2002). 14. S.G. Kim, “Large-Scale Three Dimensional Simulation of Ostwald Ripening,” Acta Mater., 55, 6513-6525 (2007). 15. R. Confer, J Canner, T. Trostle and S. Kurtz, “Use of Highly Accelerated Life Test (HALT) to Determine Reliability of Multilayer Ceramic Capacitors,” Proceedings 41st Electronic Components and Technology Conference, 320-322 (1991). 16. G. K. Hobbs, “Accelerated Reliability Engineering: HALT and HASS,” John Wiley & Sons (2000). 17. G. Rose, “Ueber die kry stallform des columbins,” Annalen der Physik, 95 [7], pp.441 (1830). 18. Y. C. Wu, “An Alaysis of Defects in Metastable Retained Hexgonal Barium Titanate. Ph.D. thesis,” National Sun Yat-Sen University. Kaohsiung, Taiwan (2004). 19. W. D. Kingery, H. K. Brown and D. R. Uhlmann, “Introduction to Ceramics,” John Wiley & Sons, New York (1976). 20. M. T. Dove, “Theory of Displacive Phase Transitions in Minerals,” American Mineralogist, 82, 213-244 (1997). 21. R. E. Cohen and H. Krakauer, “Lattice Dynamics and Origin of Ferroelectricity in BaTiO3: Linearized-Augmented-Plane-Wave Total-Energy Calculations, ” Phys. Rev. B, 42, 6416-6423 (1990). 22. D. A. Tenne and X. Xi, “Raman Spectrocopy of Ferroelectric Thin Films and Superlattices,” J. Am. Ceram. Soc., 91 [6], 1820-1834 (2008). 23. G. H. Kwei, A. C. Lawson and S. J. L. Billinge, “Structure of the Ferroelectric Phases of Barium Titanate,” J. Phys. Chem., 97, 2368-2377 (1993). 24. W. Lu, D. N. Fang, C. Q. Li and K. C. Hwang, “Nonlinear Electric-mechanical Behavior and Micromechanics Modeling of Ferroelectric Domain Evolution,” Acta mater., 47 [10], 2913-26 (1999). 25. R. Granesh and E. Goo, “A Quantitative Analysis of the Size of the Kanzig Regions,” J. Mater. Sci. Letts., 13, 1577-1578 (1994). 26. J. Kuwata, K. Uchino and S. Nomura, “Diffuse Phase Transition in Lead Zinc Nibate,” Ferroelectrics, 22, 863-867 (1979). 27. D. E. Rase., and R. Roy, “Phase Equilibria in the System BaO-TiO2,” J. Am. Ceram. Soc., 38 [3], 102-113 (1955). 28. H. M. O’Bryan and J. Thomson, “Phase Equilibria in the TiO2-rich Region of the System BaO-TiO2,” J. Am. Ceram. Soc., 57 [12], 522-526 (1974). 29. K. W. Kirby and B. A. Wechsler, “Phase Relations in BaTiO3-TiO2 System,” J. Am. Ceram. Soc., 74 [8], 1841-1847 (1991). 30. R. Jaffe, W. R. Cook and J. Jaffe, “Piezoelectric Ceramics,” Arrangement with Academic Press Limited (1971). 31. R. M. German, “Liquid Phase Sintering,” Springer (1985). 32. W. D. Kingery, “Densification During Sintering in the Presence of a Liquid Phase. I. Theory,” J. Appl. Phys., 30 [3], 301-306 (1959). 33. M. N. Rahaman, “Ceramic Processing and Sintering,” Marcel Dekker, New York (1995). 34. S-F. Wang and T. C. K. Yang, “Liquid-phase sintering and chemical inhomogeneity in the BaTiO3–BaCO3–LiF system,” J. Mater. Res., 15 [2], 407-416 (2000). 35. I-C. Ho, “Semiconducting Barium Titanate Ceramics Prepared by Boron-Containing Liquid-Phase Sintering,” J. Am. Ceram. Soc., 77 [3], 829-832 (1994). 36. B. E. Walker, R. W. Rice, R. C. Pohanka and J. S. Spann, “Densification and Strength of BaTiO3 with LiF and MgO Additives,” Bull. Am. Ceram. Soc., 55, pp.274 (1976). 37. A. Young, G. Hilmas, S. C. Zhang, and R. W. Schwartz, “Effect of Liquid-Phase Sintering on the Breakdown Strength of Barium Titanate,” J. Am. Ceram. Soc., 90 [5], 1504-1510 (2007). 