請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46697完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉安義 | |
| dc.contributor.author | Wen-Chin Tu | en |
| dc.contributor.author | 塗文琴 | zh_TW |
| dc.date.accessioned | 2021-06-15T05:23:56Z | - |
| dc.date.available | 2016-08-19 | |
| dc.date.copyright | 2011-08-19 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-18 | |
| dc.identifier.citation | 王兆梅、李琳與郭祈遠。活性多醣購效關係研究評述。現代化工。2002,22(8),18
王業軍、安巍、石志剛和趙建華。枸杞藥用價值的研究進展。安徽農業科學。2008,36(30),13213-13214。 王曉娟、魏傳晚、徐淑永、呂梅香、曾和平。生物活性多醣結構與功效關係研究進展。廣州化工。2004,32(1),6-10。 田庚元。枸杞醣綴合物的結構與生物活性研究。世界科學技術-中醫藥現代化。2003,5(4),22-28。 何進和張聲華。枸杞與枸杞多醣研究(I)。食品科學。1995,16(2),14-21。 何晉浙、胡飛華、孫培龍、張安強、紹平。枸杞多醣結構及其單醣組成之分析研究。食品與發酵工業。2008,34(5),48-50。 阮昌庭。台灣金線蓮水溶性多醣結構特徵。國立台灣大學食品科技究所 碩士論文,台北市。2004。 杜巍、李元瑞和袁静。食藥用菌多醣生物活性與結構的關係。食用菌。2001,2, 3-5。 卓秋萍。枸杞抗氧化能力與益菌生功能之探討。私立靜宜大學食品營養研究所 碩士論文,台中。2009。 段昌令、喬善義、王乃利、趙毅民、齊春會和姚新生。枸杞活性多醣研究。藥學學報。2001,36(3),196-199。 張一芳、馮怡、徐德生和葉小偉。枸杞多醣酶法脫蛋白工藝研究。應用化工。2010,39(10),1532-1533。 張桂和趙國群。超聲波萃取植物多醣之研究。食品科學。2005,26(9),320-306。 張靜麗。藥用活性多醣的複合研究。中華科技大學 碩士論文,中國,武漢。2005。 陳仲仁。食品奈米技術與奈米食品。食品工業研究所。2008,40(11)。 陳時欣。蔗糖酯對奈米/次微米纖維素懸浮液穩定性之研究。國立台灣大學食品科技究所 碩士論文,台北市。 2006。 陳朝榮、陳彥良、王振宇、潘善鵬、安惠榮。奈米尺寸檢測儀器及標準介紹。科儀新知。2004,26(3),26-34。 陳盈綺。黃耆水溶性多醣之劃分與分子特徵。國立台灣大學食品科技究所 碩士論文,台北市。2009。 楊曉萍和張聲華。枸杞子醣類研究。林產化學與工業。1998,18(2),65-67。 聶凌鴻和寧正祥,活性多醣結構關係。2003,23(4),89-94。 梁雅婷。枸杞抗氧化及抗致突變性質及其多醣組成分析。國立中興大學食品科學系 碩士論文,台中市。2002。 鄭國琦、羅傑、許興、王俊。寧夏枸杞果實和葉片醣積累及其枸杞多醣單醣研究。農業科學研究。2008,29(3),1-4。 秦小明、寧恩創、林華娟。枸杞阿拉伯半乳聚醣醣蛋白的維細構造研究(I)。2003, 24(7), 34-40. 廖家鼎。奈米/次微米化芝麻粕lignam glycosides 之生物可利用率與代謝研究。國立台灣大學食品科技研究所 碩士論文,台北市。 2010。 詹雅婷。奈米/次微米化枸杞懸浮液抗氧化性及安全性之探討。國立臺灣大學食品科技研究所 碩士論文,台北市。 2007。 趙春桂和司世麟。多醣類的藥用生命的化學。1988,2,31-40。 謝馥如。奈米食品的安全性與生體利用率。食品工業。2007,39,35-36。 蘇志杰。奈米粉體粒徑檢測方法簡介。機械工業雜誌。2004,255,131-139。 穆靜。枸杞漫談。寧夏醫學院中醫學院。2007,6。 Amagase, H. and Farnsworth N. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Food Res. Int. 2011, 44(7), 1702-1717. Awschalom, D. D. and DiVincenzo, D. P. Complex dynamics of mesoscopic magnets. Physics Today 1995, 48(4), 43-48. Blumenkrantz, N. and Asboe, H. G. New method for quantitative determination of uronic acid. Anal. Biochem. 1973, 54, 484-489. Bootza, A.; Vogelb, V.; Schubertb, D.; Kreutera, J. Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butylcyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm. 2004, 57, 369-375. Bouwmeester, H.; Dekkers, S.; Noordam, M. Y.; Hagens, W. I.; Bulder, A. S.; Heer, C.; Voorde, S.; Wijnhoven, S. W. P.; Marvin H. J. P.; Sips, A. J. Regul. Toxicol. Pharmacol. 2009,53, 52-62. Bradford , M. M. Rapid and sensitive method for quamtitation of microgram quantities of protein utilizing principle of protein-Dye binding. Anal. Biochem. 1976, 72, 248-254. Chan, H. C.; Chang, R. C.; Koon-Ching, I. P.A.; Chiu, K.; Yuen, W. H.; Zee, S. Y.; So, K. F. Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma. Exp. Neurol. 2007, 203, 269-273. Chang, R. C. C. and So, K. F. Use of anti-aging herbal medicine, Lycium barbarum, against aging-associated diseases. what do we know so far? Cell. Mol. Neurobiol. 2008, 28, 643-652. Chen, Z.; Tan Huat, B. K.; Chan, S. H. Activation of T lymphocytes by polysaccharide–protein complex from Lycium barbarum L. Int. Immunopharmacol. 2008, 8, 1663–1671. Chen, H. D.; Weiss, J. C.; Shahidi, F. Nanotechnology in nutraceuticals and functional foods. Food Technol. 2006, 60 (3), 30-32. Cheng, D. and Kong, H. The effect of Lycium barbarum polysaccharide on alcohol-induced oxidative stress in rats. Molecules 2011, 16(3), 2542-2550. Cheong J. Y.; Jung, W. T.; Park, W. B. Characterization of an alkali-extracted peptidoglycan from Ganoderma lucidum. Arch. Pharm Res. 1999, 22, 515-519. Chiu, K.; Zhou, Y.; Yeung, S. C.; Lok, C. K.; Chan, O. O.; Chang, R. C.; So, K. F.; Chiu, J. F. Up-regulation of crystallins is involved in the neuroprotective effect of wolfberry on survival of retinal ganalion cells in rat ocular hypertension model. J. Cell Biochem. 2010, 110(2), 311-320. Demleitner, S.; Kraus, J.; Franz, G. Synthesis and anti-tumor activity of derivatives of curdlan and lichenan branched at C6. Carbohydr. Res.1992, 226(2),239-246. Dubois, M.; Gilles, K. A.; Hamilton, J.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28,350-356. Frances, C. On the modeling of submicronic wet milling processes in bead mills. Powder Technol. 2004, 143-144, 253-263. Gabriel, A. S. Neuroscience nanotechnology: progress, opportunities and challenges. Nat. Rev. Neurosci. 2006, 7, 65-74 Gan, L.; Zhang, S. H.; Liu, Q.; Xu, H. B. A polysaccharide–protein complex from Lycium barbarum upregulates cytokine expression in human peripheral blood mononuclear cells. Eur. J. Pharmacol. 2003, 471, 217–22. Gan, L.; Zhang, S. H.; Yang, X. L.; Xu, H. B. Immunomodulation and antitumor activity by a polysaccharide–protein complex from Lycium barbarum. Int. Immunopharmacol. 2004, 4, 563–569. Hiroako, K.; Norito, T.; Zhao, J. F. Pectic polysaccharide from roots of Glycyrrhiza uralensis: possible contribution of neutral oligosaccharides in the galacturonase-resistantregion to anti-complrmentary and mitogenic activities. Planta Med. 1996, 62, 14-19. Ho, Y. S.; Yu, M. S.; Yang, X. F.; So, K. F.; Yuen, W. H.; Chang, R. C. Neuroprotective effects of polysaccharides from wolfberry, the fruits of Lycium barbarum, against homocysteine-induced toxicity in rat cortical neurons. J. Alzheimers Dis. 2010, 19(3), 817-827. Huang, L. J.; Lin, Y.; Tian, G. Y.; Ji, G. Z. Isolation, purification and physico–chemical properties of immunoactive constituents from the fruit of Lycium barbarum L. Acta Pharma Sinica 1998, 33, 512–516. Huang, L. J.; Tian, G. Y.; Zhang, Y. X.; Qi, C. H. structure elucidation and immunoactivity studies of glycan of glycoconjugate LbGp4 isolated from the fruit of Lycium barbarum L. Chemical Journal of Chinese Universities 2001, 22, 407–441. Huie, C.W. and Di, X. Chromatographic and electrophoretic methods for Linzhi pharmacologically activity components. J. Chromotogr. 