38. P. R. Rios, T. Yamamoto, T. Knodo, and T. Sakuma, “Abnormal Grain Growth Kinetics of BaTiO3 with an excess TiO2,” Acta Mater., 46 [5], 1617-1623 (1998). 39. D. F. K. Hennings, R. Janssen and P. J. L. Reynen, “Control of Liquid-Phase-Enhanced Discontinuous Grain Growth in Barium Titantate,” J. Am. Ceram. Soc., 70 [1], 23-27 (1987). 40. B-K. Lee and S-Y. Chung and S-J. L. Kang, “Grain Boundary Faceting and Abnormal Grain Growth in BaTiO3,” Acta Mater., 48, 1575-1580 (2000). 41. J. S. Chun, N. M. Hwang and D. Y. Kim, “Abnormal Grain Growth Occurring at the Surface of a Sintered BaTiO3 Specimen,” J. Am. Ceram. Soc., 87 [9], 1779-1781 (2004). 42. G. Arlt, D. Hennings and G. de With, “Dielectric Properties of Fine-grained Barium Titanate Ceramics,” J. Appl. Phys., 58 [1], 1619-1625 (1985). 43. H. T. Kim, Y. H. Han, “Sintering of Nanocrystalline BaTiO3,” Ceram. Int., 30, 1719-1723 (2004). 44. E. Brzozowski and M. S. Castro, “Grain Growth Control in Nb-doped BaTiO3,” J. Mater. Process.Technol., 168, 464-470 (2005). 45. D. Makovec, N. Ule, M. Drofenik, “Positive Temperature Coefficient of Resistivity Effect in Highly Donor-Doped Barium Titanate,” J. Am. Ceram. Soc., 84 [6], 1273-1280 (2001). 46. J. G. Fisher, B-K. Lee, S-Y. Choi, S-M. Wang, S-J. L. Kang, “Inhibition of Abnormal Grain Growth in BaTiO3 by Addition of Al2O3,” J. Eur. Ceram. Soc., 26, 1619-1628 (2006). 47. J. M. Saldana, B. Mullier, G. A. Schneider, “Preparation of BaTiO3 Single Crystals Using the Modified SiO2-Exaggerated Grain Growth Method,” J. Eur. Ceram. Soc., 22, 681-688 (2002). 48. S-Y Choi, S-J. L. Kang, “Sintering Kinetics by Structural Transition at Grain Boundaries in Barium Titanate,” Acta Mater., 52, 2937-2943 (2004). 49. J. G. Fisher, B-K. Lee, A. Brancquart, S-Y. Choi, S-J. L. Kang, “Effect of Al2O3 Dopant on Abnormal Grain Growth in BaTiO3,” J. Eur. Ceram. Soc., 25, 2033-2036 (2005). 50. M-K. Kang, Y-S. Yoo and D-Y. Kim, “Growth of BaTiO3 Seed Grains by the Twin-Plane Reentrant Edge Mechanism,” J. Am. Ceram. Soc., 83 [2], 385-390 (2000). 51. Y. C. Huang and W. H. Tuan, “Exaggerated Grain Growth in Ni-doped BaTiO3 ceramics,” Mater. Chem. and Phys., 105, 320-324 (2007). 52. L. A. Xue, Y. Chen and R. J. Brook, “The Effect of Lanthanide Concentration on Grain Growth in Lanthanide-doped BaTiO3,” J. Mater. Sci. Lett., 7, 1163-1165 (1988). 53. L. A. Xue, Y. Chen and R. J. Brook, “The Influence of Ionic Radii on the Incorporation of Trivalent Dopants into BaTiO3,” Materials Science and Engineering, BI, 193-201 (1988). 54. Y-I. Jung, B-K. Lee, S-J. L. Kang, “Effect of Ba6Ti17O40/BaTiO3 Interface Structure on {111} Twin Formation and Abnormal Grain Growth in BaTiO3,” J. Am. Ceram. Soc., 87 [4], 739-741 (2004). 55. B-K. Lee, S-Y. Chung and S-J. L. Kang, “Necessary Conditions for the Formation of {111} in Barium Titanate,” J. Am. Ceram. Soc., 83 [11], 2850-2860 (2000). 56. D. R. Hamilton and R. G. Seidensticker, “Propagation Mechanism of Germanium Dendrites,” J. Appl. Phys., 31 [7], 1165-1168 (1960). 57. K. Fujiwara, K. Maeda, N. Usami and K. Nakajima, “Growth Mechanism of Si-faceted Dendrites,” Phys. Rev. Lett., 101, 055503 (2008). 58. R. K. Sharma, N. H. Chan and D.M. Smyth, “Solubility of TiO2 in BaTiO3,” J. Am. Ceram. Soc., 64 [8], 448-451 (1981). 59. Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson and P. Nanni, “Grain-size Effects on the Ferroelectric Behavior of Dense Nanocrystalline BaTiO3 Ceramics,” Phys. Rev. B, 70, 027107 (2004). 60. T. Takeuchi, E. Bėtournė, M. Tabuchi and H. Kagetama, “Dielectric Properties of Spark-Plasma-Sintered BaTiO3,” J. Mater. Sci. 34, 917-924 (1999). 61. X-H. Wang, R-Z. Chen, Z-L. Gui and L-T. Li, “The Grain Size Effect on Dielectric Properties of BaTiO3 based Ceramics,” Mater. Sci. & Eng. B, 99, 199-202 (2003). 62. T. Turumi, H. Hirofumi, H. Kakemoto and S. Wada, “Dielectric Properties of BaTiO3-Based Ceramics under High Electric Field,” Jpn. J. Appl. Phys., 41, 6929-6933 (2002). 63. W. R. Buessem, L. E. Cross and A. K. Goswami, “Phenomenological Theory of High Permittivity in Fine-Grained Barium Titanate,” J. Am. Ceram. Soc., 49 [1], 33-36 (1966). 64. R. Munikoti and P. Dhar, “Highly Accelerated Life Testing (HALT) for Multilayer Ceramic Capacitors Qualification,” IEEE Transactions on Components. Hybrids. Manufacturing Technology, 11 [4], 342-345 (1988). 65. R. G. Polcawich, C-N. Feng, S. Hurtz, S. Perini and S. Trolier-McKinstry, “AC and DC Electrical Stress Reliability of Piezoelectric Lead Zirconate Titanate (PZT) Thin Films,” International Microelectronics and Packing Society, 23 [1], 85-90 (2000). 66. W. Q. Meeker and M. J. LuValle, “An Accelerated Life Test Model Based on Reliability Kinetics,” Technomertrics, 37 [2], 133-146 (1995). 67. S. J. Yang, J. W. Kim, D. S. Ryu, M. S. Kim and J. S. Jang, “Reliability Estimation and Failure Analysis of Multilayer Chip Capacitors,” International Journal of Modern Physics B, 17 [8-9], 1318-1323 (2003). 68. W. Q. Meeker and L. A. Escobar, “A Review of Recent Research and Current Issues in Accelerated Testing,” International Statistical Review, 61 [1], 147-168 (1993). 69. S. Grzybowski, E. A. Feilat, P. Knight and L. Doriott, “DC and AC Breakdown Voltage Behavior of High Voltage Multi-layer Encapsulated Coils,” High Voltage Engineering Symposium Conference Publication, 467, 4.308-4.311 (1999). 70. T. I. Prokopowicz and A. R. Vaskas, “Research and Development, Intrinsic Reliability, Subminiature Ceramic Capacitors,” Final Rep. ECOM-90705-F, NTlS AD-864068, (1969). 71. B. S. Rawal and N. H. Chan, “Conduction and Failure Mechanisms in Barium Titanate Based Ceramics under Highly Accelerated Conductions,” AVX Corporation Product Report, Myrtle Beach (1984). 72. P. Rosin and E. Rammler, “The laws governing the fineness of powdered coal,” Journal of the Institute of Coal 7, 29–36 (1933). 73. P. A. Tobias and D. C. Trindade, “Applied Reliability,” 2nd edition, Chapman & Hall/CRC, New York, N. Y. (1995). 74. R. W. Zimmerman, “The effect of microcracks on the elastic moduli of brittle materials,” J. Mater. Sci. Lett., 4, 1457-1460 (1985). 75. H. Hirose, “More Accurate Breakdown Voltage Estimation for the New Step-up Test Method in the Weibull Model,” IEEE Transactions on Dielectrics and Electrical Insulation, 11 [3], 418-423 (2004). 76. D. Fabiani and L. Simoni, “Discussion on Application of the Weibull Distribution to Electrical Breakdown of Insulating Materials,” IEEE Transactions on Dielectrics and Electrical Insulation, 12 [1], 11-16 (2005). 