2004, 812, 241-257. Jillavenkatesa, A. and Kelly, JF. Nanoparticle characterization: challenges and future directions. J. Nanopart. Research 2002, 4, 463-468. Kato, Y.; Habu, N.; Yamaguchi, J.; Kobayashi, Y.; Shibata, I.; Isogai. A.; Smejima, M. Biodegradation of β-1,4-linked polyglucuronic acid (cellouronic acid). Cellulose 2002, 9, 75-81 Kastner, M. A. Artificial atoms. Physics Today 1993, 46(1), 24-31. Knill, C. J. and Kennedy, J. F. Degradation of cellulose under alkaline conditions. Carbohydr. Polym. 2003, 51, 281-300. Kwang, W. Y.; Kiyohara, H.; Ma T. T. T. Intestinal immune system modulating polysaccharides from rhizomes of Atractyodes iancea. Planta Med. 1998, 64, 714-719. Leung, M. Y. K.; Liu, C.; Koon, J. C. M.; Fung, K. P. polysaccharide biological response modifiers. Immunol. Lett. 2006, 105, 101-104. Levis, S. R. and Deasy P. B. Production and evaluation of size reduced grades of microcrystalline cellulose. International Journal of Pharmaceutics. 2001, 213, 13-24. Li, X. M.; Ma, Y. L.; Liu, X. J. Effect of the Lycium barbarum polysaccharide on age-relate oxidative stress in aged mice. J. Ethnopharmacol. 2007a, 111, 504-511. Li, X. M. Protective effect on Lycium barbarum polysaccharides on streptozotocin-induced oxidative stress in rat. Int. J. Biol. Macromol. 2007b, 40, 461-465. Li, Y. Q.; Lu, F.; Zhang, K. C. Structure and bioactivities of a galactose rich extracellular polysaccharide from submergedly cultured Ganoderma lucidum. Carbohydr. Polym. 2007, 68, 323–328. Luo, Q.; Cai, Y-Z.; Yan, J.; Sun, M.; Corke, H. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit of extracts from Lycium barbarum. Life Sci. 2004, 76, 137-149. Maynard, A. D.; Aitken, R. J.; Butz, T.; Colvin, V.; Donaldson, K.; Oberdorster, G.; Philbert, M. A.; Ryan, J.; Seaton, A.; Stone, V. Safe handling of nanotechnology. Nature 2006. 444 (7117), 267–269. Miyazaki, T. and Nishijiam, M. Studties on fungal polysaccharides structureal examination of an alkali-extracted, water-soluble heteroglycan of the fungus genderma-lucidum. Carbohydr. Res. 1982, 109, 290-294. Misaki, A. and Kawagnchi, K. Structure of pestalotan, a highly branched (1,3)-β-D-glucan elaborated by polyol modification of the side chains. Carbohydr. Res. 1984, 129, 209-227. Moraru, C-I.; Panchapakesan, C-P.; Huang, Q.; Takhistov, P.; Liu, S.; Kokini J. L. Nanotechnology: A new frontier in food science. Food Tech. 2003, 57, 24-29. Müller, P-H.; Jacobs, C.; Kayser, O. Nanosuspensions as particulatr drug formulations in therapy rationale for development and what we can expect for the future. Advance Drug Delivery Review 2001, 47(1), 3-19. Müller P-H. and Peter K. Nanosuspensions for the formulation of poorly soluble drugs I. preparation by size-reduction technique. Int. J. Pharm. 1998, 160, 22-237. Ohnon, M. and Miuran. Structure and biological activitys of hypochlorite oxidezed zymosan. Carbohydr. Polym. 2002, 44(6), 339-349. Paulsen, B. S. Plant polysaccharide with immunostimulatory activities. Current organic chemistry 2001, 5, 939-950. Paulsen, B. S. and Barsett, H. Bioactive pectic polysaccharides. Adv. Polym. Sci. 2005, 186, 69-101. Pelley, R. P. and Strickland, F. M. Plants, polysaccharides, and the treatment and prevention of Neoplasia. Crit. Rev. Oncog. 2000, 13, 189-225. Peng, X. M.; Huang, L. J.; Qi, C. H. Studies on chemistry and immune-modulating mechanism of glycoconjugate from Lycium barbarum L. Chinese J. Chem. 2001, 19(2), 1190-1197. Peng, X. M. and Tian, G. Y. Structural characterization of the glycan part of glycoconjugate LbGp2 from Lycium barbarum L. Carbohydr. Res. 2001, 331, 95-99. Potterat, O. Goji (Lycium barbarum and L. chinense): phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. 2010, 76, 7-9. Qian, J-Y.; Liu, D.; Huang, A. G. The efficiency of flavonoids in polar extracts of Lycium chinese Mill. Fruits as free radical scavenger. Food Chem. 2004, 87, 283-288. Redgwell, R. J.; Curti, D.; Wang, J.; Dobruchowska, J. M.; Gerwig, G. J. G.; Kamerling, J. P.; Bucheli, P. Cell wall polysaccharides of chinese Wolfberry (Lycium barbarum): Part 1. Characterization of arabinogalactan-proteins.. Carbohydr. Polym. 2011a, 84, 1075-1083. Redgwell, R. J.; Curti, D.; Wang, J.; Dobruchowska, J. M.; Gerwig, G. J. G.; Kamerling, J. P.; Bucheli, P. Cell wall polysaccharides of chinese Wolfberry (Lycium barbarum): Part 2. Characterization of soluble and insoluble polymer fractions. Carbohydr. Polym. 2011b, 84, 1344-1349. Samuelsen; Anne; Berit. Characterization of a biologically active pectin from Plantago major L. Carbohydr. Polym. 1996, 30(1), 37-44. Sandula, J.; Kogan, G.; Kacure, K. M. Microbial(1Ш3)-glucams, their preparation, physico-chemical characterization and immunomodulatory activity. Carbohydr. Polym. 1999. 38, 247-253. Sanguansri, P. and Augustin, M. A. Nanoscale material development-a food industry perspective. Trends Food Sci. Tech. 2006, 17, 547-556. Saito, K.; Yamazaki, H.; Ohnishi, Y. Production of trehalose synthase from a basidiomycete, Grifola frondosa, in Escherichia coli. Appl. Microbiol. Biotechnol . 1998, 50(2), 193-198. Seki, J.; Sonoke, S.; Saheki, A.; Fukui, H.; Mayumib, T. A nanometer lipid emulstion, lipid nano-sphere, as a parenteral drug carrier for passive drug targeting. Int. J. Pharm. 2004, 372, 75-83. Shekunov B. Y.; Chattopadhyay, P.; Tong, H. H. Y.; Chow, A. H. L. Particle size analysis in pharmacyeutics: principle, methods and applications. Pharmaceutical Res. 2007, 24(2), 203-227. Takuya, T. Commercial scale production of inorganic nanoparticles. International Journal of Nanotechnology 2009, 6, 567. Teeri, T. T. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol. 1997, 15(5), 160-167. Tian, G. Study on structure and bioactiveity of glycolconjugate compounds of fructus Lycii. Sanghai institute of organic chemistry 2003, 5(4), 22-31. Uchiyama, M. and Mihara, M. Determination of malonaldehyde processor in tissues by thiobarbituric acid test. Analytic Biochem. 