77. R. W. Davidge, “Mechanical Behaviour of Ceramics,” Cambridge University Press, Cambridge, London (1979). 78. J. D. Sullivan, P. H. Lauzon, “Experimental Probability Estimators for Weibull Plots,” J. Mater. Sci. Lett., 5, 1245-1247 (1986). 79. S. J. Yang, J. W. Kim, D. S. Ryu, M. S. Kim and J. S. Jang, “Reliability Estimation and Failure Analysis of Multilayer Ceramic Chip Capacitors,” Int. J. Mod. Phys. B, 17 [8&9] 1318–1323 (2003). 80. D. K. Kim, W. S. Um and H. G. Kim, “Electric Breakdown of the Positive Temperature Coefficient of Resistivity barium titanate Ceramics,” J. Mater. Res., 11 [8], 2002-2008 (1996). 81. R. C. Buchanan, “Ceramic Materials for Electronics,” 3rd edition, Marcel Dekker, New York, (2004). 82. J. S. Chang, PA. Lawless and T. Yamamoto, “Corona Discharge Processes,” IEEE Transactions on Plasma Science, 19 [6], 1152-1166 (1991). 83. G. Ripka and G. Harsangi, “Electrochemical Migration in Thick- Film IC-S,” Electrocomp. Sci. and Tech., 11, 281-290 (1985). 84. H. M. Naguib and B. K. MacLaurin, “Silver Migration and the Reliability of Pd/Ag Conductors in Thick-Film Dielectric Crossover Structures,” IEEE Trans. Compon., Hybrids, Manuf. Technol., CHMT-2 [2], 190-207 (1979). 85. R. Zuo, L. Li and Z. Gui, “Influence of Silver Migration on Dielectric Properties and Reliability of Relaxor Based MLCCs,” Ceramics International, 26, 637-676 (2000). 86. J. C. Lin and J. Y. Chan, “On the Resistance of Silver Migration in Ag-Pd Conductive Thick Films under Humid Environment and Applied d.c. field,” Materials Chemistry and Physics, 43, 256-265 (1996). 87. H. C. Ling and A. M. Jackson, “Correlation of Silver Migration with Temperature–Humidity–Bias (THB) Failure in Multilayer Ceramic Capacitors,” IEEE Trans. Compon., Hybrids, Manuf. Technol., CHMT-12 [1] 130-137 (1989). 88. R. Munikoti and P. Dhar, “Highly Accelerated Life Testing (HALT) for Multilayer Ceramic Capacitor Qualification,” IEEE, Trans. Compon., Hybirds, Maunf. Technol., 11 [4], 342-345 (1988). 89. W. J. Minford, “Accelerated Life Testing and Reliability of high K Multilayer Ceramic Capacitors,” IEEE Trans. Comp., Hybrids, Manuf. Technol., CHMT-5 [3], 297-300 (1982). 90. JCPD, BaTiO3, 89-1428. 91. JCPD, Ba6Ti17O40, 77-1566. 92. Y-P. Pu, Y-H. Liang and W-H. Yang, “Influence of Liquid Phase on Grain Growth of Ba0.998La0.002TiO3,” Journal of Rare Earth, 25, 167-170 (2007). 93. C-W. Chiang and J-H. Jean, “Effects of Barium Dissolution on Dispersing Aqueous Barium Titanate Supensions,” Mater. Chem. and Phys., 80, 647-655 (2003). 94. D-Y. Yang, S-Y. Choi and S-J. L. Kang, “Critical Grain Size for Abnormal Grain Growth of BaTiO3 in Air,” J. Ceram. Soc. Jpn., 114 [11], 970-973 (2006). 95. W. Luan, L. Gao and J. Guo, “Size Effect on Dielectric Properties of Fine-grained BaTiO3 ceramics,” Ceramics International, 25, 727-729 (1999). 96. I. Burn and G. H. Maher, “High Resistivity BaTiO3 Ceramics Sintered in CO-CO2 Atmospheres,” J. Mater. Sci. 10, 633-640 (1975). 97. W. Zhu, S. A. Akbar, R. Asiaie and P. K. Dutta, “Sintering and Dielectric Properties of Hydrothermally Synthesized Cubicand Tetragonal BaTi03 Powders,” Jpn. J. Appl. Phys., 36, 214-221 (1997). 