1978, 86, 271-274. Wang, C. C.; Chang, S. C.; Chen, B. H. Chromatographic determination of polysaccharides in Lycium barbarum Linnaeus. Food Chem. 2009, 116, 595-603. Wang, J.; Hu, Y.; Wang, D.; Liu, J.; Zhang, J.; Abula, S.; Zhao, B.; Ruan, S. Sulfated modification can enhance the immune-enhancing activity of Lycium barbarum polysaccharide. Cell Immunol. 2010, 46(2), 212-216. Wang, Y.; Hollingsworth, R. I.; Kasper, D. L. Ozonolytic depolymerization of polysaccharides in aqueous solution. Carbohydr. Res. 1999, 319, 141-147. Watsona, K.; Gooderhama, N. J.; Daviesa, D. S.; Edwards, R. J. Interaction of the transactivating protein HIV-1 tat with sulphated polysaccharides. Biochem. Pharmacol. 1999, 57, 775-783. Weiss, J.; Takhistov, P.; McClements, J. Functional materials in food nanotechnology. J. Food Sci. 2006, 71 (9), 107–116. Wu, H.; Guo, H. and Zhao, R. Effect of Lycium barbarum polysaccharide on the improvement of antioxidant ability and DNA damage in NIDDM rats. Yakugaku Zasshi 2006, 126, 365-371. Wu, H. T.; He, X. J.;Hong, Y. K.; Ma, T.; Xu, Y. P.; Li, H. H. Chemical characterization of Lycium barbarum polysaccharides and its inhibition against liver oxidative injury of high-fat mice. Int. J. Biol. Macromol. 2010, 46(2), 212-216. Yalpani, M. Polysaccharides: syntheses-modifications, and structure-property relations. Amsterdam: Elsevier Science Ltd 1988. Yang, J. Chemical modification, characterization and structure-anticoagulant activity relationships of Chinese lacquer polysaccharides. Int. J. Biol. Macromol. 2002, 31(1-3), 55-62. Yang, L. and Zhang, L. M. and, L.Review chemical structural and chain conformational charactization of some bioactiveity polysaccharides isolated from natural sources. Carbohydr. Polym. 2009, 76, 349-361. Yu, M. S.; Leung, S. K.; Lai, S. W.; Che, C. M.; Zee, S.Y.; So, K.F.; Yuen, W. H.; Chang, R.C. Neuroprotective effects of anti-aging oriental medicine Lycium barbarum against β-amyloid peptide neurotoxicity. Exp. Gerontol. 2005, 40, 716-727. Zhang, M.; Xhen, H.; Huang, J.; Li, Z.; Zhu, C.; Zhang, S. Effect of Lycium barbarum polysaccharide on human hepatoma QGY7703 cells: inhibition of proliferation and iinduction of apoptosis. Life Sci. 2005, 76, 2115-2124. Zhang, Y. P. and Lynd, L. R. Cellodextrin preparation by mixed-acid hydrolysis and chromatographic separation. Anal. Biochem. 2003, 322, 225-232. Zhang, X. R.; Zhou, Y. X.; Qi, C. H.; Yan, H.; Wang, Z. F.; Wang, B. Macrophages, rather than T and B cells are principal immunostimulatory target cells of Lycium barbarum L. polysaccharide LBPF4-OL. J Ethnopharmacol 2011, 136(3), 465-472. Zhao, R.; Li, Q. W.; Li, J.; Zhang, T. Protective effect of Lycium barbarum polysaccharide on kidneys in streptozotocin-induce diabetic rats. Can. J. physiol. Pharmacol. 2009, 87(9), 711-719. Zou, S.; Zhang, X.; Yao, W.; Niu, Y.; Gao, X. Structure characterizeation and hypoglycemic activety of a polysaccharide isolated from the fruit of Lycium barbarum L. Carbohydr. Polym. 2010, 80(4), 1161-1167. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/46697 | - |
| dc.description.abstract | 枸杞 (Lycium barbarum L.)為醫食同源的傳統中草藥,具多種藥理作用和生理功能,多醣為主要生理活性物質之一,提供免疫調節、抗腫瘤、延緩老化、降血糖等數種生理活性功效。本實驗室藉由介質研磨 (Media milling)方式成功製備出奈米/次微米枸杞懸浮液,經安全性試驗 (Ames test),確認奈米/次微米枸杞懸浮液對TA98及TA100菌株不具致突變性。本研究目的為主要鑑定介質研磨對枸杞懸浮液中游離單醣、寡醣與水溶性多醣組成之影響。枸杞經介質研磨90分鐘後,粒數平均粒徑由3.54μm降低為0.101 μm,且小於0.1 μm的粒子數量佔總粒子數的62%,同時以顯微影像觀察證實含有奈米/次微米粒子存在。細碎與研磨枸杞之水溶性粗多醣總醣量,分別為59.98 mg/g dry Lycium與86.47 mg/g dry Lycium;醛醣酸含量分別為30.43 mg/g dry Lycium與45.83 mg/g Lycium。單醣組成上,細碎與研磨組之游離單醣主要均為葡萄糖 (D-Glucose)與果糖 (D-Fructose);寡醣主要為岩藻糖 (D-Fucose) 與微量的鼠李糖 (D-Rhamnose)、阿拉伯糖 (D-Arabinose)及半乳糖 (D-Galactose)。細碎與研磨組之水溶性粗多醣分子量分布範圍主要均介於6-400 kDa之間。細碎與研磨之水溶性粗多醣主要含有葡萄糖、果糖、鼠李糖、阿拉伯糖、半乳糖、甘露糖 (D-Mannose)、木糖 (D-Xylose) 5種中性單醣,兩組之單醣組成莫耳分率比分別為1 : 3.03 : 1.03 : 0.25 : 0.06與1 : 2.98 : 1.21 : 0.24 : 0.04,在多醣組成比例上差異不大,但個別單醣含量隨著研磨時間增加而增加。利用陰離子交換層析,分離水溶性多醣之中性多醣 (neutral polysaccharide of L. barbarum, LBPN)與酸性多醣 (acidic polysaccharide of L. barbarum, LBPA1與LBPA2)。未去蛋白質前,其LBPN、LBPA1、LBPA2之細碎組總醣比例為14.81 : 51.44 : 33.75與研磨組26.09 : 25.39 : 48.52;去蛋白後細碎組為25.60 : 28.98 : 45.42與研磨組23.20 : 25.57 : 51.23。結果顯示,介質研磨可增加游離單醣、寡醣與枸杞水溶性多醣含量而不影響對游離單醣、寡醣之組成。此外,枸杞水溶性多醣之單醣組成、分子量與酸性多醣比例無明顯差異,即研磨可促使水溶性枸杞多醣釋放,且對其多醣組成與特性無顯著差異。 | zh_TW |
| dc.description.abstract | Lycium barbarum L. has multiple biological and pharmacological activities and has been used as a Chinese medicine and food. Media milling has been successfully employed to prepare nano/submicron Lycium suspension (L. suspension) in our lab, and has no mutagenic effect to the Samonella typhiumurium TA98 and TA100. The objective of this study is to identify free sugar, oligosaccharides and polysaccharides components of media milling Lycium barbarum and to evaluate the effects of media milling on Lycium barbarum polysaccharides (LBP). Media milling for 90min, the number average diameter of L. suspension particle was reduced from 3.54 μm to 0.101 μm, and percentage of particle smaller than 0.1 μm was 62.32%. SEM observation also proved the existence of nano/submicron L. suspension particles. The carbohydrate content of the blended LBP and milled LBP were 59.98 mg/g of dry Lycium and 86.47 mg/g of dry Lycium; and uronic acid content was 30.43 mg/g of dry Lycium and 45.83 mg/g of dry Lycium. For both the blended and milled L. suspension, the monosaccharide composition was D-Glucose and D-Fructose; and the oligosaccharides were consisted of D-Fucose and a few D-Rhamnose, D-Arabinose and D-Galactose. The molecular weight of the blended and milled LBP had a widely distributed rang of 6 - 2000 kDa. Polysaccharides extracted from the blended and milled L. suspension consist of D-Galactose, D-Glucose, D-Arabinose, D-Xylose and D-Mannose in a molar ratio of 3.03 : 1.03 : 1 : 0.25 : 0.06, and 