98. W. R. Buessem, L. E. Cross and A. K. Goswami, “A phenomenological theory of the high permittivity in fine-grain BaTiO3,” J. Am. Ceram. Soc., 49 [1], 33-36 (1966). 99. G. J. Hahn and S. S. Shapiro, “Statistical Models in Engineering,” Wiley, New York, N. Y. (1967). 100. S-J. Shih and W-H. Tuan, “Solubility of Silver and Palladium in BaTiO3,” J. Am. Ceram. Soc., 87 [3], 401-407 (2004). 101. R. Zuo, L. Li, R. Chen and Z. Gui, “Sintering Characteristics and Dielectric Properties of Silver –doped PMN-PZN-PT Relaxor Ferroelectric Ceramics,” J. Mater. Sci., 35, 5433-5436 (2000). 102. B. C. Shin and H. G. Kim, “Partial Discharge, Microcracking, and Breakdown in BaTiO3 Ceramics,” Ferroelectrics , 77, 161-166 (1988). 103. B. C. Shin and H. G. Kim, “Grain-size Dependence of Electrically Induced Microcracking in BaTiO3 Ceramics,” Ferroelectrics , 100, 209-212 (1989). 104. A. Kolleck, G. A. Schneider and F. A. Mechke, “R-Curve Behavior of BaTiO3 and PLZT Ceramics under the Influence of an Electric Field Applied Parallel to the Crack” Acta mater. 48, 4099–4113 (2000). 105. J. E. Blendell and R. L. Coble, “Measurement of Stress Due to Thermal Expansion Anisotropy in Al2O3,” J. Am. Ceram. Soc., 65 [3], 174-178 (1982). 106. T. Tunkasiri and G. Rujijanagul, “Dielectric Strength of Fine Grained Barium Titanate ceramics,” J. Mater. Sci. Lett., 15, 1767-1769 (1996). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46778 | - |
dc.description.abstract | 鈦酸鋇為基底的陶瓷材料因為其優越的鐵電性質而廣泛地應用於電子工業中,微結構在鐵電性能的表現上扮演了很重要的角色。本研究即利用不同的燒結曲線製備出具有不同微結構之鈦酸鋇試樣。在微結構的觀察中,發現鈦酸鋇的試樣中呈現出非連續性的晶粒成長(亦稱為異常晶粒成長)。在燒結溫度為1320℃-1360℃且持溫時間2小時的試樣中,其微結構呈現了典型的混合結構:同時存在正常小晶粒和異常大晶粒。透過定量的顯微結構特徵分析,可以得到正常晶粒和異常晶粒的粒徑變化情形。對小晶粒而言,其平均粒徑從1.9 μm稍微增加到 2.2 μm,對大晶粒而言則是從122 μm成長到211 μm。大小晶粒之間的晶粒尺寸差異,相差了將近100倍,而且沒有發現到任何具有中間尺寸的晶粒。藉由進一步的顯微觀察可以發現到有一個我們稱為「擬-異常晶粒」的區域,是由許多群聚的小晶粒所組成。推測對鈦酸鋇而言,此「擬-異常晶粒」區域的形成,可以提供一個從小晶粒到大晶粒的過渡轉變。
本實驗亦對鈦酸鋇在直流電場下的可靠度進行研究。我們利用高加速壽命測試來模擬長時間使用下之介電崩潰並進一步估算鈦酸鋇的可靠度,同時利用韋伯統計的技巧對破壞時間的分佈進行分析。鈦酸鋇的韋伯模數分布在0.21-0.52之間。並透過直流崩潰電場測試來得到鈦酸鋇的介電強度。具有越多數目大晶粒的試樣,其介電強度越低。透過顯微結構的觀察,對於在直流電場下不同的測試方式:高加速壽命破壞測試以及直流崩潰電場測試,其介電崩潰的破壞機制也不相同。對於直流電場崩潰測試而言,微裂縫在高電場誘發應變的影響下所造成之裂縫成長是造成介電崩潰的原因。而因為局部熱集中所造成的熱崩潰 (thermal runaway)現象,則被視為在高加速壽命測試下介電崩潰的主要機制。 | zh_TW |
dc.description.abstract | Barium titanate-based ceramics are used extensively because of their superior ferroelectric properties. The microstructure characteristics of BaTiO3 play important roles on the ferroelectric performance. In the present study, BaTiO3 specimens with different microstructure are prepared by using various sintering profiles. A discontinuous grain growth, also called abnormal grain growth (AGG) or exaggerated grain growth (EGG), is observed in some specimens. The microstructure of the specimens sintered at 1320-1360℃ exhibits a typical bimodal structure. Through the quantitative characterization, the size variation of normal and abnormal grains is determined. The average size of normal grains varies from 1.9 to 2.2 μm and abnormal grains from 122 to 211 μm. The size difference between the normal and abnormal grains is two orders of magnitude. No grain with an intermediate size is observed. A “pseudo-abnormal” region with a cluster of fine grains is found during the microstructure observation. The formation of pseudo-abnormal regions may provide a microstructure transition from normal to abnormal grains.