2.98 : 1.21 : 1 : 0.24 : 0.04, respectively. Blended and milled water-soluble polysaccharide can be separated into neutral polysaccharide of L. barbarum (LBPN) and acidic polysaccharide of L. barbarum (LBPA1 and LBPA2) fractions by DEAE. For the total carbohydrate content, the LBPN, LBPA1 and LBPA2 was 14.81 : 51.44 : 33.75 for blended LBP; and 14.16 : 55.71 : 29.68 for milled LBP, before deproteination. After deproteination, LBPN, LBPA1 and LBPA2 was 46.18 : 29.57 : 24.24 for blended; and 39.14 : 30.40 : 30.46 for milleded LBP. Media milling can increase free sugar, oligosaccharide and LPB content, but does affect the composition of free sugar and oligosaccharide. There is no significant difference in sugar composition, molecular weight and content of acidic polysaccharides of LBP. The result showed that water-soluble polysaccharides from L. barbarum can be released by media milling but the process dose not significantly affect their property and sugar composition. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T05:23:56Z (GMT). No. of bitstreams: 1 ntu-100-R98641030-1.pdf: 5211256 bytes, checksum: 26cce3cbff797410fb882644f04eecdc (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 目錄 IV
圖目錄 VI 表目錄 VIII 壹、前言 1 貳、文獻回顧 2 2.1 枸杞 2 2.1.1 枸杞簡介 2 2.1.2 枸杞醣類研究 5 2.1.3 枸杞多醣之生理活性 6 2.1.4 枸杞多醣之結構與性質 9 2.2 多醣 17 2.2.1 多醣萃取與分析 17 2.2.2 多醣生理活性 18 2.2.2 影響多醣生理活性的因素 20 2.3 奈米科學與技術 23 2.3.1 奈米的定義 23 2.3.2 奈米材料的特性與製備 25 2.3.3 奈米材料粒徑量測 27 2.3.4 奈米科技在食品之應用 29 参、實驗架構 32 3.1 實驗目的 32 3.2 實驗架構 32 肆、材料與方法 33 4.1 試驗材料 33 4.2 試驗藥品 33 4.3 儀器設備 36 4.4 實驗方法 40 伍、結果與討論 61 5.1 枸杞之基本成分分析 61 5.2 介質研磨時間對枸杞懸浮液之影響 63 5.2.1 粒徑分析 63 5.2.2 外觀型態觀察 67 5.2.3 穩定性分析 69 5.3 枸杞醣類分析 73 5.3.1 枸杞懸浮液之總醣、乙醇上清液與水溶性粗多醣含量 73 5.3.2 乙醇沉澱上清液 75 A. 未經TFA水解乙醇上清液之單醣組成 75 B. 經TFA水解之乙醇上清液之單醣組成 75 5.3.3 水溶性粗多醣 83 5.3.3.1 水溶性粗多醣之碘呈色反應 83 5.3.3.2 水溶性粗多醣之基本組成 84 5.3.3.3 水溶性粗多醣之單醣組成 86 5.3.3.4 水溶性多醣分子量測定 90 5.3.3.5 多醣純化 – 去蛋白 95 5.3.3.6 水溶性粗多醣電荷分布 96 陸、結論 100 柒、參考文獻 101 捌、附錄 110 | |
| dc.language.iso | zh-TW | |
| dc.subject | 水溶性多醣 | zh_TW |
| dc.subject | 奈米科技 | zh_TW |
| dc.subject | 介質研磨 | zh_TW |
| dc.subject | 枸杞 | zh_TW |
| dc.subject | 單醣 | zh_TW |
| dc.subject | 寡醣 | zh_TW |
| dc.subject | media milling | en |
| dc.subject | water-soluble polysaccharide | en |
| dc.subject | oligosaccharide | en |
| dc.subject | monosaccharide | en |
| dc.subject | nanotechnology | en |
| dc.subject | Lycium barbarum L. | en |
| dc.title | 介質研磨對枸杞水溶性多醣及其組成之影響 | zh_TW |
| dc.title | Influence of media milling on water-soluble polysaccharides from Lycium barbarum | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳炳輝,盧訓,呂廷璋,王仁助 | |
| dc.subject.keyword | 奈米科技,介質研磨,枸杞,單醣,寡醣,水溶性多醣, | zh_TW |
| dc.subject.keyword | nanotechnology,media milling,monosaccharide,oligosaccharide,water-soluble polysaccharide,Lycium barbarum L., | en |
| dc.relation.page | 110 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 5.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