The reliability of barium titanate under DC electric field is also investigated in the present study. The highly accelerated life test (HALT) method is used to estimate the reliability for long-term usage. The distribution of lifetime is analyzed by using the Weibull statistics. The Weibull modulus of the BaTiO3 ceramics is in the range of 0.21-0.52. The DC breakdown voltage test is also applied to obtain the dielectric strength (DS) of the BATiO3 specimens. The dielectric strength is in the range of 5.7- 11 MV/m. When the area fraction of abnormal grains is higher, the dielectric strength is smaller. Through the microstructure observation on the fracture surface, the mechanism of the dielectric breakdown is different from that of specimens under the breakdown tests. For the DC breakdown voltage test, the growth of microcracks caused by the electrically induced effect is the reason for the breakdown. And for the HALT, it is thought to be dominated by thermal runaway (TRA) which is caused by the localized heating. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T05:41:25Z (GMT). No. of bitstreams: 1 ntu-99-F91527003-1.pdf: 15802652 bytes, checksum: 5b4a9532b5798e6dfaea166ab85b7540 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | Chapter 1 Introduction.............................................................................................1
Chapter 2 Literature Survey..................................................................................3 2-1 Crystal Structure of Barium Titanate......................................................................3 2-2 Liquid-Phase Sintering...........................................................................................9 2-3 Abnormal Grain Growth.......................................................................................14 2-4 Dielectric properties of Barium Titanate..............................................................25 2-5 Life Test and Statistical Analysis………………………………………………..31 2-5.1 Highly Accelerated Life Test (HALT)..........................................................31 2-5.2 Weibull Statics..............................................................................................36 2-6 Failure Mechanism................................................................................................40 Chapter 3 Experimental Procedures.................................................................47 3-1 The preparation of Barium Titanate Specimens...................................................47 3-1.1 Strating Materials..........................................................................................47 3-1.2 Experimental Flow Diagram.........................................................................48 3-2 Phase Analysis......................................................................................................50 3-2.1 Phase Identification.......................................................................................50 3-2.2 Density Measurement....................................................................................50 3-2.3 Relative Density............................................................................................51 3-3 Thermal Mechanical Analysis (TMA)..................................................................51 3-4 Microstructure Analysis.......................................................................................52 3-4.1 SEM Observation..........................................................................................52 3-4.2 Image Analysis..............................................................................................52 3-4.3 Electron Back Scatter Diffraction (EBSD) Analysis.....................................54 3-5 Preparation of Barium Titanate Specimens for Failure Tests...............................55 3-5.1 Experimental Flowchart................................................................................55 3-6 Electric Properties Measurement..........................................................................57 3-6.1 Dielectric properties......................................................................................57 3-6.2 Insulation Resistivity.....................................................................................58 3-7 Breakdown Test.....................................................................................................59 3-7.1 Non-Destructive Test.....................................................................................59 3-7.2 Highly Accelerated Life Test (HALT)...........................................................60 3-7.3 DC Breakdown Voltage Test..........................................................................62 3-8 Microstructure Analysis........................................................................................63 3-8.1 SEM Observation..........................................................................................63 3-8.2 Electron Probe Microanalyzer (EPMA)........................................................63 Chapter 4 Results......................................................................................................64 4-1 Basic Analysis of Starting Materials.....................................................................64 4-1.1 Particle Size Distribution...............................................................................64 4-1.2 Phase Identification.......................................................................................64 4-1.3 Densification Behavior..................................................................................65 4-1.4 Thermal Mechanical Analysis (TMA)...........................................................67 4-2 Microstructure Analysis........................................................................................68 4-2.1 SEM Observation..........................................................................................68 4-2.2 Statistic Size Distribution of Fine Grains.....................................................71 4-2.3 Statistic Size Distribution of Abnormal Grains............................................74 4-2.4 Grain Size Distribution.................................................................................76 4-2.5 Area Fraction Distribution............................................................................79 4-3 Abnormal Grain Growth.......................................................................................81 4-3.1 SEM Observation..........................................................................................81 4-3.2 Electron Back Scatter Diffraction (EBSD) Analysis....................................83 4-4 Basic Properties of the Specimens........................................................................86 4-4.1 Phase Identification.......................................................................................86 4-4.2 Relative Density............................................................................................86 4-4.3 Microstructure of 1336℃/2h Specimen.......................................................86 4-5. Dielectric properties............................................................................................88 4-5.1 Dielectric Constant.......................................................................................88 4-5.2 Dissipation Factor.........................................................................................88 4-5.3 Insulation Resistivity.....................................................................................89 4-6 Breakdown Behavior............................................................................................92 4-6.1 Young’s Modulus..........................................................................................92 4-6.2 Time to Failure..............................................................................................93 4-6.2.1 Various DC Electric Field Strengths for 1320℃/5min Specimens.......93 4-6.2.2 Fixed DC Electric Field Strengths (6 MV/m)…………………….......94 4-6.2.3 DC Breakdown Voltage Test.................................................................99 4-6.3 Dielectric Properties after Tests..................................................................100 4-6.3.1 Dielectric Constant..............................................................................100 4-6.3.2 Dissipation Factor................................................................................100 4-6.3.3 Insulation Resistivity...........................................................................101 4-7 Microstructure Observation................................................................................106 4-7.1 Surface Observation……............................................................................106 4-7.2 SEM observation of Fracture Surface........................................................107 4-8 Microstructure Analysis......................................................................................113 4-8.1 Elastic Properties.........................................................................................113 4-8.2 Composition Analysis………………….....................................................113 4-8.2.1 Fracture Surface after HALT...............................................................113 4-8.2.2 Composition Analysis for Grains…....................................................114 Chapter 5 Discussion...........................................................................................120 5-1. Basic Properties of Barium Titanate..................................................................120 5-1.1 Phase Identification.....................................................................................120 5-1.2 Sintering Behavior......................................................................................122 5-2. Abnormal Grain Growth Behavior....................................................................124 5-2.1 Discontinuous Grain Growth......................................................................124 5-2.2 Area Fraction Analysis................................................................................126 5-2.3 Driving Force for Abnormal Grain Growth................................................127 5-2.4 Mechanism of Abnormal Grain Growth.....................................................129 5-3. Dielectric Properties..........................................................................................136 5-3.1 Insulation Resistivity...................................................................................136 5-3.2 Dissipation Factor.......................................................................................136 5-3.3 Dielectric Constant.....................................................................................137 5-4. Dielectric Breakdown Behavior.........................................................................142 5-4.1 Reliability....................................................................................................142 5-4.2 Microstructure Analysis..............................................................................147 5-4.2.1 Silver Migration..................................................................................147 5-4.2.2 Fracture Surface Observation………..................................................150 5-4.3 Breakdown Mechanism..............................................................................151 Chapter 6 Conclusions..........................................................................................160 Chapter 7 Future Work......................................................................................163 Reference...................................................................................................................165 | |
dc.language.iso | en | |
dc.title | 鈦酸鋇的微結構在直流電場下對其可靠度之影響研究 | zh_TW |
dc.title | Effect of Microstructure on the Reliability of BaTiO3 under DC Electric Field | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 盧宏陽,謝宗霖,王錫福,郭錦龍 | |
dc.subject.keyword | 鈦酸鋇,微結構,異常晶粒成長,高加速壽命測試,介電崩潰,可靠度,熱崩潰, | zh_TW |
dc.subject.keyword | Barium titanate,Microstructure,Abnormal grain growth,Highly accelerated life time (HALT),Dielectric breakdown,Reliability,Dielectric strength,Thermal runaway, | en |
dc.relation.page | 178 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2010-07-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 15.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。